optimum-rbln 0.9.3__py3-none-any.whl → 0.9.4a2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +12 -4
- optimum/rbln/diffusers/modeling_diffusers.py +1 -1
- optimum/rbln/diffusers/models/controlnet.py +1 -1
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +1 -1
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +2 -2
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +13 -4
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +13 -4
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +13 -4
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -4
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +1 -1
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +1 -1
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +1 -2
- optimum/rbln/modeling_base.py +12 -7
- optimum/rbln/transformers/modeling_attention_utils.py +4 -4
- optimum/rbln/transformers/modeling_outputs.py +1 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +1 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +2 -2
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +1 -1
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +0 -2
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +4 -0
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +1 -1
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +92 -43
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +201 -62
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +1 -1
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +106 -36
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +7 -1
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +42 -70
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +43 -26
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +1 -1
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +0 -1
- optimum/rbln/transformers/models/llava/modeling_llava.py +1 -1
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +1 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +0 -22
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +2 -2
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +0 -28
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +6 -6
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +4 -4
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +1 -1
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +0 -20
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +2 -2
- optimum/rbln/transformers/models/swin/modeling_swin.py +3 -3
- optimum/rbln/transformers/models/t5/t5_architecture.py +1 -1
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +9 -8
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +12 -2
- optimum/rbln/utils/import_utils.py +7 -1
- optimum/rbln/utils/submodule.py +3 -1
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/METADATA +1 -1
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/RECORD +52 -52
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/entry_points.txt +0 -0
- {optimum_rbln-0.9.3.dist-info → optimum_rbln-0.9.4a2.dist-info}/licenses/LICENSE +0 -0
|
@@ -24,8 +24,8 @@ class PixtralAttention(nn.Module):
|
|
|
24
24
|
def __init__(self, self_attention):
|
|
25
25
|
super().__init__()
|
|
26
26
|
self.original_model = self_attention
|
|
27
|
-
self.num_heads =
|
|
28
|
-
self.original_model
|
|
27
|
+
self.num_heads = (
|
|
28
|
+
getattr(self.original_model, "num_heads", None) or self.original_model.config.num_attention_heads
|
|
29
29
|
)
|
|
30
30
|
self.head_dim = self.original_model.head_dim
|
|
31
31
|
self.scaling = self.head_dim**-0.5
|
|
@@ -12,13 +12,11 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from transformers import PretrainedConfig
|
|
16
15
|
|
|
17
16
|
from ....utils import logging
|
|
18
17
|
from ...models.decoderonly import (
|
|
19
18
|
RBLNDecoderOnlyModel,
|
|
20
19
|
RBLNDecoderOnlyModelForCausalLM,
|
|
21
|
-
RBLNDecoderOnlyModelForCausalLMConfig,
|
|
22
20
|
)
|
|
23
21
|
from .qwen2_architecture import QWEN2Wrapper
|
|
24
22
|
|
|
@@ -87,19 +85,6 @@ class RBLNQwen2ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
|
87
85
|
|
|
88
86
|
_decoder_wrapper_cls = QWEN2Wrapper
|
|
89
87
|
|
|
90
|
-
@classmethod
|
|
91
|
-
def _update_sliding_window_config(
|
|
92
|
-
cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
|
|
93
|
-
):
|
|
94
|
-
# https://github.com/huggingface/transformers/issues/35896
|
|
95
|
-
# There seems to be a bug in transformers(v4.52.4). Therefore, similar to when attn_implementation is eager,
|
|
96
|
-
# we set all layers to use sliding window in this version. This should be updated once the bug is fixed.
|
|
97
|
-
|
|
98
|
-
rbln_config.cache_impl = "sliding_window"
|
|
99
|
-
rbln_config.sliding_window = model_config.sliding_window
|
|
100
|
-
rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
|
|
101
|
-
return rbln_config
|
|
102
|
-
|
|
103
88
|
|
|
104
89
|
class RBLNQwen2Model(RBLNDecoderOnlyModel):
|
|
105
90
|
"""
|
|
@@ -108,16 +93,3 @@ class RBLNQwen2Model(RBLNDecoderOnlyModel):
|
|
|
108
93
|
"""
|
|
109
94
|
|
|
110
95
|
_decoder_wrapper_cls = QWEN2Wrapper
|
|
111
|
-
|
|
112
|
-
@classmethod
|
|
113
|
-
def _update_sliding_window_config(
|
|
114
|
-
cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
|
|
115
|
-
):
|
|
116
|
-
# https://github.com/huggingface/transformers/issues/35896
|
|
117
|
-
# There seems to be a bug in transformers(v4.52.4). Therefore, similar to when attn_implementation is eager,
|
|
118
|
-
# we set all layers to use sliding window in this version. This should be updated once the bug is fixed.
|
|
119
|
-
|
|
120
|
-
rbln_config.cache_impl = "sliding_window"
|
|
121
|
-
rbln_config.sliding_window = model_config.sliding_window
|
|
122
|
-
rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
|
|
123
|
-
return rbln_config
|
|
@@ -111,10 +111,10 @@ class RBLNQwen2_5_VisionTransformerPretrainedModel(RBLNModel):
|
|
|
111
111
|
model_config: "PretrainedConfig" = None,
|
|
112
112
|
rbln_config: Optional[RBLNQwen2_5_VisionTransformerPretrainedModelConfig] = None,
|
|
113
113
|
) -> RBLNQwen2_5_VisionTransformerPretrainedModelConfig:
|
|
114
|
-
window_size =
|
|
115
|
-
patch_size =
|
|
116
|
-
hidden_size =
|
|
117
|
-
num_heads =
|
|
114
|
+
window_size = model_config.window_size
|
|
115
|
+
patch_size = model_config.patch_size
|
|
116
|
+
hidden_size = model_config.hidden_size
|
|
117
|
+
num_heads = model_config.num_heads
|
|
118
118
|
head_dim = hidden_size // num_heads
|
|
119
119
|
window_seq_len = (window_size // patch_size) ** 2
|
|
120
120
|
|
|
@@ -294,10 +294,10 @@ class RBLNQwen2_5_VisionTransformerPretrainedModel(RBLNModel):
|
|
|
294
294
|
try:
|
|
295
295
|
ws_index = torch.searchsorted(self.max_seq_lens, window_padded_len).item()
|
|
296
296
|
max_seq_len = self.max_seq_lens[ws_index]
|
|
297
|
-
except Exception:
|
|
297
|
+
except Exception as e:
|
|
298
298
|
raise ValueError(
|
|
299
299
|
f"Required seq_len({window_padded_len}) is larger than available max_seq_lens({self.max_seq_lens.tolist()})."
