optimum-rbln 0.9.2a3__py3-none-any.whl → 0.9.2a4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (25) hide show
  1. optimum/rbln/__init__.py +4 -0
  2. optimum/rbln/__version__.py +2 -2
  3. optimum/rbln/configuration_utils.py +3 -0
  4. optimum/rbln/transformers/__init__.py +4 -0
  5. optimum/rbln/transformers/models/__init__.py +4 -0
  6. optimum/rbln/transformers/models/decoderonly/__init__.py +1 -0
  7. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +34 -0
  8. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  9. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +100 -20
  10. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +33 -0
  11. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  12. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +60 -0
  13. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
  14. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +31 -3
  15. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +7 -0
  16. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
  17. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
  18. optimum/rbln/transformers/models/phi/phi_architecture.py +5 -1
  19. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +2 -0
  20. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +2 -0
  21. optimum/rbln/transformers/models/whisper/generation_whisper.py +15 -5
  22. {optimum_rbln-0.9.2a3.dist-info → optimum_rbln-0.9.2a4.dist-info}/METADATA +1 -1
  23. {optimum_rbln-0.9.2a3.dist-info → optimum_rbln-0.9.2a4.dist-info}/RECORD +25 -23
  24. {optimum_rbln-0.9.2a3.dist-info → optimum_rbln-0.9.2a4.dist-info}/WHEEL +0 -0
  25. {optimum_rbln-0.9.2a3.dist-info → optimum_rbln-0.9.2a4.dist-info}/licenses/LICENSE +0 -0
@@ -63,6 +63,7 @@ class Gemma3TextModel(DecoderOnlyModel):
63
63
  rotary_emb: torch.nn.Module = None,
64
64
  global_block_tables: Optional[torch.Tensor] = None,
65
65
  local_block_tables: Optional[torch.Tensor] = None,
66
+ lora_int_id: Optional[torch.Tensor] = None,
66
67
  ):
67
68
  # retrieve input_ids and inputs_embeds
68
69
  if (input_ids is None) ^ (inputs_embeds is not None):
@@ -105,6 +106,7 @@ class Gemma3TextModel(DecoderOnlyModel):
105
106
  cos=cos_local if is_sliding else cos_global,
106
107
  sin=sin_local if is_sliding else sin_global,
107
108
  block_tables=local_block_tables if is_sliding else global_block_tables,
109
+ lora_int_id=lora_int_id,
108
110
  )
109
111
 
110
112
  hidden_states = self.get_last_layernorm()(hidden_states)
@@ -127,12 +129,20 @@ class Gemma3DecoderLayer(DecoderOnlyLayer):
127
129
  cos: Optional[torch.Tensor] = None,
128
130
  sin: Optional[torch.Tensor] = None,
129
131
  block_tables: Optional[torch.Tensor] = None,
132
+ lora_int_id: Optional[torch.Tensor] = None,
130
133
  ):
131
134
  residual = hidden_states
132
135
  hidden_states = self.get_pre_attention_layernorm()(hidden_states)
133
136
 
134
137
  hidden_states = self.self_attn(
135
- hidden_states, attention_mask, seq_positions, past_key_values, cos, sin, block_tables
138
+ hidden_states=hidden_states,
139
+ attention_mask=attention_mask,
140
+ seq_positions=seq_positions,
141
+ past_key_values=past_key_values,
142
+ cos=cos,
143
+ sin=sin,
144
+ block_tables=block_tables,
145
+ lora_int_id=lora_int_id,
136
146
  )
137
147
  hidden_states = self.get_post_attention_layernorm()(hidden_states)
138
148
  hidden_states = residual + hidden_states
@@ -140,7 +150,7 @@ class Gemma3DecoderLayer(DecoderOnlyLayer):
140
150
  # Fully Connected
141
151
  residual = hidden_states
142
152
  hidden_states = self.get_pre_feedforward_layernorm()(hidden_states)
143
- hidden_states = self._original_mod.mlp(hidden_states)
153
+ hidden_states = self.forward_mlp(hidden_states, lora_int_id)
144
154
  hidden_states = self.get_post_feedforward_layernorm()(hidden_states)
145
155
  hidden_states = residual + hidden_states
146
156
 
