optimum-rbln 0.9.3__py3-none-any.whl → 0.9.4a2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. optimum/rbln/__version__.py +2 -2
  2. optimum/rbln/configuration_utils.py +12 -4
  3. optimum/rbln/diffusers/modeling_diffusers.py +1 -1
  4. optimum/rbln/diffusers/models/controlnet.py +1 -1
  5. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +1 -1
  6. optimum/rbln/diffusers/pipelines/auto_pipeline.py +2 -2
  7. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +13 -4
  8. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +13 -4
  9. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +13 -4
  10. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -4
  11. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +1 -1
  12. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +1 -1
  13. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +1 -2
  14. optimum/rbln/modeling_base.py +12 -7
  15. optimum/rbln/transformers/modeling_attention_utils.py +4 -4
  16. optimum/rbln/transformers/modeling_outputs.py +1 -0
  17. optimum/rbln/transformers/models/auto/auto_factory.py +1 -0
  18. optimum/rbln/transformers/models/colpali/colpali_architecture.py +2 -2
  19. optimum/rbln/transformers/models/colpali/modeling_colpali.py +1 -1
  20. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +0 -2
  21. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +4 -0
  22. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +1 -1
  23. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +92 -43
  24. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +201 -62
  25. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +1 -1
  26. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +106 -36
  27. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +7 -1
  28. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +42 -70
  29. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +43 -26
  30. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +1 -1
  31. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +0 -1
  32. optimum/rbln/transformers/models/llava/modeling_llava.py +1 -1
  33. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +1 -1
  34. optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -22
  35. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +2 -2
  36. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -28
  37. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +6 -6
  38. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +4 -4
  39. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +1 -1
  40. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +0 -20
  41. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +2 -2
  42. optimum/rbln/transformers/models/swin/modeling_swin.py +3 -3
  43. optimum/rbln/transformers/models/t5/t5_architecture.py +1 -1
  44. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +9 -8
  45. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +12 -2
  46. optimum/rbln/utils/import_utils.py +7 -1
  47. optimum/rbln/utils/submodule.py +3 -1
  48. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/METADATA +1 -1
  49. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/RECORD +52 -52
  50. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/WHEEL +0 -0
  51. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/entry_points.txt +0 -0
  52. {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/licenses/LICENSE +0 -0
@@ -24,8 +24,8 @@ class PixtralAttention(nn.Module):
24
24
  def __init__(self, self_attention):
25
25
  super().__init__()
26
26
  self.original_model = self_attention
27
- self.num_heads = getattr(self.original_model, "num_heads", None) or getattr(
28
- self.original_model.config, "num_attention_heads"
27
+ self.num_heads = (
28
+ getattr(self.original_model, "num_heads", None) or self.original_model.config.num_attention_heads
29
29
  )
30
30
  self.head_dim = self.original_model.head_dim
31
31
  self.scaling = self.head_dim**-0.5
@@ -12,13 +12,11 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from transformers import PretrainedConfig
16
15
 
17
16
  from ....utils import logging
18
17
  from ...models.decoderonly import (
19
18
  RBLNDecoderOnlyModel,
20
19
  RBLNDecoderOnlyModelForCausalLM,
21
- RBLNDecoderOnlyModelForCausalLMConfig,
22
20
  )
23
21
  from .qwen2_architecture import QWEN2Wrapper
24
22
 
@@ -87,19 +85,6 @@ class RBLNQwen2ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
87
85
 
88
86
  _decoder_wrapper_cls = QWEN2Wrapper
89
87
 
90
- @classmethod
91
- def _update_sliding_window_config(
92
- cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
93
- ):
94
- # https://github.com/huggingface/transformers/issues/35896
95
- # There seems to be a bug in transformers(v4.52.4). Therefore, similar to when attn_implementation is eager,
96
- # we set all layers to use sliding window in this version. This should be updated once the bug is fixed.
97
-
98
- rbln_config.cache_impl = "sliding_window"
99
- rbln_config.sliding_window = model_config.sliding_window
100
- rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
101
- return rbln_config
102
-
103
88
 
104
89
  class RBLNQwen2Model(RBLNDecoderOnlyModel):
105
90
  """
@@ -108,16 +93,3 @@ class RBLNQwen2Model(RBLNDecoderOnlyModel):
108
93
  """
109
94
 
110
95
  _decoder_wrapper_cls = QWEN2Wrapper
111
-
112
- @classmethod
113
- def _update_sliding_window_config(
114
- cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
115
- ):
116
- # https://github.com/huggingface/transformers/issues/35896
117
- # There seems to be a bug in transformers(v4.52.4). Therefore, similar to when attn_implementation is eager,
118
- # we set all layers to use sliding window in this version. This should be updated once the bug is fixed.
119
-
120
- rbln_config.cache_impl = "sliding_window"
121
- rbln_config.sliding_window = model_config.sliding_window
122
- rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
123
- return rbln_config
@@ -111,10 +111,10 @@ class RBLNQwen2_5_VisionTransformerPretrainedModel(RBLNModel):
111
111
  model_config: "PretrainedConfig" = None,
112
112
  rbln_config: Optional[RBLNQwen2_5_VisionTransformerPretrainedModelConfig] = None,
113
113
  ) -> RBLNQwen2_5_VisionTransformerPretrainedModelConfig:
114
- window_size = getattr(model_config, "window_size")
115
- patch_size = getattr(model_config, "patch_size")
116
- hidden_size = getattr(model_config, "hidden_size")
117
- num_heads = getattr(model_config, "num_heads")
114
+ window_size = model_config.window_size
115
+ patch_size = model_config.patch_size
116
+ hidden_size = model_config.hidden_size
117
+ num_heads = model_config.num_heads
118
118
  head_dim = hidden_size // num_heads
119
119
  window_seq_len = (window_size // patch_size) ** 2
120
120
 
@@ -294,10 +294,10 @@ class RBLNQwen2_5_VisionTransformerPretrainedModel(RBLNModel):
294
294
  try:
295
295
  ws_index = torch.searchsorted(self.max_seq_lens, window_padded_len).item()
296
296
  max_seq_len = self.max_seq_lens[ws_index]
297
- except Exception:
297
+ except Exception as e:
298
298
  raise ValueError(
299
299
  f"Required seq_len({window_padded_len}) is larger than available max_seq_lens({self.max_seq_lens.tolist()})."
300
- )
300
+ ) from e
301
301
 
