oracle-ads 2.10.1__py3-none-any.whl → 2.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. ads/aqua/__init__.py +12 -0
  2. ads/aqua/base.py +324 -0
  3. ads/aqua/cli.py +19 -0
  4. ads/aqua/config/deployment_config_defaults.json +9 -0
  5. ads/aqua/config/resource_limit_names.json +7 -0
  6. ads/aqua/constants.py +45 -0
  7. ads/aqua/data.py +40 -0
  8. ads/aqua/decorator.py +101 -0
  9. ads/aqua/deployment.py +643 -0
  10. ads/aqua/dummy_data/icon.txt +1 -0
  11. ads/aqua/dummy_data/oci_model_deployments.json +56 -0
  12. ads/aqua/dummy_data/oci_models.json +1 -0
  13. ads/aqua/dummy_data/readme.md +26 -0
  14. ads/aqua/evaluation.py +1751 -0
  15. ads/aqua/exception.py +82 -0
  16. ads/aqua/extension/__init__.py +40 -0
  17. ads/aqua/extension/base_handler.py +138 -0
  18. ads/aqua/extension/common_handler.py +21 -0
  19. ads/aqua/extension/deployment_handler.py +202 -0
  20. ads/aqua/extension/evaluation_handler.py +135 -0
  21. ads/aqua/extension/finetune_handler.py +66 -0
  22. ads/aqua/extension/model_handler.py +59 -0
  23. ads/aqua/extension/ui_handler.py +201 -0
  24. ads/aqua/extension/utils.py +23 -0
  25. ads/aqua/finetune.py +579 -0
  26. ads/aqua/job.py +29 -0
  27. ads/aqua/model.py +819 -0
  28. ads/aqua/training/__init__.py +4 -0
  29. ads/aqua/training/exceptions.py +459 -0
  30. ads/aqua/ui.py +453 -0
  31. ads/aqua/utils.py +715 -0
  32. ads/cli.py +37 -6
  33. ads/common/decorator/__init__.py +7 -3
  34. ads/common/decorator/require_nonempty_arg.py +65 -0
  35. ads/common/object_storage_details.py +166 -7
  36. ads/common/oci_client.py +18 -1
  37. ads/common/oci_logging.py +2 -2
  38. ads/common/oci_mixin.py +4 -5
  39. ads/common/serializer.py +34 -5
  40. ads/common/utils.py +75 -10
  41. ads/config.py +40 -1
  42. ads/jobs/ads_job.py +43 -25
  43. ads/jobs/builders/infrastructure/base.py +4 -2
  44. ads/jobs/builders/infrastructure/dsc_job.py +49 -39
  45. ads/jobs/builders/runtimes/base.py +71 -1
  46. ads/jobs/builders/runtimes/container_runtime.py +4 -4
  47. ads/jobs/builders/runtimes/pytorch_runtime.py +10 -63
  48. ads/jobs/templates/driver_pytorch.py +27 -10
  49. ads/model/artifact_downloader.py +84 -14
  50. ads/model/artifact_uploader.py +25 -23
  51. ads/model/datascience_model.py +388 -38
  52. ads/model/deployment/model_deployment.py +10 -2
  53. ads/model/generic_model.py +8 -0
  54. ads/model/model_file_description_schema.json +68 -0
  55. ads/model/model_metadata.py +1 -1
  56. ads/model/service/oci_datascience_model.py +34 -5
  57. ads/opctl/operator/lowcode/anomaly/README.md +2 -1
  58. ads/opctl/operator/lowcode/anomaly/__main__.py +10 -4
  59. ads/opctl/operator/lowcode/anomaly/environment.yaml +2 -1
  60. ads/opctl/operator/lowcode/anomaly/model/automlx.py +12 -6
  61. ads/opctl/operator/lowcode/forecast/README.md +3 -2
  62. ads/opctl/operator/lowcode/forecast/environment.yaml +3 -2
  63. ads/opctl/operator/lowcode/forecast/model/automlx.py +12 -23
  64. ads/telemetry/base.py +62 -0
  65. ads/telemetry/client.py +105 -0
  66. ads/telemetry/telemetry.py +6 -3
  67. {oracle_ads-2.10.1.dist-info → oracle_ads-2.11.0.dist-info}/METADATA +37 -7
  68. {oracle_ads-2.10.1.dist-info → oracle_ads-2.11.0.dist-info}/RECORD +71 -36
  69. {oracle_ads-2.10.1.dist-info → oracle_ads-2.11.0.dist-info}/LICENSE.txt +0 -0
  70. {oracle_ads-2.10.1.dist-info → oracle_ads-2.11.0.dist-info}/WHEEL +0 -0
  71. {oracle_ads-2.10.1.dist-info → oracle_ads-2.11.0.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,56 @@
1
+ [
2
+ {
3
+ "categoryLogDetails": {
4
+ "access": {
5
+ "logGroupId": "ocid1.loggroup.oc1.iad.xxxx",
6
+ "logId": "ocid1.log.oc1.iad.xxxx"
7
+ },
8
+ "predict": {
9
+ "logGroupId": "ocid1.loggroup.oc1.iad.xxxx",
10
+ "logId": "ocid1.log.oc1.iad.xxxx"
11
+ }
12
+ },
13
+ "compartmentId": "ocid1.compartment.oc1..xxxx",
14
+ "createdBy": "ocid1.user.oc1..xxxx",
15
+ "description": "service model 1.",
16
+ "displayName": "Test deployment of Mock service model 1 via UI",
17
+ "freeformTags": {
18
+ "aqua_service_model": "ocid1.datasciencemodel.oc1.iad.xxxx"
19
+ },
20
+ "id": "ocid1.datasciencemodeldeployment.oc1.iad.xxxx",
21
+ "lifecycleDetails": "Model Deployment is Active.",
22
+ "lifecycleState": "ACTIVE",
23
+ "modelDeploymentConfigurationDetails": {
24
+ "deploymentType": "SINGLE_MODEL",
25
+ "environmentConfigurationDetails": {
26
+ "entrypoint": [
27
+ "python",
28
+ "/opt/api/api.py"
29
+ ],
30
+ "environmentConfigurationType": "OCIR_CONTAINER",
31
+ "healthCheckPort": 5000,
32
+ "image": "iad.ocir.io/ociodscdev/aqua_deploy:1.0.0",
33
+ "imageDigest": "sha256:07f43194badef8973b4bd59d649a456b90b57e632f03927896232e904e02cdf1",
34
+ "serverPort": 5000
35
+ },
36
+ "modelConfigurationDetails": {
37
+ "bandwidthMbps": 10,
38
