optimum-rbln 0.9.2a2__py3-none-any.whl → 0.9.2a4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +4 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +3 -0
- optimum/rbln/transformers/__init__.py +4 -0
- optimum/rbln/transformers/models/__init__.py +4 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +1 -1
- optimum/rbln/transformers/models/decoderonly/__init__.py +1 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +34 -0
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +100 -20
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +33 -0
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +60 -0
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +31 -3
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +7 -0
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
- optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
- optimum/rbln/transformers/models/phi/phi_architecture.py +5 -1
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +2 -0
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +2 -0
- optimum/rbln/transformers/models/whisper/generation_whisper.py +15 -5
- {optimum_rbln-0.9.2a2.dist-info → optimum_rbln-0.9.2a4.dist-info}/METADATA +1 -1
- {optimum_rbln-0.9.2a2.dist-info → optimum_rbln-0.9.2a4.dist-info}/RECORD +26 -24
- {optimum_rbln-0.9.2a2.dist-info → optimum_rbln-0.9.2a4.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.9.2a2.dist-info → optimum_rbln-0.9.2a4.dist-info}/licenses/LICENSE +0 -0
|
@@ -63,6 +63,7 @@ class Gemma3TextModel(DecoderOnlyModel):
|
|
|
63
63
|
rotary_emb: torch.nn.Module = None,
|
|
64
64
|
global_block_tables: Optional[torch.Tensor] = None,
|
|
65
65
|
local_block_tables: Optional[torch.Tensor] = None,
|
|
66
|
+
lora_int_id: Optional[torch.Tensor] = None,
|
|
66
67
|
):
|
|
67
68
|
# retrieve input_ids and inputs_embeds
|
|
68
69
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
@@ -105,6 +106,7 @@ class Gemma3TextModel(DecoderOnlyModel):
|
|
|
105
106
|
cos=cos_local if is_sliding else cos_global,
|
|
106
107
|
sin=sin_local if is_sliding else sin_global,
|
|
107
108
|
block_tables=local_block_tables if is_sliding else global_block_tables,
|
|
109
|
+
lora_int_id=lora_int_id,
|
|
108
110
|
)
|
|
109
111
|
|
|
110
112
|
hidden_states = self.get_last_layernorm()(hidden_states)
|
|
@@ -127,12 +129,20 @@ class Gemma3DecoderLayer(DecoderOnlyLayer):
|
|
|
127
129
|
cos: Optional[torch.Tensor] = None,
|
|
128
130
|
sin: Optional[torch.Tensor] = None,
|
|
129
131
|
block_tables: Optional[torch.Tensor] = None,
|
|
132
|
+
lora_int_id: Optional[torch.Tensor] = None,
|
|
130
133
|
):
|
|
131
134
|
residual = hidden_states
|
|
132
135
|
hidden_states = self.get_pre_attention_layernorm()(hidden_states)
|
|
133
136
|
|
|
134
137
|
hidden_states = self.self_attn(
|
|
135
|
-
hidden_states,
|
|
138
|
+
hidden_states=hidden_states,
|
|
139
|
+
attention_mask=attention_mask,
|
|
140
|
+
seq_positions=seq_positions,
|
|
141
|
+
past_key_values=past_key_values,
|
|
142
|
+
cos=cos,
|
|
143
|
+
sin=sin,
|
|
144
|
+
block_tables=block_tables,
|
|
145
|
+
lora_int_id=lora_int_id,
|
|
136
146
|
)
|
|
137
147
|
hidden_states = self.get_post_attention_layernorm()(hidden_states)
|
|
138
148
|
hidden_states = residual + hidden_states
|
|
@@ -140,7 +150,7 @@ class Gemma3DecoderLayer(DecoderOnlyLayer):
|
|
|
140
150
|
# Fully Connected
|
|
141
151
|
residual = hidden_states
|
|
142
152
|
hidden_states = self.get_pre_feedforward_layernorm()(hidden_states)
|
|
143
|
-
hidden_states = self.