302
302
  # Padding for Window Attention Layers
303
303
  hidden_state_padded, cos_padded, sin_padded, window_attn_masks, window_valid_lengths = (
@@ -112,8 +112,8 @@ class RBLNQwen2VisionTransformerPretrainedModel(RBLNModel):
112
112
  model_config: "PretrainedConfig" = None,
113
113
  rbln_config: Optional[RBLNQwen2VisionTransformerPretrainedModelConfig] = None,
114
114
  ) -> RBLNQwen2VisionTransformerPretrainedModelConfig:
115
- hidden_size = getattr(model_config, "embed_dim")
116
- num_heads = getattr(model_config, "num_heads")
115
+ hidden_size = model_config.embed_dim
116
+ num_heads = model_config.num_heads
117
117
  head_dim = hidden_size // num_heads
118
118
 
119
119
  input_infos = []
@@ -200,10 +200,10 @@ class RBLNQwen2VisionTransformerPretrainedModel(RBLNModel):
200
200
  try:
201
201
  cu_index = torch.searchsorted(self.max_seq_lens, cu_seq_len).item()
202
202
  max_seq_len = self.max_seq_lens[cu_index]
203
- except Exception:
203
+ except Exception as e:
204
204
  raise ValueError(
205
205
  f"Required seq_len({cu_seq_len}) is larger than available max_seq_lens({self.max_seq_lens.tolist()})."
206
- )
206
+ ) from e
207
207
 
208
208
  # Padding for Full Attention Layers
209
209
  hidden_state_full_padded, cos_full_padded, sin_full_padded, full_attn_masks = (
@@ -20,7 +20,7 @@ class Qwen2VisionTransformerWrapper(nn.Module):
20
20
 
21
21
  def wrap_vision_blocks(self, blocks: torch.nn.ModuleList):
22
22
  wrapped_blocks = []
23
- for i, block in enumerate(blocks):
23
+ for _, block in enumerate(blocks):
24
24
  wrapped_blocks.append(Qwen2VLVisionBlock(block))
25
25
  return nn.ModuleList(wrapped_blocks)
26
26
 
@@ -12,24 +12,17 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from typing import TYPE_CHECKING
16
-
17
- from transformers import PretrainedConfig
18
15
 
19
16
  from ....utils import logging
20
17
  from ...models.decoderonly import (
21
18
  RBLNDecoderOnlyModel,
22
19
  RBLNDecoderOnlyModelForCausalLM,
23
- RBLNDecoderOnlyModelForCausalLMConfig,
24
20
  )
25
21
  from .qwen3_architecture import Qwen3Wrapper
26
22
 
27
23
 
28
24
  logger = logging.get_logger(__name__)
29
25
 
30
- if TYPE_CHECKING:
31
- from transformers import PretrainedConfig
32
-
33
26
 
34
27
  class RBLNQwen3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
35
28
  """
@@ -84,19 +77,6 @@ class RBLNQwen3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
84
77
 
85
78
  _decoder_wrapper_cls = Qwen3Wrapper
86
79
 
87
- @classmethod
88
- def _update_sliding_window_config(
89
- cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
90
- ):
91
- # https://github.com/huggingface/transformers/issues/35896
92
- # There seems to be a bug in transformers(v4.52.4). Therefore, similar to when attn_implementation is eager,
93
- # we set all layers to use sliding window in this version. This should be updated once the bug is fixed.
94
-
95
- rbln_config.cache_impl = "sliding_window"
96
- rbln_config.sliding_window = model_config.sliding_window
97
- rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
98
- return rbln_config
99
-
100
80
  def forward(self, *args, **kwargs):
101
81
  kwargs["return_dict"] = True
102
82
  return super().forward(*args, **kwargs)
@@ -210,8 +210,8 @@ class RBLNModelForSeq2SeqLM(RBLNModel, GenerationMixin, ABC):
210
210
  if not cls.support_causal_attn:
211
211
  rbln_config.use_attention_mask = True
212
212
 
213
- n_layer = getattr(model_config, "decoder_layers", None) or getattr(model_config, "num_layers")
214
- n_head = getattr(model_config, "decoder_attention_heads", None) or getattr(model_config, "num_heads")
213
+ n_layer = getattr(model_config, "decoder_layers", None) or model_config.num_layers
214
+ n_head = getattr(model_config, "decoder_attention_heads", None) or model_config.num_heads
215
215
  d_kv = (
216
216
  model_config.d_kv
217
217
  if hasattr(model_config, "d_kv")
@@ -327,19 +327,19 @@ class RBLNSwinBackbone(RBLNModel):
327
327
  output = self.model[0](padded_pixel_values)
328
328
 
329
329
  feature_maps = ()
330
- for i in range(len(self.config.out_features)):
330
+ for _ in range(len(self.config.out_features)):
331
331
  feature_maps += (output.pop(0),)
332
332
 
333
333
  if self.rbln_config.output_hidden_states:
334
334
  hidden_states = ()
335
- for i in range(len(self.config.stage_names)):
335
+ for _ in range(len(self.config.stage_names)):
336
336
  hidden_states += (output.pop(0),)
337
337
  else:
338
338
  hidden_states = None
339
339
 
340
340
  if self.rbln_config.output_attentions:
341
341
  attentions = ()
342
- for i in range(len(self.config.depths)):
342
+ for _ in range(len(self.config.depths)):
343
343
  attentions += (output.pop(0),)
344
344
  else:
345
345
  attentions = None
@@ -39,7 +39,7 @@ class T5Wrapper:
39
39
 
40
40
  class T5EncoderWrapper(Seq2SeqEncoderWrapper):
41
41
  def __post_init__(self, model: nn.Module):
42
- self.n_layer = getattr(self.config, "num_layers")
42
+ self.n_layer = self.config.num_layers
43
43
  self.cross_k_projects, self.cross_v_projects = self._extract_cross_kv_projects(model.get_decoder().block)
44
44
  self.num_heads = self.config.num_heads
45
45
  self.d_kv = self.config.d_kv
@@ -184,14 +184,6 @@ class RBLNTimeSeriesTransformerForPrediction(RBLNModel):
184
184
  if "key_value_states" in name:
185
185
  context.mark_static_address(tensor)
186
186
 
