optimum-rbln 0.9.2a6__py3-none-any.whl → 0.9.2a8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '0.9.2a6'
32
- __version_tuple__ = version_tuple = (0, 9, 2, 'a6')
31
+ __version__ = version = '0.9.2a8'
32
+ __version_tuple__ = version_tuple = (0, 9, 2, 'a8')
33
33
 
34
34
  __commit_id__ = commit_id = None
@@ -33,7 +33,6 @@ logger = get_logger(__name__)
33
33
 
34
34
 
35
35
  DEFAULT_COMPILED_MODEL_NAME = "compiled_model"
36
- DEFAULT_MOD_NAME = "default"
37
36
  TypeInputInfo = List[Tuple[str, Tuple[int], str]]
38
37
 
39
38
 
@@ -52,17 +51,13 @@ class RBLNCompileConfig:
52
51
 
53
52
  Attributes:
54
53
  compiled_model_name (str): Name of the compiled model.
55
- mod_name (str): Name of the RBLN module.
56
54
  input_info (Union[List[TypeInputInfo], TypeInputInfo]): Information about input tensors.
57
- fusion (Optional[bool]): Whether to use fusion optimization.
58
55
  npu (Optional[str]): NPU configuration.
59
56
  tensor_parallel_size (Optional[int]): Size for tensor parallelism.
60
57
  """
61
58
 
62
59
  compiled_model_name: str = DEFAULT_COMPILED_MODEL_NAME
63
- mod_name: str = DEFAULT_MOD_NAME
64
60
  input_info: Union[List[TypeInputInfo], TypeInputInfo] = None
65
- fusion: Optional[bool] = None
66
61
  npu: Optional[str] = None
67
62
  tensor_parallel_size: Optional[int] = None
68
63
 
@@ -116,9 +111,7 @@ class RBLNCompileConfig:
116
111
 
117
112
  def update(self, kwargs: Dict[str, Any]):
118
113
  self.compiled_model_name = kwargs.get("compiled_model_name", self.compiled_model_name)
119
- self.mod_name = kwargs.get("mod_name", self.mod_name)
120
114
  self.input_info = kwargs.get("input_info", self.input_info)
121
- self.fusion = kwargs.get("fusion", self.fusion)
122
115
  self.npu = kwargs.get("npu", self.npu)
123
116
  self.tensor_parallel_size = kwargs.get("tensor_parallel_size", self.tensor_parallel_size)
124
117
  return self
@@ -152,7 +145,7 @@ class RBLNCompileConfig:
152
145
  return asdict(self)
153
146
 
154
147
 
155
- RUNTIME_KEYWORDS = ["create_runtimes", "optimize_host_memory", "device", "device_map", "activate_profiler", "timeout"]
148
+ RUNTIME_KEYWORDS = ["create_runtimes", "device", "device_map", "activate_profiler", "timeout"]
156
149
  CONFIG_MAPPING: Dict[str, Type["RBLNModelConfig"]] = {}
157
150
 
158
151
 
@@ -528,7 +521,6 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
528
521
  "npu",
529
522
  "tensor_parallel_size",
530
523
  "create_runtimes",
531
- "optimize_host_memory",
532
524
  "device",
533
525
  "device_map",
534
526
  "activate_profiler",
@@ -654,7 +646,6 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
654
646
  self,
655
647
  cls_name: Optional[str] = None,
656
648
  create_runtimes: Optional[bool] = None,
657
- optimize_host_memory: Optional[bool] = None,
658
649
  device: Optional[Union[int, List[int]]] = None,
659
650
  device_map: Optional[Dict[str, Union[int, List[int]]]] = None,
660
651
  activate_profiler: Optional[bool] = None,
@@ -664,6 +655,8 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
664
655
  optimum_rbln_version: Optional[str] = None,
665
656
  _torch_dtype: Optional[str] = None,
666
657
  _compile_cfgs: List[RBLNCompileConfig] = [],
658
+ *,
659
+ optimize_host_memory: Optional[bool] = None,
667
660
  **kwargs: Any,
668
661
  ):
669
662
  """
@@ -672,7 +665,6 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
672
665
  Args:
673
666
  cls_name (Optional[str]): The class name of the configuration. Defaults to the current class name.
674
667
  create_runtimes (Optional[bool]): Whether to create RBLN runtimes. Defaults to True.
675
- optimize_host_memory (Optional[bool]): Whether to optimize host memory usage. Defaults to True.
676
668
  device (Optional[Union[int, List[int]]]): The device(s) to load the model onto. Can be a single device ID or a list.
677
669
  device_map (Optional[Dict[str, Union[int, List[int]]]]): Mapping from compiled model names to device IDs.
678
670
  activate_profiler (Optional[bool]): Whether to activate the profiler for performance analysis.
@@ -698,12 +690,14 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
698
690
 