+ "instanceConfiguration": {
39
+ "instanceShapeName": "VM.Standard.E4.Flex",
40
+ "modelDeploymentInstanceShapeConfigDetails": {
41
+ "memoryInGBs": 16.0,
42
+ "ocpus": 1.0
43
+ }
44
+ },
45
+ "modelId": "ocid1.datasciencemodel.oc1.iad.xxxx",
46
+ "scalingPolicy": {
47
+ "instanceCount": 1,
48
+ "policyType": "FIXED_SIZE"
49
+ }
50
+ }
51
+ },
52
+ "modelDeploymentUrl": "https://modeldeployment.us-ashburn-1.oci.customer-oci.com/ocid1.datasciencemodeldeployment.oc1.iad.xxx",
53
+ "projectId": "ocid1.datascienceproject.oc1.iad.xxxx",
54
+ "timeCreated": "2024-01-25T00:26:14.542000Z"
55
+ }
56
+ ]
@@ -0,0 +1 @@
1
+ [{"id": "ocid1.datasciencemodel.oc1.iad.xxxx", "compartmentId": "ocid1.compartment.oc1..xxxx", "projectId": "ocid1.datascienceproject.oc1.iad.xxxx", "displayName": "Mistral 7B Instruct", "lifecycleState": "ACTIVE", "timeCreated": "2024-01-19T17:47:19.488000Z", "createdBy": "ocid1.datasciencenotebooksession.oc1.iad.xxxx", "freeformTags": {"aqua_service_model": "ocid1.datasciencemodel.oc1.iad.xxxx#llama2", "license": "Apache", "task": "text_generation", "organization": "Meta AI", "OCI_AQUA": ""}, "customMetadataList": [{"key": "ModelArtifacts", "value": ".model-ignore, score.py, runtime.yaml, output_schema.json, input_schema.json, model.pkl, icon.txt", "description": "The list of files located in artifacts folder.", "category": "training environment"}, {"key": "EnvironmentType", "value": "data_science", "description": "The conda environment type, can be published or datascience.", "category": "training environment"}, {"key": "SlugName", "value": "automlx234_p38_cpu_x86_64_v1", "description": "The slug name of the training conda environment.", "category": "training environment"}, {"key": "ModelSerializationFormat", "value": "pkl", "description": "The model serialization format.", "category": "training profile"}, {"key": "ClientLibrary", "value": "ADS", "category": "other"}, {"key": "CondaEnvironment", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The conda environment where the model was trained.", "category": "training environment"}, {"key": "CondaEnvironmentPath", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The URI of the training conda environment.", "category": "training environment"}, {"key": "ModelFileName", "value": "model.pkl", "description": "The model file name.", "category": "other"}, {"key": "Object Storage Path", "value": "oci://ming-dev@ociodscdev/aqua/model_artifact1", "description": "model by reference storage path", "category": "other"}], "definedMetadataList": [{"key": "UseCaseType", "value": "multinomial_classification"}, {"key": "Algorithm", "value": "None"}, {"key": "ArtifactTestResults", "value": "{\"score_py\": {\"key\": \"score_py\", \"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"score.py\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'score.py' is missing.\", \"success\": true}, \"runtime_yaml\": {\"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"runtime.yaml\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'runtime.yaml' is missing.\", \"success\": true}, \"score_syntax\": {\"category\": \"score.py\", \"description\": \"Check for Python syntax errors\", \"error_msg\": \"There is Syntax error in score.py: \", \"success\": true}, \"score_load_model\": {\"category\": \"score.py\", \"description\": \"Check that load_model() is defined\", \"error_msg\": \"Function load_model is not present in score.py.\", \"success\": true}, \"score_predict\": {\"category\": \"score.py\", \"description\": \"Check that predict() is defined\", \"error_msg\": \"Function predict is not present in score.py.\", \"success\": true}, \"score_predict_data\": {\"category\": \"score.py\", \"description\": \"Check that the only required argument for predict() is named \\\"data\\\"\", \"error_msg\": \"The predict function in score.py must have a formal argument named 'data'.\", \"success\": true}, \"score_predict_arg\": {\"category\": \"score.py\", \"description\": \"Check that all other arguments in predict() are optional and have default values\", \"error_msg\": \"All formal arguments in the predict function must have default values, except that 'data' argument.\", \"success\": true}, \"runtime_version\": {\"category\": \"runtime.yaml\", \"description\": \"Check that field MODEL_ARTIFACT_VERSION is set to 3.0\", \"error_msg\": \"In runtime.yaml, the key MODEL_ARTIFACT_VERSION must be set to 3.0.\", \"success\": true}, \"runtime_env_python\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set to a value of 3.6 or higher\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION must be set to a value of 3.6 or higher.\", \"success\": true, \"value\": \"3.8\"}, \"runtime_env_path\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH must have a value.