187
- compiled_decoder = cls.compile(
188
- wrapped_model.decoder,
189
- dec_compile_config,
190
- create_runtimes=rbln_config.create_runtimes,
191
- device=rbln_config.device,
192
- example_inputs=dec_example_inputs,
193
- compile_context=context,
194
- )
195
187
  compiled_encoder = cls.compile(
196
188
  wrapped_model.encoder,
197
189
  enc_compile_config,
@@ -201,6 +193,15 @@ class RBLNTimeSeriesTransformerForPrediction(RBLNModel):
201
193
  compile_context=context,
202
194
  )
203
195
 
196
+ compiled_decoder = cls.compile(
197
+ wrapped_model.decoder,
198
+ dec_compile_config,
199
+ create_runtimes=rbln_config.create_runtimes,
200
+ device=rbln_config.device,
201
+ example_inputs=dec_example_inputs,
202
+ compile_context=context,
203
+ )
204
+
204
205
  return {"encoder": compiled_encoder, "decoder": compiled_decoder}
205
206
 
206
207
  @classmethod
@@ -29,6 +29,7 @@ class RBLNXLMRobertaModel(RBLNTransformerEncoderForFeatureExtraction):
29
29
  self,
30
30
  input_ids: Optional[torch.Tensor] = None,
31
31
  attention_mask: Optional[torch.Tensor] = None,
32
+ token_type_ids: Optional[torch.Tensor] = None,
32
33
  **kwargs,
33
34
  ) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, tuple]:
34
35
  """
@@ -37,12 +38,16 @@ class RBLNXLMRobertaModel(RBLNTransformerEncoderForFeatureExtraction):
37
38
  Args:
38
39
  input_ids (torch.Tensor of shape (batch_size, sequence_length), optional): Indices of input sequence tokens in the vocabulary.
39
40
  attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices.
41
+ token_type_ids (torch.Tensor of shape (batch_size, sequence_length), optional): Segment token indices to indicate different portions of the inputs.
40
42
 
41
43
  Returns:
42
44
  The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a BaseModelOutputWithPoolingAndCrossAttentions object.
43
45
  """
44
46
 
45
- return super().forward(input_ids, attention_mask, **kwargs)
47
+ if token_type_ids is not None:
48
+ kwargs.setdefault("token_type_ids", token_type_ids)
49
+
50
+ return super().forward(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
46
51
 
47
52
 
48
53
  class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification):
@@ -56,6 +61,7 @@ class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification
56
61
  self,
57
62
  input_ids: Optional[torch.LongTensor] = None,
58
63
  attention_mask: Optional[torch.FloatTensor] = None,
64
+ token_type_ids: Optional[torch.LongTensor] = None,
59
65
  **kwargs,
60
66
  ) -> Union[SequenceClassifierOutput, tuple]:
61
67
  """
@@ -64,9 +70,13 @@ class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification
64
70
  Args:
65
71
  input_ids (torch.LongTensor of shape (batch_size, sequence_length), optional): Indices of input sequence tokens in the vocabulary.
66
72
  attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices.
73
+ token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional): Segment token indices to indicate first and second portions of the inputs.
67
74
 
68
75
  Returns:
69
76
  The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a SequenceClassifierOutput object.
70
77
  """
71
78
 
72
- return super().forward(input_ids, attention_mask, **kwargs)
79
+ if token_type_ids is not None:
80
+ kwargs.setdefault("token_type_ids", token_type_ids)
81
+
82
+ return super().forward(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
@@ -142,7 +142,11 @@ def check_version_compats() -> None:
142
142
  try:
143
143
  dep_version = importlib.metadata.version(compat.package_name)
144
144
  except importlib.metadata.PackageNotFoundError:
145
- warnings.warn(f"optimum-rbln requires {compat.package_name} to be installed.", ImportWarning)
145
+ warnings.warn(
146
+ f"optimum-rbln requires {compat.package_name} to be installed.",
147
+ ImportWarning,
148
+ stacklevel=2,
149
+ )
146
150
  continue
147
151
  # For versions 0.7.2 and above, don't show warning for rebel-compiler if base versions match
148
152
 
@@ -160,6 +164,7 @@ def check_version_compats() -> None:
160
164
  f"For optimal performance and compatibility, please ensure both packages share the same major and minor version numbers. "
161
165
  "Please refer to our SDK release notes at https://docs.rbln.ai/about_atom/release_note.html",
162
166
  ImportWarning,
167
+ stacklevel=2,
163
168
  )
164
169
  else:
165
170
  if not Version(compat.min_version) <= Version(dep_version) < Version(compat.max_version):
@@ -167,4 +172,5 @@ def check_version_compats() -> None:
167
172
  f"optimum-rbln v{my_version} is compatible to {compat.package_name} v{compat.min_version} to v{compat.max_version}. (you are currently using v{dep_version})\n"
168
173
  "Please refer to our SDK release notes at https://docs.rbln.ai/about_atom/release_note.html",
169
174
  ImportWarning,
175
+ stacklevel=2,
170
176
  )
@@ -37,7 +37,9 @@ class SubModulesMixin:
37
37
 