|
|
300
|
-
)
|
|
300
|
+
) from e
|
|
301
301
|
|
|
302
302
|
# Padding for Window Attention Layers
|
|
303
303
|
hidden_state_padded, cos_padded, sin_padded, window_attn_masks, window_valid_lengths = (
|
|
@@ -112,8 +112,8 @@ class RBLNQwen2VisionTransformerPretrainedModel(RBLNModel):
|
|
|
112
112
|
model_config: "PretrainedConfig" = None,
|
|
113
113
|
rbln_config: Optional[RBLNQwen2VisionTransformerPretrainedModelConfig] = None,
|
|
114
114
|
) -> RBLNQwen2VisionTransformerPretrainedModelConfig:
|
|
115
|
-
hidden_size =
|
|
116
|
-
num_heads =
|
|
115
|
+
hidden_size = model_config.embed_dim
|
|
116
|
+
num_heads = model_config.num_heads
|
|
117
117
|
head_dim = hidden_size // num_heads
|
|
118
118
|
|
|
119
119
|
input_infos = []
|
|
@@ -200,10 +200,10 @@ class RBLNQwen2VisionTransformerPretrainedModel(RBLNModel):
|
|
|
200
200
|
try:
|
|
201
201
|
cu_index = torch.searchsorted(self.max_seq_lens, cu_seq_len).item()
|
|
202
202
|
max_seq_len = self.max_seq_lens[cu_index]
|
|
203
|
-
except Exception:
|
|
203
|
+
except Exception as e:
|
|
204
204
|
raise ValueError(
|
|
205
205
|
f"Required seq_len({cu_seq_len}) is larger than available max_seq_lens({self.max_seq_lens.tolist()})."
|
|
206
|
-
)
|
|
206
|
+
) from e
|
|
207
207
|
|
|
208
208
|
# Padding for Full Attention Layers
|
|
209
209
|
hidden_state_full_padded, cos_full_padded, sin_full_padded, full_attn_masks = (
|
|
@@ -20,7 +20,7 @@ class Qwen2VisionTransformerWrapper(nn.Module):
|
|
|
20
20
|
|
|
21
21
|
def wrap_vision_blocks(self, blocks: torch.nn.ModuleList):
|
|
22
22
|
wrapped_blocks = []
|
|
23
|
-
for
|
|
23
|
+
for _, block in enumerate(blocks):
|
|
24
24
|
wrapped_blocks.append(Qwen2VLVisionBlock(block))
|
|
25
25
|
return nn.ModuleList(wrapped_blocks)
|
|
26
26
|
|
|
@@ -12,24 +12,17 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import TYPE_CHECKING
|
|
16
|
-
|
|
17
|
-
from transformers import PretrainedConfig
|
|
18
15
|
|
|
19
16
|
from ....utils import logging
|
|
20
17
|
from ...models.decoderonly import (
|
|
21
18
|
RBLNDecoderOnlyModel,
|
|
22
19
|
RBLNDecoderOnlyModelForCausalLM,
|
|
23
|
-
RBLNDecoderOnlyModelForCausalLMConfig,
|
|
24
20
|
)
|
|
25
21
|
from .qwen3_architecture import Qwen3Wrapper
|
|
26
22
|
|
|
27
23
|
|
|
28
24
|
logger = logging.get_logger(__name__)
|
|
29
25
|
|
|
30
|
-
if TYPE_CHECKING:
|
|
31
|
-
from transformers import PretrainedConfig
|
|
32
|
-
|
|
33
26
|
|
|
34
27
|
class RBLNQwen3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
35
28
|
"""
|
|
@@ -84,19 +77,6 @@ class RBLNQwen3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
|
84
77
|
|
|
85
78
|
_decoder_wrapper_cls = Qwen3Wrapper
|
|
86
79
|
|
|
87
|
-
@classmethod
|
|
88
|
-
def _update_sliding_window_config(
|
|
89
|
-
cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
|
|
90
|
-
):
|
|
91
|
-
# https://github.com/huggingface/transformers/issues/35896
|
|
92
|
-
# There seems to be a bug in transformers(v4.52.4). Therefore, similar to when attn_implementation is eager,
|
|
93
|
-
# we set all layers to use sliding window in this version. This should be updated once the bug is fixed.
|
|
94
|
-
|
|
95
|
-
rbln_config.cache_impl = "sliding_window"
|
|
96
|
-
rbln_config.sliding_window = model_config.sliding_window
|
|
97
|
-
rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
|
|
98
|
-
return rbln_config
|
|
99
|
-
|
|
100
80
|
def forward(self, *args, **kwargs):
|
|
101
81
|
kwargs["return_dict"] = True
|
|
102
82
|
return super().forward(*args, **kwargs)
|
|
@@ -210,8 +210,8 @@ class RBLNModelForSeq2SeqLM(RBLNModel, GenerationMixin, ABC):
|
|
|
210
210
|
if not cls.support_causal_attn:
|
|
211
211
|
rbln_config.use_attention_mask = True
|
|
212
212
|
|
|
213
|
-
n_layer = getattr(model_config, "decoder_layers", None) or
|
|
214
|
-
n_head = getattr(model_config, "decoder_attention_heads", None) or
|
|
213
|
+
n_layer = getattr(model_config, "decoder_layers", None) or model_config.num_layers
|
|
214
|
+
n_head = getattr(model_config, "decoder_attention_heads", None) or model_config.num_heads
|
|
215
215
|
d_kv = (
|
|
216
216
|
model_config.d_kv
|
|
217
217
|
if hasattr(model_config, "d_kv")
|
|
@@ -327,19 +327,19 @@ class RBLNSwinBackbone(RBLNModel):
|
|
|
327
327
|
output = self.model[0](padded_pixel_values)
|
|
328
328
|
|
|
329
329
|
feature_maps = ()
|
|
330
|
-
for
|
|
330
|
+
for _ in range(len(self.config.out_features)):
|
|
331
331
|
feature_maps += (output.pop(0),)
|
|
332
332
|
|
|
333
333
|
if self.rbln_config.output_hidden_states:
|
|
334
334
|
hidden_states = ()