@@ -17,15 +17,16 @@ import rebel
17
17
  import torch
18
18
 
19
19
  from ...modeling_outputs import RBLNDecoderOnlyOutput, RBLNGemma3ForCausalLMOutput
20
+ from ..decoderonly.decoderonly_runtime_utils import RBLNPytorchRuntime
20
21
  from ..decoderonly.modeling_decoderonly import RBLNRuntimeModel
21
22
 
22
23
 
23
24
  class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
24
25
  def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
25
26
  super().__init__(*args, **kwargs)
26
- self.image_prefill = image_prefill # FIXME(taehoon)
27
- self.prefill = self.runtime if self.phase == "prefill" else None # FIXME
28
- self.decode = self.runtime if self.phase == "decode" else None
27
+ self.image_prefill = RBLNPytorchRuntime(image_prefill) # FIXME(taehoon)
28
+ self.prefill = RBLNPytorchRuntime(self.runtime) if self.phase == "prefill" else None # FIXME
29
+ self.decode = RBLNPytorchRuntime(self.runtime) if self.phase == "decode" else None
29
30
 
30
31
  def _prepare_prefill_inputs(self, *args, **kwargs):
31
32
  (
@@ -73,12 +74,24 @@ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
73
74
  position_embed: Optional[torch.Tensor] = None,
74
75
  token_type_ids: Optional[torch.Tensor] = None,
75
76
  local_block_tables: Optional[torch.Tensor] = None,
77
+ lora_int_ids: Optional[torch.Tensor] = None,
76
78
  ) -> torch.FloatTensor:
77
79
  """
78
80
  Performs chunked prefill for efficient KV-cache updates and memory optimization.
79
81
  Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
80
82
  and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
81
83
  """
84
+ if self.rbln_config.use_lora and lora_int_ids is None:
85
+ if self.lora_int_ids is None:
86
+ raise ValueError(
87
+ "lora_int_id is required when using LoRA. "
88
+ "You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
89
+ )
90
+ if batch_idx is not None:
91
+ lora_int_ids = self.lora_int_ids[batch_idx : batch_idx + 1].clone()
92
+ else:
93
+ lora_int_ids = self.lora_int_ids.clone()
94
+
82
95
  (
83
96
  inputs,
84
97
  cache_position,
@@ -141,6 +154,7 @@ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
141
154
  query_position,
142
155
  chunked_attention_mask,
143
156
  position_ids_chunk,
157
+ lora_int_ids if self.rbln_config.use_lora else None,
144
158
  )
145
159
  else:
146
160
  logits = self.prefill(
@@ -151,6 +165,7 @@ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
151
165
  query_position,
152
166
  chunked_attention_mask,
153
167
  position_ids_chunk,
168
+ lora_int_ids if self.rbln_config.use_lora else None,
154
169
  )
155
170
 
156
171
  padded_cache_lengths += current_padded_cache_lengths
@@ -173,7 +188,20 @@ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
173
188
  position_embed: Optional[torch.Tensor] = None,
174
189
  position_ids: Optional[torch.Tensor] = None,
175
190
  local_block_tables: Optional[torch.Tensor] = None,
191
+ lora_int_ids: Optional[torch.Tensor] = None,
176
192
  ) -> torch.FloatTensor:
193
+ if self.rbln_config.use_lora and lora_int_ids is None:
194
+ if self.lora_int_ids is None:
195
+ raise ValueError(
196
+ "lora_int_id is required when using LoRA. "
197
+ "You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
198
+ )
199
+
200
+ lora_int_ids = self.lora_int_ids
201
+
202
+ if lora_int_ids is not None and lora_int_ids.shape[0] != self.batch_size:
203
+ raise ValueError(f"lora_int_ids size mismatch: got {lora_int_ids.shape[0]}, expected {self.batch_size}.")
204
+
177
205
  batch_size = inputs.shape[0]
178
206
  if batch_size != self.batch_size:
179
207
  raise RuntimeError(
@@ -408,6 +408,13 @@ class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
408
408
  def _update_sliding_window_config(cls, model_config: PretrainedConfig, rbln_config: RBLNGemma3ForCausalLMConfig):
409
409
  sliding_window = getattr(model_config, "sliding_window", None)
410
410
  sliding_window_pattern = getattr(model_config, "sliding_window_pattern", None)
411
+ if sliding_window_pattern is None:
412
+ if hasattr(model_config, "layer_types"):
413
+ first_full_attention_index = model_config.layer_types.index("full_attention")
414
+ sliding_window_pattern = first_full_attention_index + 1
415
+ else:
416
+ raise ValueError("Cannot determine sliding_window_pattern from model_config")
417
+
411
418
  if sliding_window_pattern <= model_config.num_hidden_layers:
412
419
  rbln_config.cache_impl = "hybrid"
413
420
  rbln_config.sliding_window = sliding_window
@@ -75,7 +75,10 @@ class GPT2Attention(DecoderOnlyAttention):
75
75
  self.o_proj = self._original_mod.c_proj
76
76
  self.split_size = self._original_mod.split_size
77
77
 