\", \"success\": true, \"value\": \"oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1\"}, \"runtime_path_exist\": {\"category\": \"conda_env\", \"description\": \"Check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is correct.\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH does not exist.\", \"success\": true}}"}], "inputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 40.2, \"standard deviation\": 33.77309909117347, \"sample minimum\": 3.0, \"lower quartile\": 14.75, \"median\": 29.5, \"upper quartile\": 69.5, \"sample maximum\": 94.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}", "outputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 2642.6, \"standard deviation\": 3482.95000123618, \"sample minimum\": 9.0, \"lower quartile\": 219.25, \"median\": 872.5, \"upper quartile\": 5227.0, \"sample maximum\": 8836.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}"}, {"id": "ocid1.datasciencemodel.oc1.iad.xxxx", "compartmentId": "ocid1.compartment.oc1..xxxx", "projectId": "ocid1.datascienceproject.oc1.iad.xxxx", "displayName": "Mock service model 2", "lifecycleState": "ACTIVE", "timeCreated": "2024-01-19T17:57:39.158000Z", "createdBy": "ocid1.datasciencenotebooksession.oc1.iad.xxxx", "freeformTags": {"aqua_service_model": "ocid1.datasciencemodel.oc1.iad.xxxx#gpt-4", "license": "MIT", "task": "text_generation", "organization": "OpenAI", "OCI_AQUA": ""}, "customMetadataList": [{"key": "ModelArtifacts", "value": ".model-ignore, score.py, runtime.yaml, model.pkl, icon.txt", "description": "The list of files located in artifacts folder.", "category": "Training Environment"}, {"key": "EnvironmentType", "value": "data_science", "description": "The conda environment type, can be published or datascience.", "category": "Training Environment"}, {"key": "SlugName", "value": "automlx234_p38_cpu_x86_64_v1", "description": "The slug name of the training conda environment.", "category": "Training Environment"}, {"key": "ModelSerializationFormat", "value": "pkl", "description": "The model serialization format.", "category": "Training Profile"}, {"key": "ClientLibrary", "value": "ADS", "category": "Other"}, {"key": "CondaEnvironment", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The conda environment where the model was trained.", "category": "Training Environment"}, {"key": "CondaEnvironmentPath", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The URI of the training conda environment.", "category": "Training Environment"}, {"key": "ModelFileName", "value": "model.pkl", "description": "The model file name.", "category": "Other"}, {"key": "Object Storage Path", "value": "oci://ming-dev@ociodscdev/aqua/model_artifact2", "description": "model by reference storage path", "category": "other"}], "definedMetadataList": [{"key": "UseCaseType", "value": "multinomial_classification"}, {"key": "FrameworkVersion"}, {"key": "ArtifactTestResults", "value": "{\"score_py\": {\"key\": \"score_py\", \"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"score.py\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'score.py' is missing.\", \"success\": true}, \"runtime_yaml\": {\"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"runtime.yaml\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'runtime.yaml' is missing.\", \"success\": true}, \"score_syntax\": {\"category\": \"score.py\", \"description\": \"Check for Python syntax errors\", \"error_msg\": \"There is Syntax error in score.py: \", \"success\": true}, \"score_load_model\": {\"category\": \"score.py\", \"description\": \"Check that load_model() is defined\", \"error_msg\": \"Function load_model is not present in score.py.\", \"success\": true}, \"score_predict\": {\"category\": \"score.py\", \"description\": \"Check that predict() is defined\", \"error_msg\": \"Function predict is not present in score.py.\", \"success\": true}, \"score_predict_data\": {\"category\": \"score.py\", \"description\": \"Check that the only required argument for predict() is named \\\"data\\\"\", \"error_msg\": \"The predict function in score.py must have a formal argument named 'data'.\", \"success\": true}, \"score_predict_arg\": {\"category\": \"score.py\", \"description\": \"Check that all other arguments in predict() are optional and have default values\", \"error_msg\": \"All formal arguments in the predict function must have default values, except that 'data' argument.\", \"success\": true}, \"runtime_version\": {\"category\": \"runtime.yaml\", \"description\": \"Check that field MODEL_ARTIFACT_VERSION is set to 3.0\", \"error_msg\": \"In runtime.yaml, the key MODEL_ARTIFACT_VERSION must be set to 3.0.