|
|
335
|
-
for
|
|
335
|
+
for _ in range(len(self.config.stage_names)):
|
|
336
336
|
hidden_states += (output.pop(0),)
|
|
337
337
|
else:
|
|
338
338
|
hidden_states = None
|
|
339
339
|
|
|
340
340
|
if self.rbln_config.output_attentions:
|
|
341
341
|
attentions = ()
|
|
342
|
-
for
|
|
342
|
+
for _ in range(len(self.config.depths)):
|
|
343
343
|
attentions += (output.pop(0),)
|
|
344
344
|
else:
|
|
345
345
|
attentions = None
|
|
@@ -39,7 +39,7 @@ class T5Wrapper:
|
|
|
39
39
|
|
|
40
40
|
class T5EncoderWrapper(Seq2SeqEncoderWrapper):
|
|
41
41
|
def __post_init__(self, model: nn.Module):
|
|
42
|
-
self.n_layer =
|
|
42
|
+
self.n_layer = self.config.num_layers
|
|
43
43
|
self.cross_k_projects, self.cross_v_projects = self._extract_cross_kv_projects(model.get_decoder().block)
|
|
44
44
|
self.num_heads = self.config.num_heads
|
|
45
45
|
self.d_kv = self.config.d_kv
|
optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py
CHANGED
|
@@ -184,14 +184,6 @@ class RBLNTimeSeriesTransformerForPrediction(RBLNModel):
|
|
|
184
184
|
if "key_value_states" in name:
|
|
185
185
|
context.mark_static_address(tensor)
|
|
186
186
|
|
|
187
|
-
compiled_decoder = cls.compile(
|
|
188
|
-
wrapped_model.decoder,
|
|
189
|
-
dec_compile_config,
|
|
190
|
-
create_runtimes=rbln_config.create_runtimes,
|
|
191
|
-
device=rbln_config.device,
|
|
192
|
-
example_inputs=dec_example_inputs,
|
|
193
|
-
compile_context=context,
|
|
194
|
-
)
|
|
195
187
|
compiled_encoder = cls.compile(
|
|
196
188
|
wrapped_model.encoder,
|
|
197
189
|
enc_compile_config,
|
|
@@ -201,6 +193,15 @@ class RBLNTimeSeriesTransformerForPrediction(RBLNModel):
|
|
|
201
193
|
compile_context=context,
|
|
202
194
|
)
|
|
203
195
|
|
|
196
|
+
compiled_decoder = cls.compile(
|
|
197
|
+
wrapped_model.decoder,
|
|
198
|
+
dec_compile_config,
|
|
199
|
+
create_runtimes=rbln_config.create_runtimes,
|
|
200
|
+
device=rbln_config.device,
|
|
201
|
+
example_inputs=dec_example_inputs,
|
|
202
|
+
compile_context=context,
|
|
203
|
+
)
|
|
204
|
+
|
|
204
205
|
return {"encoder": compiled_encoder, "decoder": compiled_decoder}
|
|
205
206
|
|
|
206
207
|
@classmethod
|
|
@@ -29,6 +29,7 @@ class RBLNXLMRobertaModel(RBLNTransformerEncoderForFeatureExtraction):
|
|
|
29
29
|
self,
|
|
30
30
|
input_ids: Optional[torch.Tensor] = None,
|
|
31
31
|
attention_mask: Optional[torch.Tensor] = None,
|
|
32
|
+
token_type_ids: Optional[torch.Tensor] = None,
|
|
32
33
|
**kwargs,
|
|
33
34
|
) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, tuple]:
|
|
34
35
|
"""
|
|
@@ -37,12 +38,16 @@ class RBLNXLMRobertaModel(RBLNTransformerEncoderForFeatureExtraction):
|
|
|
37
38
|
Args:
|
|
38
39
|
input_ids (torch.Tensor of shape (batch_size, sequence_length), optional): Indices of input sequence tokens in the vocabulary.
|
|
39
40
|
attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices.
|
|
41
|
+
token_type_ids (torch.Tensor of shape (batch_size, sequence_length), optional): Segment token indices to indicate different portions of the inputs.
|
|
40
42
|
|
|
41
43
|
Returns:
|
|
42
44
|
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a BaseModelOutputWithPoolingAndCrossAttentions object.
|
|
43
45
|
"""
|
|
44
46
|
|
|
45
|
-
|
|
47
|
+
if token_type_ids is not None:
|
|
48
|
+
kwargs.setdefault("token_type_ids", token_type_ids)
|
|
49
|
+
|
|
50
|
+
return super().forward(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
|
|
46
51
|
|
|
47
52
|
|
|
48
53
|
class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification):
|
|
@@ -56,6 +61,7 @@ class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification
|
|
|
56
61
|
self,
|
|
57
62
|
input_ids: Optional[torch.LongTensor] = None,
|
|
58
63
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
64
|
+
token_type_ids: Optional[torch.LongTensor] = None,
|
|
59
65
|
**kwargs,
|
|
60
66
|
) -> Union[SequenceClassifierOutput, tuple]:
|
|
61
67
|
"""
|
|
@@ -64,9 +70,13 @@ class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification
|
|
|
64
70
|
Args:
|
|
65
71
|
input_ids (torch.LongTensor of shape (batch_size, sequence_length), optional): Indices of input sequence tokens in the vocabulary.
|
|
66
72
|
attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices.
|
|
73
|
+
token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional): Segment token indices to indicate first and second portions of the inputs.
|
|
67
74
|
|
|
68
75
|
Returns:
|
|
69
76
|
The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a SequenceClassifierOutput object.