78
- def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
78
+ def projection(self, hidden_states, lora_int_id) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
79
+ if lora_int_id is not None:
80
+ raise NotImplementedError("LoRA is not supported for GPT2Attention")
81
+
79
82
  query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
80
83
  return query_states, key_states, value_states
81
84
 
@@ -123,7 +123,10 @@ class MidmAttention(DecoderOnlyAttention):
123
123
  self.split_size = self._original_mod.split_size
124
124
  self.num_key_value_heads = self._original_mod.num_heads
125
125
 
126
- def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
126
+ def projection(self, hidden_states, lora_int_id) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
127
+ if lora_int_id is not None:
128
+ raise NotImplementedError("LoRA is not supported for MidmAttention")
129
+
127
130
  query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
128
131
  return query_states, key_states, value_states
129
132
 
@@ -56,7 +56,10 @@ class PhiAttention(DecoderOnlyAttention):
56
56
  self.qk_layernorm = self._original_mod.qk_layernorm
57
57
  self.rotary_ndims = self._original_mod.rotary_ndims
58
58
 
59
- def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
59
+ def projection(self, hidden_states, lora_int_id) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
60
+ if lora_int_id is not None:
61
+ raise NotImplementedError("LoRA is not supported for PhiAttention")
62
+
60
63
  query_states = self.q_proj(hidden_states)
61
64
  key_states = self.k_proj(hidden_states)
62
65
  value_states = self.v_proj(hidden_states)
@@ -84,6 +87,7 @@ class PhiLayer(DecoderOnlyLayer):
84
87
  cos: Optional[torch.Tensor] = None,
85
88
  sin: Optional[torch.Tensor] = None,
86
89
  block_tables: Optional[torch.Tensor] = None,
90
+ lora_int_id: Optional[torch.Tensor] = None,
87
91
  ):
88
92
  residual = hidden_states
89
93
 
@@ -165,6 +165,7 @@ class Qwen2_5_VL_LanguageModelWrapper(DecoderOnlyWrapper):
165
165
  position_embeds = args.pop(0)
166
166
  query_position = args.pop(0) if self.phase == "prefill" else None
167
167
  position_ids = None
168
+ lora_int_id = None
168
169
  attention_mask = args.pop(0) if self.rbln_config.use_attention_mask else None
169
170
  past_key_values = args
170
171
 
@@ -192,6 +193,7 @@ class Qwen2_5_VL_LanguageModelWrapper(DecoderOnlyWrapper):
192
193
  query_position,
193
194
  attention_mask,
194
195
  position_ids,
196
+ lora_int_id,
195
197
  past_key_values,
196
198
  position_embeds,
197
199
  )
@@ -111,6 +111,7 @@ class Qwen2VL_LanguageModelWrapper(DecoderOnlyWrapper):
111
111
  query_position = args.pop(0) if self.phase == "prefill" else None
112
112
  position_ids = None
113
113
  attention_mask = args.pop(0) if self.rbln_config.use_attention_mask else None
114
+ lora_int_id = args.pop(0) if self.rbln_config.lora_config else None
114
115
  past_key_values = args
115
116
 