699
691
  self._runtime_options = {}
700
692
  self._runtime_options["create_runtimes"] = create_runtimes
701
- self._runtime_options["optimize_host_memory"] = optimize_host_memory
702
693
  self._runtime_options["device"] = device
703
694
  self._runtime_options["device_map"] = device_map
704
695
  self._runtime_options["activate_profiler"] = activate_profiler
705
696
  self._runtime_options["timeout"] = timeout
706
697
 
698
+ if optimize_host_memory is not None:
699
+ logger.warning("`optimize_host_memory` is deprecated and will be removed in future versions.")
700
+
707
701
  # Automatically pass npu, tensor_parallel_size to compile_cfgs
708
702
  self.npu = npu
709
703
  self.tensor_parallel_size = tensor_parallel_size
@@ -921,19 +915,6 @@ class RBLNModelConfig(RBLNSerializableConfigProtocol):
921
915
  def create_runtimes(self, create_runtimes: bool):
922
916
  self._runtime_options["create_runtimes"] = create_runtimes
923
917
 
924
- @property
925
- def optimize_host_memory(self):
926
- context = ContextRblnConfig.get_current_context()["optimize_host_memory"]
927
- if context is not None:
928
- return context
929
- elif self._runtime_options["optimize_host_memory"] is None:
930
- return True
931
- return self._runtime_options["optimize_host_memory"]
932
-
933
- @optimize_host_memory.setter
934
- def optimize_host_memory(self, optimize_host_memory: bool):
935
- self._runtime_options["optimize_host_memory"] = optimize_host_memory
936
-
937
918
  @property
938
919
  def device(self):
939
920
  context = ContextRblnConfig.get_current_context()["device"]
@@ -244,7 +244,6 @@ class RBLNDiffusionMixin:
244
244
  device=rbln_config.device,
245
245
  device_map=rbln_config.device_map,
246
246
  create_runtimes=rbln_config.create_runtimes,
247
- optimize_host_mem=rbln_config.optimize_host_memory,
248
247
  activate_profiler=rbln_config.activate_profiler,
249
248
  timeout=rbln_config.timeout,
250
249
  ):
@@ -412,12 +411,11 @@ class RBLNDiffusionMixin:
412
411
  # overwrite to replace incorrect config
413
412
  model.save_config(model_save_dir)
414
413
 
415
- if rbln_config.optimize_host_memory is False:
416
- # Keep compiled_model objs to further analysis. -> TODO: remove soon...
417
- model.compiled_models = []
418
- for name in cls._submodules:
419
- submodule = getattr(model, name)
420
- model.compiled_models.extend(submodule.compiled_models)
414
+ # Keep compiled_model objs to further analysis. -> TODO: remove soon...
415
+ model.compiled_models = []
416
+ for name in cls._submodules:
417
+ submodule = getattr(model, name)
418
+ model.compiled_models.extend(submodule.compiled_models)
421
419
 