|
|
70
77
|
"""
|
|
71
78
|
|
|
72
|
-
|
|
79
|
+
if token_type_ids is not None:
|
|
80
|
+
kwargs.setdefault("token_type_ids", token_type_ids)
|
|
81
|
+
|
|
82
|
+
return super().forward(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
|
|
@@ -142,7 +142,11 @@ def check_version_compats() -> None:
|
|
|
142
142
|
try:
|
|
143
143
|
dep_version = importlib.metadata.version(compat.package_name)
|
|
144
144
|
except importlib.metadata.PackageNotFoundError:
|
|
145
|
-
warnings.warn(
|
|
145
|
+
warnings.warn(
|
|
146
|
+
f"optimum-rbln requires {compat.package_name} to be installed.",
|
|
147
|
+
ImportWarning,
|
|
148
|
+
stacklevel=2,
|
|
149
|
+
)
|
|
146
150
|
continue
|
|
147
151
|
# For versions 0.7.2 and above, don't show warning for rebel-compiler if base versions match
|
|
148
152
|
|
|
@@ -160,6 +164,7 @@ def check_version_compats() -> None:
|
|
|
160
164
|
f"For optimal performance and compatibility, please ensure both packages share the same major and minor version numbers. "
|
|
161
165
|
"Please refer to our SDK release notes at https://docs.rbln.ai/about_atom/release_note.html",
|
|
162
166
|
ImportWarning,
|
|
167
|
+
stacklevel=2,
|
|
163
168
|
)
|
|
164
169
|
else:
|
|
165
170
|
if not Version(compat.min_version) <= Version(dep_version) < Version(compat.max_version):
|
|
@@ -167,4 +172,5 @@ def check_version_compats() -> None:
|
|
|
167
172
|
f"optimum-rbln v{my_version} is compatible to {compat.package_name} v{compat.min_version} to v{compat.max_version}. (you are currently using v{dep_version})\n"
|
|
168
173
|
"Please refer to our SDK release notes at https://docs.rbln.ai/about_atom/release_note.html",
|
|
169
174
|
ImportWarning,
|
|
175
|
+
stacklevel=2,
|
|
170
176
|
)
|
optimum/rbln/utils/submodule.py
CHANGED
|
@@ -37,7 +37,9 @@ class SubModulesMixin:
|
|
|
37
37
|
|
|
38
38
|
_rbln_submodules: List[Dict[str, Any]] = []
|
|
39
39
|
|
|
40
|
-
def __init__(self, *, rbln_submodules: List["RBLNModel"] =
|
|
40
|
+
def __init__(self, *, rbln_submodules: Optional[List["RBLNModel"]] = None, **kwargs) -> None:
|
|
41
|
+
if rbln_submodules is None:
|
|
42
|
+
rbln_submodules = []
|
|
41
43
|
for submodule_meta, submodule in zip(self._rbln_submodules, rbln_submodules):
|
|
42
44
|
setattr(self, submodule_meta["name"], submodule)
|
|
43
45
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.9.
|
|
3
|
+
Version: 0.9.4a2
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -1,11 +1,11 @@
|
|
|
1
1
|
optimum/rbln/__init__.py,sha256=fm83GUa8I5OV2JRWPl0RFZmW2M8X0XsOnU7B9Djvi4A,19548
|
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
|
2
|
+
optimum/rbln/__version__.py,sha256=ymN-HdSTmWnlXk6GRly5nLuYL8rciaz15ICL_1lPYnM,712
|
|
3
3
|
optimum/rbln/cli.py,sha256=944P_f9btDyFryHfHzxUKQvwXWYD1hrceDuK6SWNQcQ,22832
|
|
4
|
-
optimum/rbln/configuration_utils.py,sha256=
|
|
4
|
+
optimum/rbln/configuration_utils.py,sha256=UVxFgY1fBGMU-L1UOWPhhIX6aq4JJS7Lkwpl_EabAYw,37728
|
|
5
5
|
optimum/rbln/modeling.py,sha256=M9kEqbAqVZIeFxOF9dyfS8i7loJz3LV67zf1wzeVcxM,15218
|
|
6
|
-
optimum/rbln/modeling_base.py,sha256=
|
|
6
|
+
optimum/rbln/modeling_base.py,sha256=3u-1GmcwJptQTqjPoG0FAFNJV4x5MxZu_d__GFIXvwU,27810
|
|
7
7
|
optimum/rbln/diffusers/__init__.py,sha256=dISoQ-mylK-n9DM0doqo3oeQFA2SWu9BZcbrcr4vO0I,7800
|
|
8
|
-
optimum/rbln/diffusers/modeling_diffusers.py,sha256=
|
|
8
|
+
optimum/rbln/diffusers/modeling_diffusers.py,sha256=M4lpr5fdbL9fAGVPc_1IY9evxDA47rV68WyvK9jhnO0,20423
|
|
9
9
|
optimum/rbln/diffusers/configurations/__init__.py,sha256=8xhIEEa9HTbIg-9khGvxqr6kHPaMnnHZc-BNsEADO1o,1458
|
|
10
10
|
optimum/rbln/diffusers/configurations/models/__init__.py,sha256=OKXAiciC80IaC1_8MXfZzlBtyvaDEmgelOZtN_H0Buk,766
|
|
11
11
|
optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=dV4DPjRB7CkSqgVUuOQztkH8qJQJlCKK18-X5nOCLzQ,3199
|
|
@@ -27,7 +27,7 @@ optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3
|
|
|
27
27
|
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=qX6-HvOt8SBstEeigWWcor-z2bmyoqAucjRirNfma5o,7161
|
|
28
28
|
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py,sha256=k5OZtqsmEd6Ruaw2AMU_M674LziR3bsOZFVEIE0RUO0,5156
|
|
29
29
|
optimum/rbln/diffusers/models/__init__.py,sha256=lTwyUgCSKCm6xksQFDOsyWAfqwbWYMum3BVlh31eADk,1804
|
|
30
|
-
optimum/rbln/diffusers/models/controlnet.py,sha256=
|
|
30
|
+
optimum/rbln/diffusers/models/controlnet.py,sha256=anNX1By4fWCIxteoHF7akV7p2WxhFco8oXRqpZHCOPk,11522
|
|
31
31
|
optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=sFfYxz0Iwg-xL2jrVkwMk7umiWcsbrtejzjpUZFI1VA,816
|
|
32
32
|
optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py,sha256=TDwSgO3L6L38JdH-FaxWc77aDkilr8WLL1YjjWMHz-M,9496
|
|
33
33
|
optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py,sha256=WD3hUlZMJSEpeLx_hmrFQmR2Ye6TtCo3Olz4pxB5rsg,9538
|
|
@@ -39,21 +39,21 @@ optimum/rbln/diffusers/models/transformers/prior_transformer.py,sha256=VmivAoI84
|
|
|
39
39
|
optimum/rbln/diffusers/models/transformers/transformer_cosmos.py,sha256=s5t2CWhpjEXTYvIbaaulCXk_atNcuPjnwMmw7rbZ6U0,14011
|
|
40
40
|
optimum/rbln/diffusers/models/transformers/transformer_sd3.py,sha256=ICq5MxgN9IOcPF5pUBy-PUiziDE_AcDP1Qc6EgXs8Pk,7797
|
|
41
41
|
optimum/rbln/diffusers/models/unets/__init__.py,sha256=k_c6RfSc_Yln9gINfKxl0coiHfAO_2-zpaLMrQCJr2w,736
|
|
42
|
-
optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=