116
117
  if len(past_key_values) != 2 * self.num_hidden_layers:
@@ -137,6 +138,7 @@ class Qwen2VL_LanguageModelWrapper(DecoderOnlyWrapper):
137
138
  query_position,
138
139
  attention_mask,
139
140
  position_ids,
141
+ lora_int_id,
140
142
  past_key_values,
141
143
  position_embeds,
142
144
  )
@@ -39,11 +39,21 @@ from transformers.models.whisper.generation_whisper import WhisperGenerationMixi
39
39
 
40
40
 
41
41
  class RBLNWhisperGenerationMixin(WhisperGenerationMixin, GenerationMixin):
42
- """
43
- This class is based on transformers version 4.44.2.
44
- It uses the same generate() method, so it's crucial to maintain the inheritance order.
45
- Ensure WhisperGenerationMixin is listed before GenerationMixin.
46
- """
42
+ def generate(self, *args, generation_config=None, **kwargs):
43
+ num_beams = kwargs.get(
44
+ "num_beams",
45
+ generation_config.num_beams
46
+ if hasattr(generation_config, "num_beams") and generation_config.num_beams is not None
47
+ else 1,
48
+ )
49
+ if num_beams > 1:
50
+ raise ValueError(
51
+ f"Beam search is not supported in RBLNWhisperGenerationMixin. "
52
+ f"Received num_beams={num_beams}, but only num_beams=1 is allowed. "
53
+ f"Please set num_beams=1 for greedy search or adjust your configuration."
54
+ )
55
+
56
+ return super().generate(*args, **kwargs)
47
57
 