38
38
  _rbln_submodules: List[Dict[str, Any]] = []
39
39
 
40
- def __init__(self, *, rbln_submodules: List["RBLNModel"] = [], **kwargs) -> None:
40
+ def __init__(self, *, rbln_submodules: Optional[List["RBLNModel"]] = None, **kwargs) -> None:
41
+ if rbln_submodules is None:
42
+ rbln_submodules = []
41
43
  for submodule_meta, submodule in zip(self._rbln_submodules, rbln_submodules):
42
44
  setattr(self, submodule_meta["name"], submodule)
43
45
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.9.3
3
+ Version: 0.9.4a2
4
4
  Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -1,11 +1,11 @@
1
1
  optimum/rbln/__init__.py,sha256=fm83GUa8I5OV2JRWPl0RFZmW2M8X0XsOnU7B9Djvi4A,19548
2
- optimum/rbln/__version__.py,sha256=IVkGBvcxJApDB_GrSj1qL5BDxEvWBYmqcR3emEmrC0I,704
2
+ optimum/rbln/__version__.py,sha256=ymN-HdSTmWnlXk6GRly5nLuYL8rciaz15ICL_1lPYnM,712
3
3
  optimum/rbln/cli.py,sha256=944P_f9btDyFryHfHzxUKQvwXWYD1hrceDuK6SWNQcQ,22832
4
- optimum/rbln/configuration_utils.py,sha256=D4nRs7uCl7wwPEznKOjjXKTig3Ifc6BqBynjieWOIvA,37376
4
+ optimum/rbln/configuration_utils.py,sha256=UVxFgY1fBGMU-L1UOWPhhIX6aq4JJS7Lkwpl_EabAYw,37728
5
5
  optimum/rbln/modeling.py,sha256=M9kEqbAqVZIeFxOF9dyfS8i7loJz3LV67zf1wzeVcxM,15218
6
- optimum/rbln/modeling_base.py,sha256=j2rV3FTRCp6gn4UaMGEetP70cZQ9GUs_iNF7OfPZB98,27588
6
+ optimum/rbln/modeling_base.py,sha256=3u-1GmcwJptQTqjPoG0FAFNJV4x5MxZu_d__GFIXvwU,27810
7
7
  optimum/rbln/diffusers/__init__.py,sha256=dISoQ-mylK-n9DM0doqo3oeQFA2SWu9BZcbrcr4vO0I,7800
8
- optimum/rbln/diffusers/modeling_diffusers.py,sha256=iybCd2KaEL5RMzRduWkHvKm90iXDcbUXsoKVfiNYDcY,20411
8
+ optimum/rbln/diffusers/modeling_diffusers.py,sha256=M4lpr5fdbL9fAGVPc_1IY9evxDA47rV68WyvK9jhnO0,20423
9
9
  optimum/rbln/diffusers/configurations/__init__.py,sha256=8xhIEEa9HTbIg-9khGvxqr6kHPaMnnHZc-BNsEADO1o,1458
10
10
  optimum/rbln/diffusers/configurations/models/__init__.py,sha256=OKXAiciC80IaC1_8MXfZzlBtyvaDEmgelOZtN_H0Buk,766
11
11
  optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=dV4DPjRB7CkSqgVUuOQztkH8qJQJlCKK18-X5nOCLzQ,3199
@@ -27,7 +27,7 @@ optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3
27
27
  optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=qX6-HvOt8SBstEeigWWcor-z2bmyoqAucjRirNfma5o,7161
28
28
  optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py,sha256=k5OZtqsmEd6Ruaw2AMU_M674LziR3bsOZFVEIE0RUO0,5156
29
29
  optimum/rbln/diffusers/models/__init__.py,sha256=lTwyUgCSKCm6xksQFDOsyWAfqwbWYMum3BVlh31eADk,1804
30
- optimum/rbln/diffusers/models/controlnet.py,sha256=yCVIzkC6Wi4lcyVeEudw0vRrmpj2NwqHnlVYY9JHquo,11510
30
+ optimum/rbln/diffusers/models/controlnet.py,sha256=anNX1By4fWCIxteoHF7akV7p2WxhFco8oXRqpZHCOPk,11522
31
31
  optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=sFfYxz0Iwg-xL2jrVkwMk7umiWcsbrtejzjpUZFI1VA,816
32
32
  optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py,sha256=TDwSgO3L6L38JdH-FaxWc77aDkilr8WLL1YjjWMHz-M,9496
33
33
  optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py,sha256=WD3hUlZMJSEpeLx_hmrFQmR2Ye6TtCo3Olz4pxB5rsg,9538
@@ -39,21 +39,21 @@ optimum/rbln/diffusers/models/transformers/prior_transformer.py,sha256=VmivAoI84
39
39
  optimum/rbln/diffusers/models/transformers/transformer_cosmos.py,sha256=s5t2CWhpjEXTYvIbaaulCXk_atNcuPjnwMmw7rbZ6U0,14011
40
40
  optimum/rbln/diffusers/models/transformers/transformer_sd3.py,sha256=ICq5MxgN9IOcPF5pUBy-PUiziDE_AcDP1Qc6EgXs8Pk,7797
41
41
  optimum/rbln/diffusers/models/unets/__init__.py,sha256=k_c6RfSc_Yln9gINfKxl0coiHfAO_2-zpaLMrQCJr2w,736
42
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=bXlGKIeUKELxAbbIyFOksN4zgGmFRKKwUW_X2F_VckY,17212
42
+ optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=b1frE2BKKs7P6T22P99feQvMmP3NDe2sGLygHJg0RQs,17224
43
43
  optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py,sha256=vSGk2wR6Xg8aDCaeVOb2E2SB_XCL9jUe1XDwuBPdKRA,7771
44
44
  optimum/rbln/diffusers/pipelines/__init__.py,sha256=B8nRikvGrOSbaNFrp0is2GE4R9xVkhkvl8bxAUILsI4,3859
45
- optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=H53RVmhNPM6tEd7URxZ1PZfQkiB2c84AiUA2jqzwIyQ,12454
45
+ optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=snqx2XCIV1rrT56iGChVjMgkL0Fr_EY4j17RjKQJF3c,12476
46
46
  optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
47
47
  optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=-6SFcfYr8FJD1y11_OOntWCNSqBpOgPkst0Ys6oIvXU,5295
48
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=G96bh4D9Cu-w4F9gZBQF6wNzhJQv9kvI34ZFsuEDjSw,35714
49
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=deGtaqgNumcvCKzKoHZrS-3UZxxWBP0ESizdfvCJlBE,34186
50
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=2w6dmGQuBWqVoocn27z2yMkG7fL7_MVDBcQNJPJsRXU,45300
51
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=HX56itORMqXLjZcwv25C-_z3JyZn3v6BpfIjsrDO3mE,46640
48
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=f6FHiLOW2i7Kb3IXShvd0hQEqu2Y6RNLUzRwlALFQqY,36215
49
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=iHjrjuUtPgBPydeRPUf3lgv4QRrwnb6zgLs9WGnMOQY,34687
50
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=AGZ_9jyLpw9F2kFLj_LtAWb692OcwIjP-jY_6Lw2q30,45801
51
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=bb6fpK6FffqmhX-MPXEhJTrzbr0t9a0E1lxiPms_ODQ,47141