|
|
42
|
+
optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=b1frE2BKKs7P6T22P99feQvMmP3NDe2sGLygHJg0RQs,17224
|
|
43
43
|
optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py,sha256=vSGk2wR6Xg8aDCaeVOb2E2SB_XCL9jUe1XDwuBPdKRA,7771
|
|
44
44
|
optimum/rbln/diffusers/pipelines/__init__.py,sha256=B8nRikvGrOSbaNFrp0is2GE4R9xVkhkvl8bxAUILsI4,3859
|
|
45
|
-
optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=
|
|
45
|
+
optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=snqx2XCIV1rrT56iGChVjMgkL0Fr_EY4j17RjKQJF3c,12476
|
|
46
46
|
optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
|
|
47
47
|
optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=-6SFcfYr8FJD1y11_OOntWCNSqBpOgPkst0Ys6oIvXU,5295
|
|
48
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=
|
|
49
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=
|
|
50
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=
|
|
51
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=
|
|
48
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=f6FHiLOW2i7Kb3IXShvd0hQEqu2Y6RNLUzRwlALFQqY,36215
|
|
49
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=iHjrjuUtPgBPydeRPUf3lgv4QRrwnb6zgLs9WGnMOQY,34687
|
|
50
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=AGZ_9jyLpw9F2kFLj_LtAWb692OcwIjP-jY_6Lw2q30,45801
|
|
51
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=bb6fpK6FffqmhX-MPXEhJTrzbr0t9a0E1lxiPms_ODQ,47141
|
|
52
52
|
optimum/rbln/diffusers/pipelines/cosmos/__init__.py,sha256=h2j6S8IJPVHeNU8qmW9vyXMgHBw0d7kQcuMAA5YoHPU,795
|
|
53
53
|
optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py,sha256=BRHWXCxRO5l0YTFTBSkS4sd5Hx8YeuHB14Fr2copYFY,3747
|
|
54
|
-
optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py,sha256=
|
|
55
|
-
optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py,sha256=
|
|
56
|
-
optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py,sha256=
|
|
54
|
+
optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py,sha256=Nb8bIME5V4Z_6fDXQY2_LtXpGWunUltlyEiaCcdyuMw,16670
|
|
55
|
+
optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py,sha256=Nuewu5__SYQxcJcCR7rer1pqQ3YV52eSMb_0hAZeItk,5650
|
|
56
|
+
optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py,sha256=KI7E5Iv401D2RZX3rjkec49ZYvGBnbkwDPQoHeRLIMU,5656
|
|
57
57
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py,sha256=I4YQq2HfA3xONbWsdJ870IEJPyLWeCDDG-UCJsu9YO8,1035
|
|
58
58
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py,sha256=2vgZZt0JrZlbHbUlBHrT0zKvYhuX1a4vwy3mxTPHisM,1335
|
|
59
59
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=QqxR325Or00E77XDvR3MotltnghC-42bky1ckU1DW9U,8128
|
|
@@ -82,16 +82,16 @@ optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,13
|
|
|
82
82
|
optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
|
|
83
83
|
optimum/rbln/transformers/__init__.py,sha256=orLCZJRJYcxVGpzBvgOUWFwqsxFXyvYf31LZmTs8T7g,12725
|
|
84
84
|
optimum/rbln/transformers/configuration_generic.py,sha256=5_KWSqcpsEoAHXhMzEpLV62m-0DlWqCY_zwgi9kzjIs,4161
|
|
85
|
-
optimum/rbln/transformers/modeling_attention_utils.py,sha256=
|
|
85
|
+
optimum/rbln/transformers/modeling_attention_utils.py,sha256=EWvLNsjyvDaVuZlVpmcF2KOJNuo0hu_KtlGHk2FRVCU,16828
|
|
86
86
|
optimum/rbln/transformers/modeling_generic.py,sha256=Z_1m5d_hsmQC2qnNkargjMIqlIm3FzBFTNUKqdYdaOc,11499
|
|
87
|
-
optimum/rbln/transformers/modeling_outputs.py,sha256=
|
|
87
|
+
optimum/rbln/transformers/modeling_outputs.py,sha256=eVAofSI2rc0F0O3UkMw_30MVW6Y_jqhDXQ3gMkckhH8,1228
|
|
88
88
|
optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
|
|
89
89
|
optimum/rbln/transformers/models/__init__.py,sha256=NEDsbJgzO-0pM_B0zniHPnDxYrRIh_pBMnFefkzP5JA,13718
|
|
90
90
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
|
|
91
91
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=biFBo1twaWScF2CmNYoF_PW-RvJBUfVgBVpdfI_igBY,1741
|
|
92
92
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=Kzya5XlU15FkEQlWj1HYXBAGrJleEyF9wiTSiHXSIqo,4124
|
|
93
93
|
optimum/rbln/transformers/models/auto/__init__.py,sha256=tdYqXkg9xBGNr4fZjH7_O3qRVbHvpEVjrJ6wtNUMMJM,1150
|
|
94
|
-
optimum/rbln/transformers/models/auto/auto_factory.py,sha256=
|
|
94
|
+
optimum/rbln/transformers/models/auto/auto_factory.py,sha256=xUDgwrcVwe1NtiMreZ17AYOwHFR950WURleS2PxTC4U,11801
|
|
95
95
|
optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Iu5vl60CHX1XNbn445woZhSUkNSf0qHPW0DzbcAnDYE,5797
|
|
96
96
|
optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
|
|
97
97
|
optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=mAepjL0paPMK180vGTTCxXQ-hVZ1DD6JR-GvVNGJLqY,6268
|
|
@@ -108,21 +108,21 @@ optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBb
|
|
|
108
108
|
optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=Ea8TCVmMayydfw9p4kTP3UdtvoaPWf4Z4claB61JuE4,4175
|
|
109
109
|
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=CeHl52UVr2UVKUeWTyT8OcRWXsZzrLnQpjzK_neu304,14835
|
|
110
110
|
optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic0YkVK24CW5hZBPa-0L8so6Y,119
|
|
111
|
-
optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=
|
|
111
|
+
optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=BudTwryMW-HaB-BtawEbs9RIRdhK_WWThQGWHtKpdls,8069
|
|
112
112
|
optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=qjaUC7S9kCZBWL9LsXnEo0woxsksPSHJpqA3TRTx6KE,3408