422
420
  return model
423
421
 
@@ -315,7 +315,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
315
315
  rbln_config,
316
316
  model_save_dir=model_save_dir,
317
317
  subfolder=subfolder,
318
- rbln_compiled_models=(None if rbln_config.optimize_host_memory else rbln_compiled_models),
318
+ rbln_compiled_models=rbln_compiled_models,
319
319
  rbln_submodules=rbln_submodules,
320
320
  **kwargs,
321
321
  )
@@ -433,7 +433,6 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
433
433
  compiled_model = rebel.compile_from_torch(
434
434
  model,
435
435
  input_info=rbln_compile_config.input_info,
436
- fusion=rbln_compile_config.fusion,
437
436
  npu=rbln_compile_config.npu,
438
437
  tensor_parallel_size=rbln_compile_config.tensor_parallel_size,
439
438
  **kwargs,
@@ -420,6 +420,16 @@ class RBLNRuntimeModel(RBLNPytorchRuntime):
420
420
  inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
421
421
  )
422
422
 
423
+ # Assumed that prefix caching was performed externally if cache_position doesn't start from 0.
424
+ prefix_cached_len = cache_position[0][0].item()
425
+ if prefix_cached_len > 0:
426
+ if prefix_cached_len % self.rbln_config.prefill_chunk_size != 0:
427
+ raise NotImplementedError(
428
+ "Prefix Caching is not supported yet for non-multiple of prefill_chunk_size."
429
+ )
430
+ if self.rbln_config.use_attention_mask:
431
+ chunked_attention_mask[:, :, :, :prefix_cached_len] = 1
432
+
423
433
  # Process input in chunks of size `prefill_chunk_size`
424
434
  output_logits = []
425
435
  for step in range(0, query_length, self.rbln_config.prefill_chunk_size):
@@ -434,9 +444,14 @@ class RBLNRuntimeModel(RBLNPytorchRuntime):
434
444
  if self.rbln_config.use_attention_mask and not self.rbln_config.use_position_ids:
435
445
  if step > 0: # update previous chunk
436
446
  chunked_attention_mask[
437
- :, :, :, s - self.rbln_config.prefill_chunk_size : e - self.rbln_config.prefill_chunk_size
447
+ :,
448
+ :,
449
+ :,
450
+ s - self.rbln_config.prefill_chunk_size + prefix_cached_len : e
451
+ - self.rbln_config.prefill_chunk_size
452
+ + prefix_cached_len,
438
453
  ] = 1
439
- chunked_attention_mask[:, :, :, s:e] = self.causal_mask
454
+ chunked_attention_mask[:, :, :, s + prefix_cached_len : e + prefix_cached_len] = self.causal_mask
440
455
 
441
456
  # Calculate query position if needed
442
457
  if self.rbln_config.use_local_attention or self.rbln_config.logits_to_keep > 0:
@@ -19,7 +19,7 @@ from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
19
19
  import rebel
20
20
  import torch
21
21
  from rebel.compile_context import CompileContext
22
- from transformers import AutoConfig, AutoModel, AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
22
+ from transformers import AutoModel, AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
23
23
  from transformers.modeling_outputs import BaseModelOutputWithPast
24
24
  from transformers.modeling_utils import no_init_weights
25
25
 
@@ -260,10 +260,12 @@ class RBLNDecoderOnlyModel(RBLNModel, RBLNDecoderOnlyFlashAttentionMixin):
260
260
 
261
261
  # Mark static tensors (self kv states)
262
262
  static_tensors = {}
263
+ idx = 0
263
264
  for (name, _, _), tensor in zip(compile_config.input_info, example_inputs):
264
265
  if "past_key_values" in name:
265
266
  static_tensors[name] = tensor
266
- context.mark_static_address(tensor)
267
+ context.mark_static_address(tensor, f"kv_cache_{idx}")
268
+ idx += 1
267
269
 
268
270
  return context, static_tensors
269
271
 
@@ -317,35 +319,12 @@ class RBLNDecoderOnlyModel(RBLNModel, RBLNDecoderOnlyFlashAttentionMixin):
317
319
 