\", \"success\": true}, \"runtime_env_python\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set to a value of 3.6 or higher\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION must be set to a value of 3.6 or higher.\", \"success\": true, \"value\": \"3.8\"}, \"runtime_env_path\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH must have a value.\", \"success\": true, \"value\": \"oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1\"}, \"runtime_path_exist\": {\"category\": \"conda_env\", \"description\": \"Check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is correct.\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH does not exist.\", \"success\": true}}"}, {"key": "Hyperparameters"}, {"key": "Algorithm", "value": "None"}, {"key": "Framework"}], "inputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 40.2, \"standard deviation\": 33.77309909117347, \"sample minimum\": 3.0, \"lower quartile\": 14.75, \"median\": 29.5, \"upper quartile\": 69.5, \"sample maximum\": 94.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}", "outputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 2642.6, \"standard deviation\": 3482.95000123618, \"sample minimum\": 9.0, \"lower quartile\": 219.25, \"median\": 872.5, \"upper quartile\": 5227.0, \"sample maximum\": 8836.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}"}, {"id": "ocid1.datasciencemodel.oc1.iad.xxxx", "compartmentId": "ocid1.compartment.oc1..xxxx", "projectId": "ocid1.datascienceproject.oc1.iad.xxxx", "displayName": "Mock fine tuned model 2", "lifecycleState": "ACTIVE", "timeCreated": "2024-01-19T19:20:57.856000Z", "createdBy": "ocid1.datasciencenotebooksession.oc1.iad.xxxx", "freeformTags": {"license": "MIT", "task": "text_generation", "aqua_fine_tuned_model": "ocid1.datasciencemodel.oc1.iad.xxxx#gpt-4", "organization": "OpenAI", "OCI_AQUA": ""}, "customMetadataList": [{"key": "EnvironmentType", "value": "data_science", "description": "The conda environment type, can be published or datascience.", "category": "Training Environment"}, {"key": "CondaEnvironment", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The conda environment where the model was trained.", "category": "Training Environment"}, {"key": "Object Storage Path", "value": "oci://ming-dev@ociodscdev/aqua/model_artifact_fine_tuned_2", "description": "model by reference storage path", "category": "other"}, {"key": "ModelSerializationFormat", "value": "pkl", "description": "The model serialization format.", "category": "Training Profile"}, {"key": "ModelArtifacts", "value": ".model-ignore, test_json_output.json, score.py, runtime.yaml, output_schema.json, input_schema.json, model.pkl, icon.txt", "description": "The list of files located in artifacts folder.", "category": "Training Environment"}, {"key": "ClientLibrary", "value": "ADS", "category": "Other"}, {"key": "SlugName", "value": "automlx234_p38_cpu_x86_64_v1", "description": "The slug name of the training conda environment.", "category": "Training Environment"}, {"key": "CondaEnvironmentPath", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The URI of the training conda environment.", "category": "Training Environment"}, {"key": "ModelFileName", "value": "model.pkl", "description": "The model file name.", "category": "Other"}], "definedMetadataList": [{"key": "Hyperparameters"}, {"key": "Algorithm", "value": "None"}, {"key": "FrameworkVersion"}, {"key": "ArtifactTestResults", "value": "{\"score_py\": {\"key\": \"score_py\", \"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"score.py\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'score.py' is missing.\", \"success\": true}, \"runtime_yaml\": {\"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"runtime.yaml\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'runtime.yaml' is missing.\", \"success\": true}, \"score_syntax\": {\"category\": \"score.py\", \"description\": \"Check for Python syntax errors\", \"error_msg\": \"There is Syntax error in score.py: \", \"success\": true}, \"score_load_model\": {\"category\": \"score.py\", \"description\": \"Check that load_model() is defined\", \"error_msg\": \"Function load_model is not present in score.py.\", \"success\": true}, \"score_predict\": {\"category\": \"score.py\", \"description\": \"Check that predict() is defined\", \"error_msg\": \"Function predict is not present in score.py.\", \"success\": true}, \"score_predict_data\": {\"category\": \"score.py\", \"description\": \"Check that the only required argument for predict() is named \\\"data\\\"\", \"error_msg\": \"The predict function in score.py must have a formal argument named 'data'.\", \"success\": true}, \"score_predict_arg\": {\"category\": \"score.py\", \"description\": \"Check that all other arguments in predict() are optional and have default values\", \"error_msg\": \"All formal arguments in the predict function must have default values, except that 'data' argument.