52
52
  optimum/rbln/diffusers/pipelines/cosmos/__init__.py,sha256=h2j6S8IJPVHeNU8qmW9vyXMgHBw0d7kQcuMAA5YoHPU,795
53
53
  optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py,sha256=BRHWXCxRO5l0YTFTBSkS4sd5Hx8YeuHB14Fr2copYFY,3747
54
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py,sha256=Hmklj-sGNtUst6sTLLDXyQzt7zFoNIHytZpPQ-V1CPw,16676
55
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py,sha256=biveGIpJVGL0rH_YLgynvt47QQA41QdjRtY7G32jDXY,5638
56
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py,sha256=96dHWMIe1x_Q3G64fsNhulfjmd_PrSXRt0GwgNjYMlg,5645
54
+ optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py,sha256=Nb8bIME5V4Z_6fDXQY2_LtXpGWunUltlyEiaCcdyuMw,16670
55
+ optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py,sha256=Nuewu5__SYQxcJcCR7rer1pqQ3YV52eSMb_0hAZeItk,5650
56
+ optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py,sha256=KI7E5Iv401D2RZX3rjkec49ZYvGBnbkwDPQoHeRLIMU,5656
57
57
  optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py,sha256=I4YQq2HfA3xONbWsdJ870IEJPyLWeCDDG-UCJsu9YO8,1035
58
58
  optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py,sha256=2vgZZt0JrZlbHbUlBHrT0zKvYhuX1a4vwy3mxTPHisM,1335
59
59
  optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=QqxR325Or00E77XDvR3MotltnghC-42bky1ckU1DW9U,8128
@@ -82,16 +82,16 @@ optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,13
82
82
  optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
83
83
  optimum/rbln/transformers/__init__.py,sha256=orLCZJRJYcxVGpzBvgOUWFwqsxFXyvYf31LZmTs8T7g,12725
84
84
  optimum/rbln/transformers/configuration_generic.py,sha256=5_KWSqcpsEoAHXhMzEpLV62m-0DlWqCY_zwgi9kzjIs,4161
85
- optimum/rbln/transformers/modeling_attention_utils.py,sha256=pXBG2lfxJwYXwn7yZyV7vC1YtxFAdbDbK7Ijs5PgoMM,16876
85
+ optimum/rbln/transformers/modeling_attention_utils.py,sha256=EWvLNsjyvDaVuZlVpmcF2KOJNuo0hu_KtlGHk2FRVCU,16828
86
86
  optimum/rbln/transformers/modeling_generic.py,sha256=Z_1m5d_hsmQC2qnNkargjMIqlIm3FzBFTNUKqdYdaOc,11499
87
- optimum/rbln/transformers/modeling_outputs.py,sha256=cd8ZlhHAGq7S6i5-QK6TJCxgORvoPMnZpqPBlUc_pMY,1177
87
+ optimum/rbln/transformers/modeling_outputs.py,sha256=eVAofSI2rc0F0O3UkMw_30MVW6Y_jqhDXQ3gMkckhH8,1228
88
88
  optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
89
89
  optimum/rbln/transformers/models/__init__.py,sha256=NEDsbJgzO-0pM_B0zniHPnDxYrRIh_pBMnFefkzP5JA,13718
90
90
  optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
91
91
  optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=biFBo1twaWScF2CmNYoF_PW-RvJBUfVgBVpdfI_igBY,1741
92
92
  optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=Kzya5XlU15FkEQlWj1HYXBAGrJleEyF9wiTSiHXSIqo,4124
93
93
  optimum/rbln/transformers/models/auto/__init__.py,sha256=tdYqXkg9xBGNr4fZjH7_O3qRVbHvpEVjrJ6wtNUMMJM,1150
94
- optimum/rbln/transformers/models/auto/auto_factory.py,sha256=0hILUi8mdQRRUzA1vltyErSDjI5nuZfBqnE6784mI5E,11771
94
+ optimum/rbln/transformers/models/auto/auto_factory.py,sha256=xUDgwrcVwe1NtiMreZ17AYOwHFR950WURleS2PxTC4U,11801
95
95
  optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Iu5vl60CHX1XNbn445woZhSUkNSf0qHPW0DzbcAnDYE,5797
96
96
  optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
97
97
  optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=mAepjL0paPMK180vGTTCxXQ-hVZ1DD6JR-GvVNGJLqY,6268
@@ -108,21 +108,21 @@ optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBb
108
108
  optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=Ea8TCVmMayydfw9p4kTP3UdtvoaPWf4Z4claB61JuE4,4175
109
109
  optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=CeHl52UVr2UVKUeWTyT8OcRWXsZzrLnQpjzK_neu304,14835
110
110
  optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic0YkVK24CW5hZBPa-0L8so6Y,119
111
- optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=TCOW3v5l9fIt1uIFtWa8ZAxq1cdCER8gXWjmbLQD20M,8079
111
+ optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=BudTwryMW-HaB-BtawEbs9RIRdhK_WWThQGWHtKpdls,8069
112
112
  optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=qjaUC7S9kCZBWL9LsXnEo0woxsksPSHJpqA3TRTx6KE,3408
113
- optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=7BCWP6cauK1DBDYuNTb1oQbBsuOeGNoBKd8eJIMrl0s,15857
113
+ optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=xR9xe5jBnByzuB4AtDTTb6mxgR1TYvdewYDZlOI91A0,15857
114
114
  optimum/rbln/transformers/models/colqwen2/__init__.py,sha256=gEKc5X4uGME4XKySDD1H6JlT89jaMvZ00HqbDVXNHU8,123
115
115
  optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py,sha256=spIH6d-09asUBSqhuJN9NAK2Ke7Kv1RP7HdwMOcxf_s,8732
116
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py,sha256=_HYOLR2O8xjEJvXn7LRU_BSxdysMXmJ7oEhCLhaG2z0,2649
116
+ optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py,sha256=3Aq0agm2wrxpIl4lJI7pX40gkoScTBkqbeG7DtMbnmk,2538
117
117
  optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py,sha256=Iy5wa3Aa-Vfjv4FTyDvL-KtyGAB9nBuGCPXz_Alv_l0,18598
118
118
  optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pKBXAtE3y_6nnwYfQJjdPmWqUwxuJ0lr8rrqkgyH07M,1126
119
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=nf4F8DdPvpNTW5oNEJPLxGNIyyllcyf4Fy7q5y40gjw,17094
120