318
320
  @classmethod
319
321
  def get_pytorch_model(
320
- cls,
321
- model_id: str,
322
- *args,
323
- rbln_config: Optional[RBLNDecoderOnlyModelConfig] = None,
324
- num_hidden_layers: Optional[int] = None,
325
- trust_remote_code: Optional[bool] = None,
326
- torch_dtype: Optional[torch.dtype] = None,
327
- dtype: Optional[torch.dtype] = None,
328
- **kwargs,
322
+ cls, *args, rbln_config: Optional[RBLNDecoderOnlyModelConfig] = None, **kwargs
329
323
  ) -> PreTrainedModel:
330
324
  if rbln_config and rbln_config.quantization:
331
- model = cls.get_quantized_model(model_id, *args, rbln_config=rbln_config, **kwargs)
325
+ model = cls.get_quantized_model(*args, rbln_config=rbln_config, **kwargs)
332
326
  else:
333
- # TODO : resolve how to control PreTrainedConfig for hf_kwargs
334
- if num_hidden_layers is not None:
335
- config, kwargs = AutoConfig.from_pretrained(
336
- model_id,
337
- return_unused_kwargs=True,
338
- trust_remote_code=trust_remote_code,
339
- num_hidden_layers=num_hidden_layers,
340
- **kwargs,
341
- )
342
- if hasattr(config, "layer_types"):
343
- config.layer_types = config.layer_types[:num_hidden_layers]
344
- kwargs["config"] = config
345
-
346
- model = super().get_pytorch_model(
347
- model_id, *args, trust_remote_code=trust_remote_code, torch_dtype=torch_dtype, dtype=dtype, **kwargs
348
- )
327
+ model = super().get_pytorch_model(*args, **kwargs)
349
328
 
350
329
  return model
351
330
 
@@ -56,7 +56,14 @@ class RBLNWhisperGenerationMixin(WhisperGenerationMixin, GenerationMixin):
56
56
  return super().generate(*args, **kwargs)
57
57
 
58
58
  def _postprocess_outputs(
59
- self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config, *args, **kwargs
59
+ self,
60
+ seek_outputs,
61
+ decoder_input_ids,
62
+ return_token_timestamps,
63
+ generation_config,
64
+ is_shortform,
65
+ seek,
66
+ batch_idx_map,
60
67
  ):
61
68
  # remove all previously passed decoder input ids
62
69
  # should happen only if it is the first generated segment
@@ -74,6 +81,11 @@ class RBLNWhisperGenerationMixin(WhisperGenerationMixin, GenerationMixin):
74
81
 
75
82
  if return_token_timestamps and hasattr(generation_config, "alignment_heads"):
76
83
  num_frames = getattr(generation_config, "num_frames", None)
84
+
85
+ if num_frames is not None:
86
+ num_frames = num_frames - seek
87
+ num_frames = num_frames[batch_idx_map]
88
+
77
89
  if version.parse(transformers.__version__) >= version.parse("4.46.0"):
78
90
  seek_outputs["token_timestamps"] = self._extract_token_timestamps(
79
91
  seek_outputs,
@@ -167,14 +167,12 @@ class ContextRblnConfig:
167
167
  device=None,
168
168
  device_map=None,
169
169
  create_runtimes=None,
170
- optimize_host_mem=None,
171
170
  activate_profiler=None,
172
171
  timeout=None,
173
172
  ):
174
173
  self.device = device
175
174
  self.device_map = device_map
176
175
  self.create_runtimes = create_runtimes
177
- self.optimize_host_mem = optimize_host_mem
178
176
  self.activate_profiler = activate_profiler
179
177
  self.timeout = timeout
180
178
 