\", \"success\": true}, \"runtime_version\": {\"category\": \"runtime.yaml\", \"description\": \"Check that field MODEL_ARTIFACT_VERSION is set to 3.0\", \"error_msg\": \"In runtime.yaml, the key MODEL_ARTIFACT_VERSION must be set to 3.0.\", \"success\": true}, \"runtime_env_python\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set to a value of 3.6 or higher\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION must be set to a value of 3.6 or higher.\", \"success\": true, \"value\": \"3.8\"}, \"runtime_env_path\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH must have a value.\", \"success\": true, \"value\": \"oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1\"}, \"runtime_path_exist\": {\"category\": \"conda_env\", \"description\": \"Check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is correct.\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH does not exist.\", \"success\": true}}"}, {"key": "Framework"}, {"key": "UseCaseType", "value": "multinomial_classification"}], "inputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 40.2, \"standard deviation\": 33.77309909117347, \"sample minimum\": 3.0, \"lower quartile\": 14.75, \"median\": 29.5, \"upper quartile\": 69.5, \"sample maximum\": 94.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}", "outputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 2642.6, \"standard deviation\": 3482.95000123618, \"sample minimum\": 9.0, \"lower quartile\": 219.25, \"median\": 872.5, \"upper quartile\": 5227.0, \"sample maximum\": 8836.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}"}, {"id": "ocid1.datasciencemodel.oc1.iad.xxxx", "compartmentId": "ocid1.compartment.oc1..xxxx", "projectId": "ocid1.datascienceproject.oc1.iad.xxxx", "displayName": "Mock copy of service model 2", "lifecycleState": "ACTIVE", "timeCreated": "2024-01-19T19:25:59.785000Z", "createdBy": "ocid1.datasciencenotebooksession.oc1.iad.xxxx", "freeformTags": {"license": "MIT", "task": "text_generation", "organization": "OpenAI", "OCI_AQUA": ""}, "customMetadataList": [{"key": "EnvironmentType", "value": "data_science", "description": "The conda environment type, can be published or datascience.", "category": "Training Environment"}, {"key": "CondaEnvironment", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The conda environment where the model was trained.", "category": "Training Environment"}, {"key": "Object Storage Path", "value": "oci://ming-dev@ociodscdev/aqua/model_artifact2", "description": "model by reference storage path", "category": "other"}, {"key": "ModelSerializationFormat", "value": "pkl", "description": "The model serialization format.", "category": "Training Profile"}, {"key": "ModelArtifacts", "value": ".model-ignore, test_json_output.json, score.py, runtime.yaml, output_schema.json, input_schema.json, model.pkl, icon.txt", "description": "The list of files located in artifacts folder.", "category": "Training Environment"}, {"key": "ClientLibrary", "value": "ADS", "category": "Other"}, {"key": "SlugName", "value": "automlx234_p38_cpu_x86_64_v1", "description": "The slug name of the training conda environment.", "category": "Training Environment"}, {"key": "CondaEnvironmentPath", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The URI of the training conda environment.", "category": "Training Environment"}, {"key": "ModelFileName", "value": "model.pkl", "description": "The model file name.", "category": "Other"}], "definedMetadataList": [{"key": "Hyperparameters"}, {"key": "Algorithm", "value": "None"}, {"key": "FrameworkVersion"}, {"key": "ArtifactTestResults", "value": "{\"score_py\": {\"key\": \"score_py\", \"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"score.py\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'score.py' is missing.\", \"success\": true}, \"runtime_yaml\": {\"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"runtime.yaml\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'runtime.yaml' is missing.\", \"success\": true}, \"score_syntax\": {\"category\": \"score.py\", \"description\": \"Check for Python syntax errors\", \"error_msg\": \"There is Syntax error in score.py: \", \"success\": true}, \"score_load_model\": {\"category\": \"score.py\", \"description\": \"Check that load_model() is defined\", \"error_msg\": \"Function load_model is not present in score.py.\", \"success\": true}, \"score_predict\": {\"category\": \"score.py\", \"description\": \"Check that predict() is defined\", \"error_msg\": \"Function predict is not present in score.py.