48
58
  def _postprocess_outputs(
49
59
  self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config, *args, **kwargs
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.9.2a3
3
+ Version: 0.9.2a4
4
4
  Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -1,6 +1,6 @@
1
- optimum/rbln/__init__.py,sha256=DAJM5PWAYFiWVlyxVXUvj3CaFOEhX1yhEfhIt1LxL-A,18714
2
- optimum/rbln/__version__.py,sha256=YfsWC5giBEdWQiPziNoZbnpdzWOJd02Anp6UCZwlZ8A,712
3
- optimum/rbln/configuration_utils.py,sha256=nAzDwa_2-X32bikEJ2zbRZIk68s50hAP7gTmKN07Ig0,38080
1
+ optimum/rbln/__init__.py,sha256=AZ-7X3ZCjMNcz4mkC_98y-HWRw38ijh8gETJet9tiyM,18828
2
+ optimum/rbln/__version__.py,sha256=z2uQrmRnC9pwi3WkC72y8UjBbBRNzVjlrzh6d2XytNE,712
3
+ optimum/rbln/configuration_utils.py,sha256=KFibQ8IYcapw3M1GpgNLgQ1ZolRIip0_bOlwfU0OYac,38193
4
4
  optimum/rbln/modeling.py,sha256=IZ8loagxm--2BcqTl16KRHUR3hkccpeaY2grOWOtwqk,14473
5
5
  optimum/rbln/modeling_base.py,sha256=poXfHZCAlFd28MY9dvMi7tC2RytLx77Lee2XGS_KeZg,27684
6
6
  optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
@@ -72,13 +72,13 @@ optimum/rbln/ops/flash_attn.py,sha256=yTCdYQVqm_1rHMHWjrMQaIR8WTuG_xA6t033x1IVvT
72
72
  optimum/rbln/ops/kv_cache_update.py,sha256=aIvK2Sp7M3EfJzJgNvIvAJv4emoN6QOhmgaWj-VboLs,1440
73
73
  optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,1328
74
74
  optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
75
- optimum/rbln/transformers/__init__.py,sha256=g5G6Eqk80NzS0tMmwghFI2DMKgPaOpoafv1m0Euhw6A,12459
75
+ optimum/rbln/transformers/__init__.py,sha256=hyv53b_d_IJ9KYsDogTmKHDNuXIGNCFkrJI21RHE5ak,12573
76
76
  optimum/rbln/transformers/configuration_generic.py,sha256=rM4XY1a_UlRf3ZCZkCav59JKRuvqiEEUUgnqNlgdcv8,5207
77
77
  optimum/rbln/transformers/modeling_attention_utils.py,sha256=aLyOaq4me1m-JMmnKbuyNQageDxNU2jjEhGE_ew2P5o,11465
78
78
  optimum/rbln/transformers/modeling_generic.py,sha256=QXFCD35NSelRTMkiYkWnN3qfkkepQ29G0sZ4IOFZmpE,12569
79
79
  optimum/rbln/transformers/modeling_outputs.py,sha256=cd8ZlhHAGq7S6i5-QK6TJCxgORvoPMnZpqPBlUc_pMY,1177
80
80
  optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
81
- optimum/rbln/transformers/models/__init__.py,sha256=9gAXrYeYPdLbQH8KlRG4eSOFQ8h4kyWzXPM1grHvpDQ,13418
81
+ optimum/rbln/transformers/models/__init__.py,sha256=yzcjyHCHH4-Mi26N34HzNs7Tl5HjjT1rrwQ8f_W2_nc,13532
82
82
  optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
83
83
  optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
84
84
  optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
@@ -103,12 +103,14 @@ optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic
103
103
  optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=TCOW3v5l9fIt1uIFtWa8ZAxq1cdCER8gXWjmbLQD20M,8079
104
104
  optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=_HuZBVV-ponml95UapkYpRhffZy53-9jSZknx7hID7o,3348
105
105
  optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=2lHxvtrK3x2GOv7r-5nZelmjezm3ehe6Qf28cMdNmoQ,17961
106
- optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=w3VZOIBYaHXVdnuhK4y0zWAj0IAv7_5LGTJYaz9oYmI,1056
107
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=yUhB9yMFVbq7B9WtAM6m8cQ4K0U3a2N-TU34N5zvjRM,15180
108
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=ySsiU0Acj5enJW-SqtFMAfBeH0HeqlhCd78QlpKJNQw,42780
109
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=v3mfIlQImQkYYr-rPn7rQR3GYdVUhALRttEduLI7H9c,20012
106
+ optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pKBXAtE3y_6nnwYfQJjdPmWqUwxuJ0lr8rrqkgyH07M,1126
107
+ optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=GX-IwTe6ywM9hmyquIu66y0YgIVZS5JNIz8LKAb4Ow8,17003
108
+ optimum/rbln/transformers/models/decoderonly/configuration_lora.py,sha256=5DuTs2vy7jF7MLy161QD_KvCTaNW-5Mok7hBH0yK44U,17356
109
+ optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=h1n9vSHgQc7D0ds1C9SAzWxmIdTaqnDL7auDU_VJNXg,46813
110
+ optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=2yGU1JfxCepG37DbyY8oWq3gMIKhMnPyBkLH8VniKfA,21530
110
111
  optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=zabSgQd2VzHhkpbhUFW5Z-CjYB1JvSJOb5yXKjXCQV0,4326
111
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=1umcuZg_ifIyVBfp_6oHQJvZsp_y2UCiv45-rv89_VA,32434
112
+ optimum/rbln/transformers/models/decoderonly/lora_architecture.py,sha256=jo-jYy95JhdvOsX1UTCXeYTNer37wBbtY578C0QQpZo,8306
113
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=MqZUKffOvpVDPtVYSlm8hQEF4Tw1GV2ZPuevbjsNv7Y,35238
112
114
  optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
113
115
  optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
114
116
  optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=tTmsVaW9Wb2WD3nKRLwp7swn3hbMvgwUEJwwVIfNYEc,1008
@@ -128,12 +130,12 @@ optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=4Ry2pFfWg0sV
128
130
  optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=AsuFnrwZcRCKtF39BpHHNea0S34N2lNWKV4qZimmY8I,4170
129
131
  optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
130
132
  optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=NJJfarzbWJc3pm0XvICN7D0FFF9nqidagIEoOvYLixQ,4696
131
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=fpLDAXCe5paWVsfc0tL59JkRQMRF-WNgIzOIb_QpSLU,6191
132
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=vYQ9sjRlkfamxZca_hVMQI0ylKeExsV02gOWaYVMjyg,9640
133
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=WQ5qRZcM2EYLNqogjy-I04abwZXLZilCGFM4vO-MH4c,25381
133
+ optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=TkGt2g313hXbB8vPFz8-oDBEsuR3HJI6LjSFgqec_Sc,6533
134
+ optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=ZhWgecT4v4Ewd1hmrlJH47QUZuQweVB1qAaK-Qw24-Q,11127
135
+ optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=5kdARfkjkZ9a4LIeSQnNR5RM7ZQSYgavsphz19Vb7bY,25756
134
136
  optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
135
137
  optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
136
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=MyAWReXmyuHnDpW5HI_TI7psyJZxLujZ9KT5XnNm7nA,2802
138
+ optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=ul87zvaLkqsuNJirvl6QtGXM147taNEbnb9qPulR1Ps,2933
137
139
  optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijKCsRfTx-VCkTqqqNwqqMSrjqRE,2230
138
140
  optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
139
141
  optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=s-5MjEEle0zDBhskeYZQiPbbNsFvpTNcqcz21-kl6Gk,3820
@@ -154,7 +156,7 @@ optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=S
154
156
  optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=ZGVTOaAOpUOvyVLfSsHpfje4W8FDR_PV6MhS9QNj-Uk,21230
155
157
  optimum/rbln/transformers/models/midm/__init__.py,sha256=IC3FETwgYinbp3wDj7tp4zIHJhbqM-c6GfTRdYcMNj8,913
156
158
  optimum/rbln/transformers/models/midm/configuration_midm.py,sha256=DxhcSJlApxfi00XxYmSkKZ6bY9vfLXT0zh-oMKkZot0,1365
157
- optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=RlkmNhaWE5h_awt9aTtR8VZfshNTah0IoUfD2Z9vfxI,5055
159
+ optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=f9IwLLyYErliWJhkRj880QByMEYs_XVwm2Yh6r-Y_ik,5186
158
160
  optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=EXTBFaOWco2h3NL8jUACeDmPFJuAjFrtQcgO_BTMuCk,6004
159
161
  optimum/rbln/transformers/models/mistral/__init__.py,sha256=bYPqrkmqXmhNDqRgKFaL9iH7piGLSHKzsVrGl_0qs1Q,758
160
162
  optimum/rbln/transformers/models/mistral/configuration_mistral.py,sha256=mIfz8J8GZV9ojCMuNj9Zeky_PNu1Ir34DQ7FDZrGkP8,1595
@@ -171,7 +173,7 @@ optimum/rbln/transformers/models/pegasus/pegasus_architecture.py,sha256=Hk4N7LDA
171
173
  optimum/rbln/transformers/models/phi/__init__.py,sha256=M5Sh4AtIhJYegl-yAKPggAU3DtJtQOa8MrIQypZ6N7U,734
172
174
  optimum/rbln/transformers/models/phi/configuration_phi.py,sha256=CXHIG3xlBdr628oDu_u4OGsu_QZLx5EUSqu3zfmfEnk,1553
173
175
  optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=r7B0NlqwIGjm-MmE-h5_xeRJPzs4O2OotgbjI-FYA2o,3403
174
- optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=ygJIJvn20bnxE9nHKo4CBW9_1FJsz7MEVolB5asTmI0,3684
176
+ optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=bzK7Qhd1FAC049fdDhzzPYK7HtlHTjBqVmuFAhTX80Q,3866
175
177
  optimum/rbln/transformers/models/pixtral/__init__.py,sha256=fhclVAWnIDsfMfC-TW6mYrJXxgyehlLaadK64LOShH4,716
176
178
  optimum/rbln/transformers/models/pixtral/configuration_pixtral.py,sha256=b79zkJB1jzHx4S1wTe-Ju_Yel_PS5Q8bfmlQPzkchKU,1677
177
179
  optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=P1lzi6JOTB43nBfCOonUDYhIXoMq6DnQpcvGfOO7ZP8,12252
@@ -183,11 +185,11 @@ optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLoh
183
185
  optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
184
186
  optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=WHLH72i7Pe16Ee1waMixMsR3eD6TsMGN08QD82qdVvw,6162
185
187
  optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=pI1TNDMO-ZiqXtoHboxLlqfplZbRh22lT1gxhqy6Jtg,26939
186
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=y0W5qxrke7JbFNkPTkEOC8TvKnAYZP9bNsQK_IYvxnA,8340
188
+ optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=hlx9Tt9n9m-fL4m21QFKgsN719CDhwhgfOMjnhde4RE,8392
187
189
  optimum/rbln/transformers/models/qwen2_vl/__init__.py,sha256=O3t6zKda92CnZDzEnz_dcisMOQ71-OOJxElXzKCH5e0,849
188
190
  optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py,sha256=mi5CqSKZ77G5Fib3g8a86_4CEB6lb-qJOhDnSqslvNk,4714
189
191
  optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=YO8cKBEb7dU9D--gidYsPyhS2arOwgVqDe3tLlGHdx4,20424
190
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=_5Erjk7udq7YFVVtx4XeWaIzpDlEZKJPu2bBSVBGfKE,5728
192
+ optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=xjp52RXqKA_BiyZ5CqwFAosav7ysvOJxeRxbPnTVIjM,5829
191
193
  optimum/rbln/transformers/models/qwen3/__init__.py,sha256=tI4KwvXpD35dUUaa8aLUXpWoU9gJGcmKXeywOlH14ZE,746
192
194
  optimum/rbln/transformers/models/qwen3/configuration_qwen3.py,sha256=BFRPggnH4VlsXlOa19C6KAID-bPgQ8ooQ29dvogh5zk,2102
193
195
  optimum/rbln/transformers/models/qwen3/modeling_qwen3.py,sha256=S05efusxjXJhMMYztstGes6ZbqkSr5I4fHFaLSYVG8c,5760
@@ -224,7 +226,7 @@ optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py,sha256=24sXi
224
226
  optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=bMKHdUDHgzu1pXH0yrrOFCiA_T9xqb9B19kljCQ9yUU,1945
225
227
  optimum/rbln/transformers/models/whisper/__init__.py,sha256=ErquiUlYycSYPsDcq9IwwmbZXoYLn1MVZ8VikWY5gQo,792
226
228
  optimum/rbln/transformers/models/whisper/configuration_whisper.py,sha256=bSwDN7VLuk1aVXvfrQIgb9SLdFBDhO5q8ZFaPQPJal0,3077
227
- optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=GIHTca3b1VtW81kp7BzKQ7f77c2t9OsEsbZetripgDo,4582
229
+ optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=0MYzMTZwTHFcJV_ZEtCm2AZbKN9RHgAr9jefuOAouVI,5017
228
230
  optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=R7o-0Ota8geUNLoyzkm7smP5Pd_cZKhC-kcwiMaVG8U,19293
229
231
  optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=fKUbAMIl20o6EBMVcLg9TDSsJ1FDp8NKcl4jT9RWCEM,13981
230
232
  optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=O3o2KzJ8Li3QhB7GHdRQASc93SYO2jz00Rx4pxYRuDg,982
@@ -243,7 +245,7 @@ optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsF
243
245
  optimum/rbln/utils/runtime_utils.py,sha256=R6uXDbeJP03-FWdd4vthNe2D4aCra5n12E3WB1ifiGM,7933
244
246
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
245
247
  optimum/rbln/utils/submodule.py,sha256=SKLnM3KsX8_rv3HauO4oB2-JSjzuadQjRwo_BhMUzLI,6362
246
- optimum_rbln-0.9.2a3.dist-info/METADATA,sha256=g1CzqJPcexyEr8Ii3r8i8_2X-knoTXXkcMY4Z35d4zw,5350
247
- optimum_rbln-0.9.2a3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
248
- optimum_rbln-0.9.2a3.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
249
- optimum_rbln-0.9.2a3.dist-info/RECORD,,
248
+ optimum_rbln-0.9.2a4.dist-info/METADATA,sha256=FZjCn9neDPlv0v6jWtx8gJCuUn0Cw-r5DWaimql02oo,5350
249
+ optimum_rbln-0.9.2a4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
250
+ optimum_rbln-0.9.2a4.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
251
+ optimum_rbln-0.9.2a4.dist-info/RECORD,,