@@ -182,7 +180,6 @@ class ContextRblnConfig:
182
180
  self._local.device = self.device
183
181
  self._local.device_map = self.device_map
184
182
  self._local.create_runtimes = self.create_runtimes
185
- self._local.optimize_host_memory = self.optimize_host_mem
186
183
  self._local.activate_profiler = self.activate_profiler
187
184
  self._local.timeout = self.timeout
188
185
  return self
@@ -191,7 +188,6 @@ class ContextRblnConfig:
191
188
  self._local.device = None
192
189
  self._local.device_map = None
193
190
  self._local.create_runtimes = None
194
- self._local.optimize_host_memory = None
195
191
  self._local.activate_profiler = None
196
192
  self._local.timeout = None
197
193
 
@@ -201,7 +197,6 @@ class ContextRblnConfig:
201
197
  "device": getattr(cls._local, "device", None),
202
198
  "device_map": getattr(cls._local, "device_map", None),
203
199
  "create_runtimes": getattr(cls._local, "create_runtimes", None),
204
- "optimize_host_memory": getattr(cls._local, "optimize_host_memory", None),
205
200
  "activate_profiler": getattr(cls._local, "activate_profiler", None),
206
201
  "timeout": getattr(cls._local, "timeout", None),
207
202
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.9.2a6
3
+ Version: 0.9.2a8
4
4
  Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -1,10 +1,10 @@
1
1
  optimum/rbln/__init__.py,sha256=AZ-7X3ZCjMNcz4mkC_98y-HWRw38ijh8gETJet9tiyM,18828
2
- optimum/rbln/__version__.py,sha256=jNwsz5qpRWivSKseifmpXxen6xILpjgnJJnm3HLWJy8,712
3
- optimum/rbln/configuration_utils.py,sha256=KFibQ8IYcapw3M1GpgNLgQ1ZolRIip0_bOlwfU0OYac,38193
2
+ optimum/rbln/__version__.py,sha256=UABMOH46k2lAeOtp8l79Zfhmsu3t88AKy6CpGIjo71Y,712
3
+ optimum/rbln/configuration_utils.py,sha256=uLjMsWyYz-4SQ2wbvYqDUZcau29EjU-AghF4q1LNGxw,37260
4
4
  optimum/rbln/modeling.py,sha256=h-Iiku3l9KWF1fBpg3loG74VWU13_n7VjVdry5OC06A,16082
5
- optimum/rbln/modeling_base.py,sha256=poXfHZCAlFd28MY9dvMi7tC2RytLx77Lee2XGS_KeZg,27684
5
+ optimum/rbln/modeling_base.py,sha256=blTZgayOh5U7zNhbrdyMuS1fq1-xd6N7y64I0lXDMU0,27589
6
6
  optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
7
- optimum/rbln/diffusers/modeling_diffusers.py,sha256=egx137ECmNA0bK2JPRUOpxCl1Wb3qOpE-xSaPaJOs-g,20549
7
+ optimum/rbln/diffusers/modeling_diffusers.py,sha256=iybCd2KaEL5RMzRduWkHvKm90iXDcbUXsoKVfiNYDcY,20411
8
8
  optimum/rbln/diffusers/configurations/__init__.py,sha256=vMRnPY4s-Uju43xP038D2EA18X_mhy2YfsZVpSU-VoA,1322
9
9
  optimum/rbln/diffusers/configurations/models/__init__.py,sha256=7q95gtgDzCeIBogGw8SLQoHT4Wch7vpLJVF2UQovuoo,567
10
10
  optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=dV4DPjRB7CkSqgVUuOQztkH8qJQJlCKK18-X5nOCLzQ,3199
@@ -107,10 +107,10 @@ optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pKBXAtE3y_6nnwYf
107
107
  optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=GX-IwTe6ywM9hmyquIu66y0YgIVZS5JNIz8LKAb4Ow8,17003
108
108
  optimum/rbln/transformers/models/decoderonly/configuration_lora.py,sha256=5DuTs2vy7jF7MLy161QD_KvCTaNW-5Mok7hBH0yK44U,17356
109
109
  optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=h1n9vSHgQc7D0ds1C9SAzWxmIdTaqnDL7auDU_VJNXg,46813
110
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=2yGU1JfxCepG37DbyY8oWq3gMIKhMnPyBkLH8VniKfA,21530