\", \"success\": true}, \"score_predict_data\": {\"category\": \"score.py\", \"description\": \"Check that the only required argument for predict() is named \\\"data\\\"\", \"error_msg\": \"The predict function in score.py must have a formal argument named 'data'.\", \"success\": true}, \"score_predict_arg\": {\"category\": \"score.py\", \"description\": \"Check that all other arguments in predict() are optional and have default values\", \"error_msg\": \"All formal arguments in the predict function must have default values, except that 'data' argument.\", \"success\": true}, \"runtime_version\": {\"category\": \"runtime.yaml\", \"description\": \"Check that field MODEL_ARTIFACT_VERSION is set to 3.0\", \"error_msg\": \"In runtime.yaml, the key MODEL_ARTIFACT_VERSION must be set to 3.0.\", \"success\": true}, \"runtime_env_python\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set to a value of 3.6 or higher\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION must be set to a value of 3.6 or higher.\", \"success\": true, \"value\": \"3.8\"}, \"runtime_env_path\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH must have a value.\", \"success\": true, \"value\": \"oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1\"}, \"runtime_path_exist\": {\"category\": \"conda_env\", \"description\": \"Check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is correct.\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH does not exist.\", \"success\": true}}"}, {"key": "Framework"}, {"key": "UseCaseType", "value": "multinomial_classification"}], "inputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 40.2, \"standard deviation\": 33.77309909117347, \"sample minimum\": 3.0, \"lower quartile\": 14.75, \"median\": 29.5, \"upper quartile\": 69.5, \"sample maximum\": 94.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}", "outputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 2642.6, \"standard deviation\": 3482.95000123618, \"sample minimum\": 9.0, \"lower quartile\": 219.25, \"median\": 872.5, \"upper quartile\": 5227.0, \"sample maximum\": 8836.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}"}, {"id": "ocid1.datasciencemodel.oc1.iad.xxxx", "compartmentId": "ocid1.compartment.oc1..xxxx", "projectId": "ocid1.datascienceproject.oc1.iad.xxxx", "displayName": "Mock copy of service model 1", "lifecycleState": "ACTIVE", "timeCreated": "2024-01-19T19:30:39.452000Z", "createdBy": "ocid1.datasciencenotebooksession.oc1.iad.xxxx", "freeformTags": {"license": "Apache", "task": "text_generation", "organization": "Meta AI", "OCI_AQUA": ""}, "customMetadataList": [{"key": "EnvironmentType", "value": "data_science", "description": "The conda environment type, can be published or datascience.", "category": "Training Environment"}, {"key": "CondaEnvironment", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The conda environment where the model was trained.", "category": "Training Environment"}, {"key": "Object Storage Path", "value": "oci://ming-dev@ociodscdev/aqua/model_artifact1", "description": "model by reference storage path", "category": "other"}, {"key": "ModelSerializationFormat", "value": "pkl", "description": "The model serialization format.", "category": "Training Profile"}, {"key": "ModelArtifacts", "value": ".model-ignore, test_json_output.json, score.py, runtime.yaml, output_schema.json, input_schema.json, model.pkl, icon.txt", "description": "The list of files located in artifacts folder.", "category": "Training Environment"}, {"key": "ClientLibrary", "value": "ADS", "category": "Other"}, {"key": "SlugName", "value": "automlx234_p38_cpu_x86_64_v1", "description": "The slug name of the training conda environment.", "category": "Training Environment"}, {"key": "CondaEnvironmentPath", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The URI of the training conda environment.", "category": "Training Environment"}, {"key": "ModelFileName", "value": "model.pkl", "description": "The model file name.", "category": "Other"}], "definedMetadataList": [{"key": "Hyperparameters"}, {"key": "Algorithm", "value": "None"}, {"key": "FrameworkVersion"}, {"key": "ArtifactTestResults", "value": "{\"score_py\": {\"key\": \"score_py\", \"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"score.py\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'score.py' is missing.\", \"success\": true}, \"runtime_yaml\": {\"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"runtime.yaml\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'runtime.yaml' is missing.\", \"success\": true}, \"score_syntax\": {\"category\": \"score.py\", \"description\": \"Check for Python syntax errors\", \"error_msg\": \"There is Syntax error in score.py: \", \"success\": true}, \"score_load_model\": {\"category\": \"score.py\", \"description\": \"Check that load_model() is defined\", \"error_msg\": \"Function load_model is not present in score.py.