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py,sha256=5DuTs2vy7jF7MLy161QD_KvCTaNW-5Mok7hBH0yK44U,17356
121
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=h1n9vSHgQc7D0ds1C9SAzWxmIdTaqnDL7auDU_VJNXg,46813
122
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=Cy-DS-Fkm5xJMWVe7Mz7TRhPWAEf8ai4Vxe4i-quBvg,22449
119
+ optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=mgy5JI54EAbVJWjemeUE1AUWrtLG2wRPTPD1IjeAiGo,17336
120
+ optimum/rbln/transformers/models/decoderonly/configuration_lora.py,sha256=YvbjntzVUiBuS5dmi7KEGDNcdM7bo5L9f80H1bQIt3Q,17363
121
+ optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=SvXs47aK7zZpA9UhNgXJuxjw3EquLKzgSVdI2XIg_eo,48665
122
+ optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=vY7S-4ms4eW3WIEGLfjDzX3dsQKcc6QHhOiUOXyWSWc,29268
123
123
  optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=_Rp1vtGow4quWHnIKpHtZFGMxrLjIN-FCc6gz0XL1Sc,5539
124
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py,sha256=jo-jYy95JhdvOsX1UTCXeYTNer37wBbtY578C0QQpZo,8306
125
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=1PnbsIesG-aTAQ6UxR4z3c81hZtdDO1TiNpHGNdeCb4,36413
124
+ optimum/rbln/transformers/models/decoderonly/lora_architecture.py,sha256=c4O5N56Y2uS-gxsXITt19qmqyV2rqSlPEHxkmOnWE2s,8306
125
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=Je7Ji3DZcJXbmu95F5NOAuwSbAhED91tqsECRzTHesU,39907
126
126
  optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
127
127
  optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
128
128
  optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=RxscJiKp7PDmbQTDUy2R_Ryxf_0YZ0TieRS5bg53dyQ,1698
@@ -142,17 +142,17 @@ optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=4Ry2pFfWg0sV
142
142
  optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=AsuFnrwZcRCKtF39BpHHNea0S34N2lNWKV4qZimmY8I,4170
143
143
  optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
144
144
  optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=NJJfarzbWJc3pm0XvICN7D0FFF9nqidagIEoOvYLixQ,4696
145
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=TkGt2g313hXbB8vPFz8-oDBEsuR3HJI6LjSFgqec_Sc,6533
146
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=ZhWgecT4v4Ewd1hmrlJH47QUZuQweVB1qAaK-Qw24-Q,11127
147
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=5F5-5V7rGbiwnaRbftTMx_2iBv2dhMxHMVHmU9Y8uLI,25830
145
+ optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=mrtBwkrTORlWkaRcObXz036VeTStCo9d-P6YVMVEXfk,6844
146
+ optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=1f8LVqtF3Tr6ITVC43QpiSXefFsVeZ7jStoR4SlNTfk,9640
147
+ optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=XFt0hR2FtuuP7m8OtGVn4m-b4qDibGchQxGrw5O38tk,26563
148
148
  optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
149
149
  optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
150
150
  optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=ul87zvaLkqsuNJirvl6QtGXM147taNEbnb9qPulR1Ps,2933
151
151
  optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijKCsRfTx-VCkTqqqNwqqMSrjqRE,2230
152
152
  optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
153
153
  optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=s-5MjEEle0zDBhskeYZQiPbbNsFvpTNcqcz21-kl6Gk,3820
154
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=2BGhyKa7x6fiiZPaLy_S7zKr2NOdJnMLFMf6CEcegGE,26674
155
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=wDfSd8Snh02gRbD8t053WDVOQQ8F7eh6cwkeNbsVLYk,48479
154
+ optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=MWD_Xjl1z8N2t6YuLVqh0mcDk_92IP7xqkzrS4647Ag,26674
155
+ optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=8LKysGbqrheFI2nWZpv4ErUfWmUuca3UE2lQo0RIYhc,48429
156
156
  optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
157
157
  optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=7IENNxflZL8ZH3YRqtCXfYdKs-RdUeGiPzq-C03te_s,3679
158
158
  optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=s5bbK3qYpE85-x69yopVhqia6b53Ys4kWzABhE3Jm6U,19880
@@ -162,10 +162,10 @@ optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=S7MCPfyjG5eU
162
162
  optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=uRxEXYhHOuEwPjBo_Ps3eFU1uwScasla6P8HwsQgAu0,4214
163
163
  optimum/rbln/transformers/models/llava/__init__.py,sha256=FaVLgBIqKGjT_nvwYO9k9BVqrzH_Ym3DfjGRCSUhG2s,734
164
164
  optimum/rbln/transformers/models/llava/configuration_llava.py,sha256=c1rie8LCypxlsT7SNjZJE07_xCLAasV4EBs97o1757Q,2998
165
- optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=SC3fvgDi1WbSvjjj6uG-qUEsqZ1c9wAAxXb7TJhG4tw,21070
165
+ optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=Lz_hwF7Xrjx7aMTU5HEMK2c8n7uxArxo6ojaOC8ewpg,21070
166
166
  optimum/rbln/transformers/models/llava_next/__init__.py,sha256=kDXKr7wMkp1XqE__DER2B8kQF_NYMxhzsQS5ytGg56I,752
167
167
  optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=Sz8L8p_23T7xw7pkUmW5pyK_wZclph1p_kQYbslc8m8,2708
168
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=83ajLLuF64QJpnTLyUzGxBDm7wAQIjFr92y_zraFlSg,21303
168
+ optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=aVpM0SYSSZ6jClMvpO5J83qrUg3GkDBAFkGC5ylSOvw,21303
169
169
  optimum/rbln/transformers/models/midm/__init__.py,sha256=IC3FETwgYinbp3wDj7tp4zIHJhbqM-c6GfTRdYcMNj8,913
170
170