|
|
113
|
-
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=
|
|
113
|
+
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=xR9xe5jBnByzuB4AtDTTb6mxgR1TYvdewYDZlOI91A0,15857
|
|
114
114
|
optimum/rbln/transformers/models/colqwen2/__init__.py,sha256=gEKc5X4uGME4XKySDD1H6JlT89jaMvZ00HqbDVXNHU8,123
|
|
115
115
|
optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py,sha256=spIH6d-09asUBSqhuJN9NAK2Ke7Kv1RP7HdwMOcxf_s,8732
|
|
116
|
-
optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py,sha256=
|
|
116
|
+
optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py,sha256=3Aq0agm2wrxpIl4lJI7pX40gkoScTBkqbeG7DtMbnmk,2538
|
|
117
117
|
optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py,sha256=Iy5wa3Aa-Vfjv4FTyDvL-KtyGAB9nBuGCPXz_Alv_l0,18598
|
|
118
118
|
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pKBXAtE3y_6nnwYfQJjdPmWqUwxuJ0lr8rrqkgyH07M,1126
|
|
119
|
-
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=
|
|
120
|
-
optimum/rbln/transformers/models/decoderonly/configuration_lora.py,sha256=
|
|
121
|
-
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=
|
|
122
|
-
optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=
|
|
119
|
+
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=mgy5JI54EAbVJWjemeUE1AUWrtLG2wRPTPD1IjeAiGo,17336
|
|
120
|
+
optimum/rbln/transformers/models/decoderonly/configuration_lora.py,sha256=YvbjntzVUiBuS5dmi7KEGDNcdM7bo5L9f80H1bQIt3Q,17363
|
|
121
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=SvXs47aK7zZpA9UhNgXJuxjw3EquLKzgSVdI2XIg_eo,48665
|
|
122
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=vY7S-4ms4eW3WIEGLfjDzX3dsQKcc6QHhOiUOXyWSWc,29268
|
|
123
123
|
optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=_Rp1vtGow4quWHnIKpHtZFGMxrLjIN-FCc6gz0XL1Sc,5539
|
|
124
|
-
optimum/rbln/transformers/models/decoderonly/lora_architecture.py,sha256=
|
|
125
|
-
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=
|
|
124
|
+
optimum/rbln/transformers/models/decoderonly/lora_architecture.py,sha256=c4O5N56Y2uS-gxsXITt19qmqyV2rqSlPEHxkmOnWE2s,8306
|
|
125
|
+
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=Je7Ji3DZcJXbmu95F5NOAuwSbAhED91tqsECRzTHesU,39907
|
|
126
126
|
optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
|
|
127
127
|
optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
|
|
128
128
|
optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=RxscJiKp7PDmbQTDUy2R_Ryxf_0YZ0TieRS5bg53dyQ,1698
|
|
@@ -142,17 +142,17 @@ optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=4Ry2pFfWg0sV
|
|
|
142
142
|
optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=AsuFnrwZcRCKtF39BpHHNea0S34N2lNWKV4qZimmY8I,4170
|
|
143
143
|
optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
|
|
144
144
|
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=NJJfarzbWJc3pm0XvICN7D0FFF9nqidagIEoOvYLixQ,4696
|
|
145
|
-
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=
|
|
146
|
-
optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=
|
|
147
|
-
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=
|
|
145
|
+
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=mrtBwkrTORlWkaRcObXz036VeTStCo9d-P6YVMVEXfk,6844
|
|
146
|
+
optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=1f8LVqtF3Tr6ITVC43QpiSXefFsVeZ7jStoR4SlNTfk,9640
|
|
147
|
+
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=XFt0hR2FtuuP7m8OtGVn4m-b4qDibGchQxGrw5O38tk,26563
|
|
148
148
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
|
|
149
149
|
optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
|
|
150
150
|
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=ul87zvaLkqsuNJirvl6QtGXM147taNEbnb9qPulR1Ps,2933
|
|
151
151
|
optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijKCsRfTx-VCkTqqqNwqqMSrjqRE,2230
|
|
152
152
|
optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
|
|
153
153
|
optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=s-5MjEEle0zDBhskeYZQiPbbNsFvpTNcqcz21-kl6Gk,3820
|
|
154
|
-
optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=
|
|
155
|
-
optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=
|
|
154
|
+
optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=MWD_Xjl1z8N2t6YuLVqh0mcDk_92IP7xqkzrS4647Ag,26674
|
|
155
|
+
optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=8LKysGbqrheFI2nWZpv4ErUfWmUuca3UE2lQo0RIYhc,48429
|
|
156
156
|
optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
|
|
157
157
|
optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=7IENNxflZL8ZH3YRqtCXfYdKs-RdUeGiPzq-C03te_s,3679
|
|
158
158
|
optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=s5bbK3qYpE85-x69yopVhqia6b53Ys4kWzABhE3Jm6U,19880
|
|
@@ -162,10 +162,10 @@ optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=S7MCPfyjG5eU
|
|
|
162
162
|
optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=uRxEXYhHOuEwPjBo_Ps3eFU1uwScasla6P8HwsQgAu0,4214
|
|
163
163
|
optimum/rbln/transformers/models/llava/__init__.py,sha256=FaVLgBIqKGjT_nvwYO9k9BVqrzH_Ym3DfjGRCSUhG2s,734
|
|
164
164
|
optimum/rbln/transformers/models/llava/configuration_llava.py,sha256=c1rie8LCypxlsT7SNjZJE07_xCLAasV4EBs97o1757Q,2998
|
|
165
|
-
optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=
|
|
165
|
+
optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=Lz_hwF7Xrjx7aMTU5HEMK2c8n7uxArxo6ojaOC8ewpg,21070