\", \"success\": true}, \"score_predict\": {\"category\": \"score.py\", \"description\": \"Check that predict() is defined\", \"error_msg\": \"Function predict is not present in score.py.\", \"success\": true}, \"score_predict_data\": {\"category\": \"score.py\", \"description\": \"Check that the only required argument for predict() is named \\\"data\\\"\", \"error_msg\": \"The predict function in score.py must have a formal argument named 'data'.\", \"success\": true}, \"score_predict_arg\": {\"category\": \"score.py\", \"description\": \"Check that all other arguments in predict() are optional and have default values\", \"error_msg\": \"All formal arguments in the predict function must have default values, except that 'data' argument.\", \"success\": true}, \"runtime_version\": {\"category\": \"runtime.yaml\", \"description\": \"Check that field MODEL_ARTIFACT_VERSION is set to 3.0\", \"error_msg\": \"In runtime.yaml, the key MODEL_ARTIFACT_VERSION must be set to 3.0.\", \"success\": true}, \"runtime_env_python\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set to a value of 3.6 or higher\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION must be set to a value of 3.6 or higher.\", \"success\": true, \"value\": \"3.8\"}, \"runtime_env_path\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH must have a value.\", \"success\": true, \"value\": \"oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1\"}, \"runtime_path_exist\": {\"category\": \"conda_env\", \"description\": \"Check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is correct.\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH does not exist.\", \"success\": true}}"}, {"key": "Framework"}, {"key": "UseCaseType", "value": "multinomial_classification"}], "inputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 40.2, \"standard deviation\": 33.77309909117347, \"sample minimum\": 3.0, \"lower quartile\": 14.75, \"median\": 29.5, \"upper quartile\": 69.5, \"sample maximum\": 94.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}", "outputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 2642.6, \"standard deviation\": 3482.95000123618, \"sample minimum\": 9.0, \"lower quartile\": 219.25, \"median\": 872.5, \"upper quartile\": 5227.0, \"sample maximum\": 8836.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}"}, {"id": "ocid1.datasciencemodel.oc1.iad.xxxx", "compartmentId": "ocid1.compartment.oc1..xxxx", "projectId": "ocid1.datascienceproject.oc1.iad.xxxx", "displayName": "Mock fine tuned model 1", "lifecycleState": "ACTIVE", "timeCreated": "2024-01-19T19:33:58.078000Z", "createdBy": "ocid1.datasciencenotebooksession.oc1.iad.xxxx", "freeformTags": {"license": "Apache", "task": "text_generation", "aqua_fine_tuned_model": "ocid1.datasciencemodel.oc1.iad.xxxx#llama2", "organization": "Meta AI", "OCI_AQUA": ""}, "customMetadataList": [{"key": "EnvironmentType", "value": "data_science", "description": "The conda environment type, can be published or datascience.", "category": "Training Environment"}, {"key": "CondaEnvironment", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The conda environment where the model was trained.", "category": "Training Environment"}, {"key": "Object Storage Path", "value": "oci://ming-dev@ociodscdev/aqua/model_artifact_fine_tuned_1", "description": "model by reference storage path", "category": "other"}, {"key": "ModelSerializationFormat", "value": "pkl", "description": "The model serialization format.", "category": "Training Profile"}, {"key": "ModelArtifacts", "value": ".model-ignore, test_json_output.json, score.py, runtime.yaml, output_schema.json, input_schema.json, model.pkl, icon.txt", "description": "The list of files located in artifacts folder.", "category": "Training Environment"}, {"key": "ClientLibrary", "value": "ADS", "category": "Other"}, {"key": "SlugName", "value": "automlx234_p38_cpu_x86_64_v1", "description": "The slug name of the training conda environment.", "category": "Training Environment"}, {"key": "CondaEnvironmentPath", "value": "oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1", "description": "The URI of the training conda environment.", "category": "Training Environment"}, {"key": "ModelFileName", "value": "model.pkl", "description": "The model file name.", "category": "Other"}], "definedMetadataList": [{"key": "Hyperparameters"}, {"key": "Algorithm", "value": "None"}, {"key": "FrameworkVersion"}, {"key": "ArtifactTestResults", "value": "{\"score_py\": {\"key\": \"score_py\", \"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"score.py\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'score.py' is missing.