110
+ optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=YtDsz45AhbcAKC79Aq0STmZu0uk66vzMILCj5bheVdI,22287
111
111
  optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=zabSgQd2VzHhkpbhUFW5Z-CjYB1JvSJOb5yXKjXCQV0,4326
112
112
  optimum/rbln/transformers/models/decoderonly/lora_architecture.py,sha256=jo-jYy95JhdvOsX1UTCXeYTNer37wBbtY578C0QQpZo,8306
113
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=lAPVrH-EoW48g3TGHgLs0Wvx9UGpyQh3eOO90qvQAlI,36213
113
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=y10lDa6RmUpJirFdsmV8dolUXv2xffsXNx5sBfQSO9c,35298
114
114
  optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
115
115
  optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
116
116
  optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=tTmsVaW9Wb2WD3nKRLwp7swn3hbMvgwUEJwwVIfNYEc,1008
@@ -226,7 +226,7 @@ optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py,sha256=24sXi
226
226
  optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=bMKHdUDHgzu1pXH0yrrOFCiA_T9xqb9B19kljCQ9yUU,1945
227
227
  optimum/rbln/transformers/models/whisper/__init__.py,sha256=ErquiUlYycSYPsDcq9IwwmbZXoYLn1MVZ8VikWY5gQo,792
228
228
  optimum/rbln/transformers/models/whisper/configuration_whisper.py,sha256=bSwDN7VLuk1aVXvfrQIgb9SLdFBDhO5q8ZFaPQPJal0,3077
229
- optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=0MYzMTZwTHFcJV_ZEtCm2AZbKN9RHgAr9jefuOAouVI,5017
229
+ optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=DgYA6_tnQMA8isg5P2ukpRNpyBqY6WHwcnRepUGpbNA,5235
230
230
  optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=MFKYAqO1ep3teYumMY5E_jjyCU4552GKZacSNFyjVQM,19323
231
231
  optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=fKUbAMIl20o6EBMVcLg9TDSsJ1FDp8NKcl4jT9RWCEM,13981
232
232
  optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=O3o2KzJ8Li3QhB7GHdRQASc93SYO2jz00Rx4pxYRuDg,982
@@ -242,10 +242,10 @@ optimum/rbln/utils/hub.py,sha256=FPBGslHJAMeyfBID3viLmh51xJzcR29xWtYtMN8y2CI,276
242
242
  optimum/rbln/utils/import_utils.py,sha256=fpOERIIxXm-cDYGn1NN6c7aWDPQYVitPQW2MiyZ9NEY,5471
243
243
  optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
244
244
  optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
245
- optimum/rbln/utils/runtime_utils.py,sha256=R6uXDbeJP03-FWdd4vthNe2D4aCra5n12E3WB1ifiGM,7933
245
+ optimum/rbln/utils/runtime_utils.py,sha256=wVIYE4KS7RNVc1y-5X41SmNdLz_Gpk7zlguKfujRbYo,7649
246
246
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
247
247
  optimum/rbln/utils/submodule.py,sha256=SKLnM3KsX8_rv3HauO4oB2-JSjzuadQjRwo_BhMUzLI,6362
248
- optimum_rbln-0.9.2a6.dist-info/METADATA,sha256=cLBgS6jYKxs-joAIvzmd86Py2scvNnL4m59GglVN1rY,5350
249
- optimum_rbln-0.9.2a6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
250
- optimum_rbln-0.9.2a6.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
251
- optimum_rbln-0.9.2a6.dist-info/RECORD,,
248
+ optimum_rbln-0.9.2a8.dist-info/METADATA,sha256=JYDRb2CdsNr1whLrHQ1ErBGMkWZ9WuKKMiK9nDs7-mI,5350
249
+ optimum_rbln-0.9.2a8.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
250
+ optimum_rbln-0.9.2a8.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
251
+ optimum_rbln-0.9.2a8.dist-info/RECORD,,