|
|
166
166
|
optimum/rbln/transformers/models/llava_next/__init__.py,sha256=kDXKr7wMkp1XqE__DER2B8kQF_NYMxhzsQS5ytGg56I,752
|
|
167
167
|
optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=Sz8L8p_23T7xw7pkUmW5pyK_wZclph1p_kQYbslc8m8,2708
|
|
168
|
-
optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=
|
|
168
|
+
optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=aVpM0SYSSZ6jClMvpO5J83qrUg3GkDBAFkGC5ylSOvw,21303
|
|
169
169
|
optimum/rbln/transformers/models/midm/__init__.py,sha256=IC3FETwgYinbp3wDj7tp4zIHJhbqM-c6GfTRdYcMNj8,913
|
|
170
170
|
optimum/rbln/transformers/models/midm/configuration_midm.py,sha256=DxhcSJlApxfi00XxYmSkKZ6bY9vfLXT0zh-oMKkZot0,1365
|
|
171
171
|
optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=f9IwLLyYErliWJhkRj880QByMEYs_XVwm2Yh6r-Y_ik,5186
|
|
@@ -173,7 +173,7 @@ optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=EXTBFaOWco2h3NL8jU
|
|
|
173
173
|
optimum/rbln/transformers/models/mistral/__init__.py,sha256=bYPqrkmqXmhNDqRgKFaL9iH7piGLSHKzsVrGl_0qs1Q,758
|
|
174
174
|
optimum/rbln/transformers/models/mistral/configuration_mistral.py,sha256=mIfz8J8GZV9ojCMuNj9Zeky_PNu1Ir34DQ7FDZrGkP8,1595
|
|
175
175
|
optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=gpQTcP83F4zYrCFXRFT_FAF66k5BSSfcYsaAr4eW9jI,722
|
|
176
|
-
optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=
|
|
176
|
+
optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=TdOPjF1eUDWaGa_il05F95O5zacFJbxKff5Qc_IGEXY,3524
|
|
177
177
|
optimum/rbln/transformers/models/opt/__init__.py,sha256=mkSmAUr_ezMtlMK77f48T0THTFddf0HThH1lp6y5Pfw,734
|
|
178
178
|
optimum/rbln/transformers/models/opt/configuration_opt.py,sha256=aP7cyEuBF4DrQxVERPdP3fXYkuqIUcGxEK2fc8ezh7I,1135
|
|
179
179
|
optimum/rbln/transformers/models/opt/modeling_opt.py,sha256=4KZlCnKwDIOMbltPxvO7FX-lIRmI2auC-NVTWqkIPmc,4002
|
|
@@ -189,22 +189,22 @@ optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=bzK7Qhd1FAC049fd
|
|
|
189
189
|
optimum/rbln/transformers/models/pixtral/__init__.py,sha256=fhclVAWnIDsfMfC-TW6mYrJXxgyehlLaadK64LOShH4,716
|
|
190
190
|
optimum/rbln/transformers/models/pixtral/configuration_pixtral.py,sha256=b79zkJB1jzHx4S1wTe-Ju_Yel_PS5Q8bfmlQPzkchKU,1677
|
|
191
191
|
optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=2zIm5zFbuEi-O0QCawzv0AOeukXo3JWN3YKuj6zlUWU,13189
|
|
192
|
-
optimum/rbln/transformers/models/pixtral/pixtral_architecture.py,sha256=
|
|
192
|
+
optimum/rbln/transformers/models/pixtral/pixtral_architecture.py,sha256=55DNou1y3Ev_quCGOMsyBgF1AutJkHvKfqPamJdwP8M,2940
|
|
193
193
|
optimum/rbln/transformers/models/qwen2/__init__.py,sha256=h9dWJ3HX4xspMLt44g7r3UGU8QL03Ynmz_Mi3Vlu6UA,746
|
|
194
194
|
optimum/rbln/transformers/models/qwen2/configuration_qwen2.py,sha256=tTWcPOk_ycZvdSPlal9S5elTmWZAX2BbpZP5Ok2ySwI,1567
|
|
195
|
-
optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=
|
|
195
|
+
optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=z0tegK-B7tC0ocTLUp_V4eNmwREa12wJ7qQpbnRLEFo,3477
|
|
196
196
|
optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
|
|
197
197
|
optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
|
|
198
198
|
optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=WHLH72i7Pe16Ee1waMixMsR3eD6TsMGN08QD82qdVvw,6162
|
|
199
|
-
optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=
|
|
199
|
+
optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=zUQgLpgnERXhFcjmMUJEa_IouQFJbc_H5vSIiQmhWmU,26656
|
|
200
200
|
optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=hlx9Tt9n9m-fL4m21QFKgsN719CDhwhgfOMjnhde4RE,8392
|
|
201
201
|
optimum/rbln/transformers/models/qwen2_vl/__init__.py,sha256=O3t6zKda92CnZDzEnz_dcisMOQ71-OOJxElXzKCH5e0,849
|
|
202
202
|
optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py,sha256=mi5CqSKZ77G5Fib3g8a86_4CEB6lb-qJOhDnSqslvNk,4714
|
|
203
|
-
optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=
|
|
204
|
-
optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=
|
|
203
|
+
optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=qm3b0nIB0keJ1Y7sPCXs_wtORRbdbbZowVt6hYfcjjo,20374
|
|
204
|
+
optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=kQLDD4KkYvIh6zaoM-EF9lwfbSsb9LVX5p8A98B2Uqw,5829
|
|
205
205
|
optimum/rbln/transformers/models/qwen3/__init__.py,sha256=tI4KwvXpD35dUUaa8aLUXpWoU9gJGcmKXeywOlH14ZE,746
|
|
206
206
|
optimum/rbln/transformers/models/qwen3/configuration_qwen3.py,sha256=BFRPggnH4VlsXlOa19C6KAID-bPgQ8ooQ29dvogh5zk,2102
|
|
207
|
-
optimum/rbln/transformers/models/qwen3/modeling_qwen3.py,sha256=
|
|
207
|
+
optimum/rbln/transformers/models/qwen3/modeling_qwen3.py,sha256=jOg1Oqefi88rpcn6P2GXL7JDnYl_AjfI63xMXwuWttQ,4888
|
|
208
208
|
optimum/rbln/transformers/models/qwen3/qwen3_architecture.py,sha256=qynZBmmWOSps4x4xt1lWOdzcKC2_E_PxAa7rgA05Qb8,1162
|
|
209
209
|
optimum/rbln/transformers/models/resnet/__init__.py,sha256=0QqtEQF1IMYgEmmfXMGarCDS8kJB5tzODfwTEzDVZRg,837
|
|
210
210
|
optimum/rbln/transformers/models/resnet/configuration_resnet.py,sha256=T2CDlq-oGmT2LYf0J80X_h4WNxdWrNIgGufGDV55Pf0,1750
|
|
@@ -214,21 +214,21 @@ optimum/rbln/transformers/models/roberta/configuration_roberta.py,sha256=6KhO-xB
|
|
|
214
214
|
optimum/rbln/transformers/models/roberta/modeling_roberta.py,sha256=1ybyReE9EB--lhN_ZzDVICShJ5mDxdTDcpyu-NaniRI,3250
|
|
215
215
|
optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=HiSyWFcKeZ8okfo-s-_Mf_upyvAoZwraUIJyGNLNurY,714
|
|
216
216
|
optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py,sha256=SBIFHxsDce2_s3laDBLa21l7minrTh6ZWSyhq1vXLa0,3060
|
|
217
|
-
optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=
|
|
217
|
+
optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=9sVR5IqEoN9H0nfG8dk89PDhuaPTRhinO2ZswWyQbn4,20128
|
|
218
218
|
optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=jmBgj7BkUS_S-T-9DI53rE3KXUHSCoIofr7k5JDVPrU,20024
|
|
219
219
|
optimum/rbln/transformers/models/siglip/__init__.py,sha256=X1Fc1GUnJ2EIxFx45nbeoW-T2t0OyP3W73C0HD8Vowo,712
|
|
220
220
|
optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=Fy-ANF91bQno_QVd4ZpyRs-uNgC_XRyBRScBg2uKM6w,3029
|
|
221
221
|
optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=XVjJ0sG-3fs_tq8-JPMl0FIxgIQyvM3I9ACFqJzLgLI,8689
|
|
222
222
|
optimum/rbln/transformers/models/swin/__init__.py,sha256=gUsLDB8ceNxt53Cf69OT32JuZoRdmmIsRfjRdHTLDd0,698
|
|
223
223
|
optimum/rbln/transformers/models/swin/configuration_swin.py,sha256=JE4oMdPhJmRwXxKUWQ3KHccthDLEcDiXEzjMcFx71K0,1690
|
|
224
|
-
optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=
|
|
224
|
+
optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=SAsHPme9izpKUKrVbxN8HSbOID2jRo3DhEthoV2jIyI,14999
|
|
225
225
|
optimum/rbln/transformers/models/t5/__init__.py,sha256=R1Q8Z1vaIdx4rDjeCmm_ZMSgewWaqaI0l93AHwewtew,818
|
|
226
226
|
optimum/rbln/transformers/models/t5/configuration_t5.py,sha256=nqDbibqykeeWn1TlKk6LmCn-DawTVudMMuBn2c2jds8,1362
|
|
227
227
|
optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=lP__icG548arC9N4FHKfV7PQTpaqT7RpaHO1Tuvq3Ds,5125
|
|
228
|
-
optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=
|
|
228
|
+
optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=914_iRTg-_K_X1F4EEZbaa2rgwi4ljz7UBcIyFDFTBs,10159
|
|
229
229
|
optimum/rbln/transformers/models/time_series_transformer/__init__.py,sha256=xJaFWQawlwtv4H5tVFcY1pxLYzjHtMAlLq6nXysdkN8,1243
|
|
230
230
|
optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py,sha256=EUBXE_10W0wtuoAl2OVuQakBpsC7kSpRo3VokXI8Pdo,1619
|
|
231
|
-
optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py,sha256=
|
|
231
|
+
optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py,sha256=4rrivdPuuyg2MnfLaey_inai_sYE83GLg0nqN4Y85dg,18783
|
|
232
232
|
optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py,sha256=hAZXyXxzSDJMdkI883eefzpjz2L9KTVTRBeOVU8e92k,14038
|
|
233
233
|
optimum/rbln/transformers/models/vit/__init__.py,sha256=CrrkHehfCe3U-_rUS00aMBY7Tncdeh43sNUgVI9Dt_g,807
|
|
234
234
|
optimum/rbln/transformers/models/vit/configuration_vit.py,sha256=x98CxKR1cpKAG7Eh43uuPeGeGn4gS3HcKLPoDL3SWJo,994
|
|
@@ -243,7 +243,7 @@ optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=k3kiy5EtDAzo
|
|
|
243
243
|
optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=fKUbAMIl20o6EBMVcLg9TDSsJ1FDp8NKcl4jT9RWCEM,13981
|
|
244
244
|
optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=O3o2KzJ8Li3QhB7GHdRQASc93SYO2jz00Rx4pxYRuDg,982
|
|
245
245
|
optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256=wHRpGTXL9khYqSkKL1IgA7__6_lt9QpOz9tHumjK7fo,1260
|
|
246
|
-
optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=
|
|
246
|
+
optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=Pjqvfp0V0kFBW7U7VD3kthZkpWfzOKsRS_2-z6StTnI,3710
|
|
247
247
|
optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
248
248
|
optimum/rbln/transformers/utils/rbln_quantization.py,sha256=LruvKW3inB2v9bMi0gcsfNC-IZnVvFyBSR-SZ46zy5M,21923
|
|
249
249
|
optimum/rbln/transformers/utils/rbln_runtime_wrapper.py,sha256=l_-zWpRrp6hp-tDANTrEbspIZH-AUSi_jNJICns_QgE,2672
|
|
@@ -251,14 +251,14 @@ optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQq
|
|
|
251
251
|
optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
|
|
252
252
|
optimum/rbln/utils/deprecation.py,sha256=qO6xlrT_GNCOCJx4i28t8Q-1hDGwp-cJMC5OrD7lUOQ,13226
|
|
253
253
|
optimum/rbln/utils/hub.py,sha256=EI2ZsD71jhmPaA1imJ2_7P6y8i2uoX5l6wya5fICdQA,3119
|
|
254
|
-
optimum/rbln/utils/import_utils.py,sha256=
|
|
254
|
+
optimum/rbln/utils/import_utils.py,sha256=60VAdSzRWWWc-xq2G-HFVVf3LY2OFB0VzvFNwksXV7A,5616
|
|
255
255
|
optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
|
|
256
256
|
optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
|
|
257
257
|
optimum/rbln/utils/runtime_utils.py,sha256=Ygl0rWPId2bJHIdu1VwGZNoRyImB0xGmoNHocKnvYH8,9478
|
|
258
258
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
|
259
|
-
optimum/rbln/utils/submodule.py,sha256=
|
|
260
|
-
optimum_rbln-0.9.
|
|
261
|
-
optimum_rbln-0.9.
|
|
262
|
-
optimum_rbln-0.9.
|
|
263
|
-
optimum_rbln-0.9.
|
|
264
|
-
optimum_rbln-0.9.
|
|
259
|
+
optimum/rbln/utils/submodule.py,sha256=6LccRdRH__jjR3myEJK9qb-WnLwp_yFdTBE5Ytr2LLI,6443
|
|
260
|
+
optimum_rbln-0.9.4a2.dist-info/METADATA,sha256=YKfT7wykp9GwrUr-iXOP58tyhj4IVQcbHUuuPxjOa0Y,5350
|
|
261
|
+
optimum_rbln-0.9.4a2.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
|
|
262
|
+
optimum_rbln-0.9.4a2.dist-info/entry_points.txt,sha256=-orKDGKfLypxlPlTz8-ZkmdKULNvax9yeCCCn-q89n4,59
|
|
263
|
+
optimum_rbln-0.9.4a2.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
|
264
|
+
optimum_rbln-0.9.4a2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|