option-prices 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,58 @@
1
+ Metadata-Version: 2.4
2
+ Name: option_prices
3
+ Version: 0.1.0
4
+ Summary: Option pricing using the Black Scholes Model
5
+ Author-email: Shreenivas Dani <shreenivasdani@gmail.com>
6
+ License: MIT
7
+ Requires-Python: >=3.8
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE
10
+ Requires-Dist: numpy
11
+ Requires-Dist: scipy
12
+ Dynamic: license-file
13
+
14
+ # BSM
15
+
16
+ This package is to be used for option price calculation using the Black Scholes Model
17
+
18
+ ## Description
19
+
20
+ This package provides a simple and easy-to-use implementation of the Black Scholes Model for calculating European call and put option prices. It is designed for students, traders, and developers who want a lightweight and reliable tool for option pricing without the complexity of larger libraries.
21
+
22
+ ## Getting Started
23
+
24
+ ### Dependencies
25
+
26
+ Numpy,Scipy
27
+
28
+ ### Installing
29
+
30
+ pip install bsm
31
+
32
+ ### Executing program
33
+
34
+ from bsm import bsm
35
+
36
+ ## example when time scale is in year
37
+ price=bsm(S=50,K=50,T=1,r=6,sigma=25,option_type = "call",time_scale="Year")
38
+ print(price)
39
+ ## example when time scale is in month
40
+ price = bsm(S=50,K=50,T=6,r=6,sigma=25,option_type = "call",time_scale="Month")
41
+ print(price)
42
+
43
+ Note:
44
+ When time_scale="Year", enter T in years.
45
+ When time_scale="Month", enter T in months.
46
+ ## Authors
47
+
48
+ Shreenivas Dani
49
+
50
+ shreenivasdani@gmail.com
51
+ ## Version History
52
+
53
+ * 0.1
54
+ * Initial Release
55
+
56
+ ## License
57
+
58
+ This project is licensed under the MIT License - see the LICENSE.md file for details
@@ -0,0 +1,7 @@
1
+ option_prices-0.1.0.dist-info/licenses/LICENSE,sha256=S_fbX1OLfL7GYfxafKhn4E6-9cDMpbxy3-OgQisZr5A,1087
2
+ option_pricings/__init__.py,sha256=BxB2eTmLv0SnZmRQvBPxsAMjxGi9IzUybs13ydxrBKA,20
3
+ option_pricings/bsm.py,sha256=XpJwqKC1K8KKNaDZmwiIyNUaCyGsqwQWdew3elvw-2Y,852
4
+ option_prices-0.1.0.dist-info/METADATA,sha256=J78QP_UejtnQLRYNzIwqOSV-uMkq09AXPee8ZzYRC3U,1480
5
+ option_prices-0.1.0.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
6
+ option_prices-0.1.0.dist-info/top_level.txt,sha256=l0EOs-Inr3wtGhBYn7jleXhMdO3ieLmttoU5twwomAE,16
7
+ option_prices-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Your Name
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ option_pricings
@@ -0,0 +1 @@
1
+ from .bsm import bsm
option_pricings/bsm.py ADDED
@@ -0,0 +1,30 @@
1
+ import numpy as np
2
+ from scipy.stats import norm
3
+ N= norm.cdf
4
+ #call = C = S₀N(d₁) - Ke⁻ʳᵗN(d₂)
5
+ #put=ke^(-rT)*N(-d2)-S*N(-d1)
6
+ #d₁ = [ln(S₀/K) + (r + σ²/2)t] / (σ√t)
7
+ #d₂ = d₁ - σ√t
8
+
9
+ def bsm(S,K,T,r,sigma,option_type="call",time_scale="Year"):
10
+ if time_scale == "Month":
11
+ T = T/12
12
+ r = r/100
13
+ sigma = sigma/100
14
+ denominator = (sigma*np.sqrt(T))
15
+ numerator = np.log(S/K)+(r+(sigma**2*0.5))*T
16
+ d1 = numerator/denominator
17
+ d2 = d1-denominator
18
+ if option_type == "call":
19
+ price = (S*N(d1))-((K*np.exp(-1*r*T))*(N(d2)))
20
+ elif option_type == "put":
21
+ price = ((K*np.exp(-1*r*T))*(N(-1*d2)))-(S*N(-d1))
22
+ else:
23
+ "Plz put the correct option type"
24
+ return round(price,2)
25
+
26
+
27
+
28
+ if __name__ =="__main__":
29
+ a=bsm(50,50,1,6,25,option_type = "call")
30
+