\", \"success\": true}, \"runtime_yaml\": {\"category\": \"Mandatory Files Check\", \"description\": \"Check that the file \\\"runtime.yaml\\\" exists and is in the top level directory of the artifact directory\", \"error_msg\": \"The file 'runtime.yaml' is missing.\", \"success\": true}, \"score_syntax\": {\"category\": \"score.py\", \"description\": \"Check for Python syntax errors\", \"error_msg\": \"There is Syntax error in score.py: \", \"success\": true}, \"score_load_model\": {\"category\": \"score.py\", \"description\": \"Check that load_model() is defined\", \"error_msg\": \"Function load_model is not present in score.py.\", \"success\": true}, \"score_predict\": {\"category\": \"score.py\", \"description\": \"Check that predict() is defined\", \"error_msg\": \"Function predict is not present in score.py.\", \"success\": true}, \"score_predict_data\": {\"category\": \"score.py\", \"description\": \"Check that the only required argument for predict() is named \\\"data\\\"\", \"error_msg\": \"The predict function in score.py must have a formal argument named 'data'.\", \"success\": true}, \"score_predict_arg\": {\"category\": \"score.py\", \"description\": \"Check that all other arguments in predict() are optional and have default values\", \"error_msg\": \"All formal arguments in the predict function must have default values, except that 'data' argument.\", \"success\": true}, \"runtime_version\": {\"category\": \"runtime.yaml\", \"description\": \"Check that field MODEL_ARTIFACT_VERSION is set to 3.0\", \"error_msg\": \"In runtime.yaml, the key MODEL_ARTIFACT_VERSION must be set to 3.0.\", \"success\": true}, \"runtime_env_python\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION is set to a value of 3.6 or higher\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_PYTHON_VERSION must be set to a value of 3.6 or higher.\", \"success\": true, \"value\": \"3.8\"}, \"runtime_env_path\": {\"category\": \"conda_env\", \"description\": \"Check that field MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is set\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH must have a value.\", \"success\": true, \"value\": \"oci://service-conda-packs@id19sfcrra6z/service_pack/cpu/Oracle_AutoMLx_v23.4_for_CPU_on_Python_3.8/1.0/automlx234_p38_cpu_x86_64_v1\"}, \"runtime_path_exist\": {\"category\": \"conda_env\", \"description\": \"Check that the file path in MODEL_DEPLOYMENT.INFERENCE_ENV_PATH is correct.\", \"error_msg\": \"In runtime.yaml, the key MODEL_DEPLOYMENT.INFERENCE_ENV_PATH does not exist.\", \"success\": true}}"}, {"key": "Framework"}, {"key": "UseCaseType", "value": "multinomial_classification"}], "inputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 40.2, \"standard deviation\": 33.77309909117347, \"sample minimum\": 3.0, \"lower quartile\": 14.75, \"median\": 29.5, \"upper quartile\": 69.5, \"sample maximum\": 94.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}", "outputSchema": "{\"schema\": [{\"dtype\": \"int64\", \"feature_type\": \"Integer\", \"name\": 0, \"domain\": {\"values\": \"Integer\", \"stats\": {\"count\": 10.0, \"mean\": 2642.6, \"standard deviation\": 3482.95000123618, \"sample minimum\": 9.0, \"lower quartile\": 219.25, \"median\": 872.5, \"upper quartile\": 5227.0, \"sample maximum\": 8836.0}, \"constraints\": []}, \"required\": true, \"description\": \"0\", \"order\": 0}], \"version\": \"1.1\"}"}]
@@ -0,0 +1,26 @@
1
+ # Model Card: Dummy Text Generator
2
+ ## Description
3
+ This is a simple dummy text generator model developed using Hugging Face's Transformers library. It generates random text based on a pre-trained language model.
4
+ ## Model Details
5
+ - Model Name: DummyTextGenerator
6
+ - Model Architecture: GPT-2
7
+ - Model Size: 125M parameters
8
+ - Training Data: Random text from the internet
9
+ ## Usage
10
+ You can use this model to generate dummy text for various purposes, such as testing text processing pipelines or generating placeholder text for design mockups.
11
+ Here's an example of how to use it in Python:
12
+ ```python
13
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
14
+ model_name = "dummy-text-generator"
15
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
16
+ model = GPT2LMHeadModel.from_pretrained(model_name)
17
+ prompt = "Once upon a time"
18
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
19
+ output = model.generate(input_ids, max_length=50, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
20
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
21
+ print(generated_text)
22
+ ```
23
+ ## Evaluation
24
+ The model does not perform any meaningful text generation but can be used for basic testing purposes.
25
+ ## License
26
+ This model is released under the MIT License.