  optimum/rbln/transformers/models/midm/configuration_midm.py,sha256=DxhcSJlApxfi00XxYmSkKZ6bY9vfLXT0zh-oMKkZot0,1365
171
171
  optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=f9IwLLyYErliWJhkRj880QByMEYs_XVwm2Yh6r-Y_ik,5186
@@ -173,7 +173,7 @@ optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=EXTBFaOWco2h3NL8jU
173
173
  optimum/rbln/transformers/models/mistral/__init__.py,sha256=bYPqrkmqXmhNDqRgKFaL9iH7piGLSHKzsVrGl_0qs1Q,758
174
174
  optimum/rbln/transformers/models/mistral/configuration_mistral.py,sha256=mIfz8J8GZV9ojCMuNj9Zeky_PNu1Ir34DQ7FDZrGkP8,1595
175
175
  optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=gpQTcP83F4zYrCFXRFT_FAF66k5BSSfcYsaAr4eW9jI,722
176
- optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=gvU6W0uiH7ef3rcHat7wROTw2Dm5zO_uItgjrjwmyUU,4391
176
+ optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=TdOPjF1eUDWaGa_il05F95O5zacFJbxKff5Qc_IGEXY,3524
177
177
  optimum/rbln/transformers/models/opt/__init__.py,sha256=mkSmAUr_ezMtlMK77f48T0THTFddf0HThH1lp6y5Pfw,734
178
178
  optimum/rbln/transformers/models/opt/configuration_opt.py,sha256=aP7cyEuBF4DrQxVERPdP3fXYkuqIUcGxEK2fc8ezh7I,1135
179
179
  optimum/rbln/transformers/models/opt/modeling_opt.py,sha256=4KZlCnKwDIOMbltPxvO7FX-lIRmI2auC-NVTWqkIPmc,4002
@@ -189,22 +189,22 @@ optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=bzK7Qhd1FAC049fd
189
189
  optimum/rbln/transformers/models/pixtral/__init__.py,sha256=fhclVAWnIDsfMfC-TW6mYrJXxgyehlLaadK64LOShH4,716
190
190
  optimum/rbln/transformers/models/pixtral/configuration_pixtral.py,sha256=b79zkJB1jzHx4S1wTe-Ju_Yel_PS5Q8bfmlQPzkchKU,1677
191
191
  optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=2zIm5zFbuEi-O0QCawzv0AOeukXo3JWN3YKuj6zlUWU,13189
192
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py,sha256=s-6C9DtHmSZEGJXo5b95RwZE2A5aR6ELMHlj7aK6CIg,2950
192
+ optimum/rbln/transformers/models/pixtral/pixtral_architecture.py,sha256=55DNou1y3Ev_quCGOMsyBgF1AutJkHvKfqPamJdwP8M,2940
193
193
  optimum/rbln/transformers/models/qwen2/__init__.py,sha256=h9dWJ3HX4xspMLt44g7r3UGU8QL03Ynmz_Mi3Vlu6UA,746
194
194
  optimum/rbln/transformers/models/qwen2/configuration_qwen2.py,sha256=tTWcPOk_ycZvdSPlal9S5elTmWZAX2BbpZP5Ok2ySwI,1567
195
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=VOboPJF1rvvSVWkHCnw3D5COWbfBwXJJ6JV0tCOgl5g,4938
195
+ optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=z0tegK-B7tC0ocTLUp_V4eNmwREa12wJ7qQpbnRLEFo,3477
196
196
  optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
197
197
  optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
198
198
  optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=WHLH72i7Pe16Ee1waMixMsR3eD6TsMGN08QD82qdVvw,6162
199
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=TDb-DVbUQRvsTtETNriTqlWCugKVPLdXWXZW2ZvAQJQ,26692
199
+ optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=zUQgLpgnERXhFcjmMUJEa_IouQFJbc_H5vSIiQmhWmU,26656
200
200
  optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=hlx9Tt9n9m-fL4m21QFKgsN719CDhwhgfOMjnhde4RE,8392
201
201
  optimum/rbln/transformers/models/qwen2_vl/__init__.py,sha256=O3t6zKda92CnZDzEnz_dcisMOQ71-OOJxElXzKCH5e0,849
202
202
  optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py,sha256=mi5CqSKZ77G5Fib3g8a86_4CEB6lb-qJOhDnSqslvNk,4714
203
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=R4Afpwa8BFdsGYVF7XaIwvK-5xfH0-F0jmkBAGLFeFM,20386
204
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=xjp52RXqKA_BiyZ5CqwFAosav7ysvOJxeRxbPnTVIjM,5829
203
+ optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=qm3b0nIB0keJ1Y7sPCXs_wtORRbdbbZowVt6hYfcjjo,20374
204
+ optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=kQLDD4KkYvIh6zaoM-EF9lwfbSsb9LVX5p8A98B2Uqw,5829
205
205
  optimum/rbln/transformers/models/qwen3/__init__.py,sha256=tI4KwvXpD35dUUaa8aLUXpWoU9gJGcmKXeywOlH14ZE,746
206
206
  optimum/rbln/transformers/models/qwen3/configuration_qwen3.py,sha256=BFRPggnH4VlsXlOa19C6KAID-bPgQ8ooQ29dvogh5zk,2102
207
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py,sha256=S05efusxjXJhMMYztstGes6ZbqkSr5I4fHFaLSYVG8c,5760
207
+ optimum/rbln/transformers/models/qwen3/modeling_qwen3.py,sha256=jOg1Oqefi88rpcn6P2GXL7JDnYl_AjfI63xMXwuWttQ,4888
208
208
  optimum/rbln/transformers/models/qwen3/qwen3_architecture.py,sha256=qynZBmmWOSps4x4xt1lWOdzcKC2_E_PxAa7rgA05Qb8,1162
209
209
  optimum/rbln/transformers/models/resnet/__init__.py,sha256=0QqtEQF1IMYgEmmfXMGarCDS8kJB5tzODfwTEzDVZRg,837
210
210
  optimum/rbln/transformers/models/resnet/configuration_resnet.py,sha256=T2CDlq-oGmT2LYf0J80X_h4WNxdWrNIgGufGDV55Pf0,1750
@@ -214,21 +214,21 @@ optimum/rbln/transformers/models/roberta/configuration_roberta.py,sha256=6KhO-xB
214
214
  optimum/rbln/transformers/models/roberta/modeling_roberta.py,sha256=1ybyReE9EB--lhN_ZzDVICShJ5mDxdTDcpyu-NaniRI,3250
215
215
  optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=HiSyWFcKeZ8okfo-s-_Mf_upyvAoZwraUIJyGNLNurY,714
216
216
  optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py,sha256=SBIFHxsDce2_s3laDBLa21l7minrTh6ZWSyhq1vXLa0,3060
217
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=8YhKwwSiM0jlkJkjuKmwuM-_4FdFGkOCX4DOR6McWKQ,20152
217
+ optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=9sVR5IqEoN9H0nfG8dk89PDhuaPTRhinO2ZswWyQbn4,20128
218
218
  optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=jmBgj7BkUS_S-T-9DI53rE3KXUHSCoIofr7k5JDVPrU,20024
219
219
  optimum/rbln/transformers/models/siglip/__init__.py,sha256=X1Fc1GUnJ2EIxFx45nbeoW-T2t0OyP3W73C0HD8Vowo,712
220
220
  optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=Fy-ANF91bQno_QVd4ZpyRs-uNgC_XRyBRScBg2uKM6w,3029
221
221
  optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=XVjJ0sG-3fs_tq8-JPMl0FIxgIQyvM3I9ACFqJzLgLI,8689
222
222
  optimum/rbln/transformers/models/swin/__init__.py,sha256=gUsLDB8ceNxt53Cf69OT32JuZoRdmmIsRfjRdHTLDd0,698
223
223
  optimum/rbln/transformers/models/swin/configuration_swin.py,sha256=JE4oMdPhJmRwXxKUWQ3KHccthDLEcDiXEzjMcFx71K0,1690
224
- optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=kN_7QnNXazl5n2iBsjhT9rmgkdxMV0aUBoS-hdphEys,14999
224
+ optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=SAsHPme9izpKUKrVbxN8HSbOID2jRo3DhEthoV2jIyI,14999
225
225
  optimum/rbln/transformers/models/t5/__init__.py,sha256=R1Q8Z1vaIdx4rDjeCmm_ZMSgewWaqaI0l93AHwewtew,818
226
226
  optimum/rbln/transformers/models/t5/configuration_t5.py,sha256=nqDbibqykeeWn1TlKk6LmCn-DawTVudMMuBn2c2jds8,1362
227
227
  optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=lP__icG548arC9N4FHKfV7PQTpaqT7RpaHO1Tuvq3Ds,5125
228
- optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=DlJNrGk35NTBhcp76PEhiyfs5yuUoDWKvMhfe4_puIE,10171
228
+ optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=914_iRTg-_K_X1F4EEZbaa2rgwi4ljz7UBcIyFDFTBs,10159
229
229
  optimum/rbln/transformers/models/time_series_transformer/__init__.py,sha256=xJaFWQawlwtv4H5tVFcY1pxLYzjHtMAlLq6nXysdkN8,1243
230
230
  optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py,sha256=EUBXE_10W0wtuoAl2OVuQakBpsC7kSpRo3VokXI8Pdo,1619
231
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py,sha256=_Qxn8pj6hErIS_g3qi0oTYuZn5xw9rZ-4iBWmPaEWxA,18782
231
+ optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py,sha256=4rrivdPuuyg2MnfLaey_inai_sYE83GLg0nqN4Y85dg,18783
232
232
  optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py,sha256=hAZXyXxzSDJMdkI883eefzpjz2L9KTVTRBeOVU8e92k,14038
233
233
  optimum/rbln/transformers/models/vit/__init__.py,sha256=CrrkHehfCe3U-_rUS00aMBY7Tncdeh43sNUgVI9Dt_g,807
234
234
  optimum/rbln/transformers/models/vit/configuration_vit.py,sha256=x98CxKR1cpKAG7Eh43uuPeGeGn4gS3HcKLPoDL3SWJo,994
@@ -243,7 +243,7 @@ optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=k3kiy5EtDAzo
243
243
  optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=fKUbAMIl20o6EBMVcLg9TDSsJ1FDp8NKcl4jT9RWCEM,13981
244
244
  optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=O3o2KzJ8Li3QhB7GHdRQASc93SYO2jz00Rx4pxYRuDg,982
245
245
  optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256=wHRpGTXL9khYqSkKL1IgA7__6_lt9QpOz9tHumjK7fo,1260
246
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=VrdRsJjiDn_liCXyMUHeed-wllarsIrZHLehKcZgWQs,3007
246
+ optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=Pjqvfp0V0kFBW7U7VD3kthZkpWfzOKsRS_2-z6StTnI,3710
247
247
  optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
248
248
  optimum/rbln/transformers/utils/rbln_quantization.py,sha256=LruvKW3inB2v9bMi0gcsfNC-IZnVvFyBSR-SZ46zy5M,21923
249
249
  optimum/rbln/transformers/utils/rbln_runtime_wrapper.py,sha256=l_-zWpRrp6hp-tDANTrEbspIZH-AUSi_jNJICns_QgE,2672
@@ -251,14 +251,14 @@ optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQq
251
251
  optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
252
252
  optimum/rbln/utils/deprecation.py,sha256=qO6xlrT_GNCOCJx4i28t8Q-1hDGwp-cJMC5OrD7lUOQ,13226
253
253
  optimum/rbln/utils/hub.py,sha256=EI2ZsD71jhmPaA1imJ2_7P6y8i2uoX5l6wya5fICdQA,3119
254
- optimum/rbln/utils/import_utils.py,sha256=fpOERIIxXm-cDYGn1NN6c7aWDPQYVitPQW2MiyZ9NEY,5471
254
+ optimum/rbln/utils/import_utils.py,sha256=60VAdSzRWWWc-xq2G-HFVVf3LY2OFB0VzvFNwksXV7A,5616
255
255
  optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
256
256
  optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
257
257
  optimum/rbln/utils/runtime_utils.py,sha256=Ygl0rWPId2bJHIdu1VwGZNoRyImB0xGmoNHocKnvYH8,9478
258
258
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
259
- optimum/rbln/utils/submodule.py,sha256=SKLnM3KsX8_rv3HauO4oB2-JSjzuadQjRwo_BhMUzLI,6362
260
- optimum_rbln-0.9.3.dist-info/METADATA,sha256=yyykgtO54omLjH6kmGQhWXHyqBxcZZIWV6OgNigMw6k,5348
261
- optimum_rbln-0.9.3.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
262
- optimum_rbln-0.9.3.dist-info/entry_points.txt,sha256=-orKDGKfLypxlPlTz8-ZkmdKULNvax9yeCCCn-q89n4,59
263
- optimum_rbln-0.9.3.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
264
- optimum_rbln-0.9.3.dist-info/RECORD,,
259
+ optimum/rbln/utils/submodule.py,sha256=6LccRdRH__jjR3myEJK9qb-WnLwp_yFdTBE5Ytr2LLI,6443
260
+ optimum_rbln-0.9.4a2.dist-info/METADATA,sha256=YKfT7wykp9GwrUr-iXOP58tyhj4IVQcbHUuuPxjOa0Y,5350
261
+ optimum_rbln-0.9.4a2.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
262
+ optimum_rbln-0.9.4a2.dist-info/entry_points.txt,sha256=-orKDGKfLypxlPlTz8-ZkmdKULNvax9yeCCCn-q89n4,59
263
+ optimum_rbln-0.9.4a2.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
264
+ optimum_rbln-0.9.4a2.dist-info/RECORD,,