|
|
153
|
+
hidden_states = self.forward_mlp(hidden_states, lora_int_id)
|
|
144
154
|
hidden_states = self.get_post_feedforward_layernorm()(hidden_states)
|
|
145
155
|
hidden_states = residual + hidden_states
|
|
146
156
|
|
|
@@ -17,15 +17,16 @@ import rebel
|
|
|
17
17
|
import torch
|
|
18
18
|
|
|
19
19
|
from ...modeling_outputs import RBLNDecoderOnlyOutput, RBLNGemma3ForCausalLMOutput
|
|
20
|
+
from ..decoderonly.decoderonly_runtime_utils import RBLNPytorchRuntime
|
|
20
21
|
from ..decoderonly.modeling_decoderonly import RBLNRuntimeModel
|
|
21
22
|
|
|
22
23
|
|
|
23
24
|
class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
24
25
|
def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
|
|
25
26
|
super().__init__(*args, **kwargs)
|
|
26
|
-
self.image_prefill = image_prefill # FIXME(taehoon)
|
|
27
|
-
self.prefill = self.runtime if self.phase == "prefill" else None # FIXME
|
|
28
|
-
self.decode = self.runtime if self.phase == "decode" else None
|
|
27
|
+
self.image_prefill = RBLNPytorchRuntime(image_prefill) # FIXME(taehoon)
|
|
28
|
+
self.prefill = RBLNPytorchRuntime(self.runtime) if self.phase == "prefill" else None # FIXME
|
|
29
|
+
self.decode = RBLNPytorchRuntime(self.runtime) if self.phase == "decode" else None
|
|
29
30
|
|
|
30
31
|
def _prepare_prefill_inputs(self, *args, **kwargs):
|
|
31
32
|
(
|
|
@@ -73,12 +74,24 @@ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
|
73
74
|
position_embed: Optional[torch.Tensor] = None,
|
|
74
75
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
75
76
|
local_block_tables: Optional[torch.Tensor] = None,
|
|
77
|
+
lora_int_ids: Optional[torch.Tensor] = None,
|
|
76
78
|
) -> torch.FloatTensor:
|
|
77
79
|
"""
|
|
78
80
|
Performs chunked prefill for efficient KV-cache updates and memory optimization.
|
|
79
81
|
Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
|
|
80
82
|
and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
|
|
81
83
|
"""
|
|
84
|
+
if self.rbln_config.use_lora and lora_int_ids is None:
|
|
85
|
+
if self.lora_int_ids is None:
|
|
86
|
+
raise ValueError(
|
|
87
|
+
"lora_int_id is required when using LoRA. "
|
|
88
|
+
"You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
|
|
89
|
+
)
|
|
90
|
+
if batch_idx is not None:
|
|
91
|
+
lora_int_ids = self.lora_int_ids[batch_idx : batch_idx + 1].clone()
|
|
92
|
+
else:
|
|
93
|
+
lora_int_ids = self.lora_int_ids.clone()
|
|
94
|
+
|
|
82
95
|
(
|
|
83
96
|
inputs,
|
|
84
97
|
cache_position,
|
|
@@ -141,6 +154,7 @@ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
|
141
154
|
query_position,
|
|
142
155
|
chunked_attention_mask,
|
|
143
156
|
position_ids_chunk,
|
|
157
|
+
lora_int_ids if self.rbln_config.use_lora else None,
|
|
144
158
|
)
|
|
145
159
|
else:
|
|
146
160
|
logits = self.prefill(
|
|
@@ -151,6 +165,7 @@ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
|
151
165
|
query_position,
|
|
152
166
|
chunked_attention_mask,
|
|
153
167
|
position_ids_chunk,
|
|
168
|
+
lora_int_ids if self.rbln_config.use_lora else None,
|
|
154
169
|
)
|
|
155
170
|
|
|
156
171
|
padded_cache_lengths += current_padded_cache_lengths
|
|
@@ -173,7 +188,20 @@ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
|
173
188
|
position_embed: Optional[torch.Tensor] = None,
|
|
174
189
|
position_ids: Optional[torch.Tensor] = None,
|
|
175
190
|
local_block_tables: Optional[torch.Tensor] = None,
|
|
191
|
+
lora_int_ids: Optional[torch.Tensor] = None,
|
|
176
192
|
) -> torch.FloatTensor:
|
|
193
|
+
if self.rbln_config.use_lora and lora_int_ids is None:
|
|
194
|
+
if self.lora_int_ids is None:
|
|
195
|
+
raise ValueError(
|
|
196
|
+
"lora_int_id is required when using LoRA. "
|
|
197
|
+
"You should call set_lora_int_ids() before forward() or pass lora_int_id to forward()."
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
lora_int_ids = self.lora_int_ids
|
|
201
|
+
|
|
202
|
+
if lora_int_ids is not None and lora_int_ids.shape[0] != self.batch_size:
|
|
203
|
+
raise ValueError(f"lora_int_ids size mismatch: got {lora_int_ids.shape[0]}, expected {self.batch_size}.")
|
|
204
|
+
|
|
177
205
|
batch_size = inputs.shape[0]
|
|
178
206
|
if batch_size != self.batch_size:
|
|
179
207
|
raise RuntimeError(
|
|
@@ -408,6 +408,13 @@ class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
|
408
408
|
def _update_sliding_window_config(cls, model_config: PretrainedConfig, rbln_config: RBLNGemma3ForCausalLMConfig):
|
|
409
409
|
sliding_window = getattr(model_config, "sliding_window", None)
|
|
410
410
|
sliding_window_pattern = getattr(model_config, "sliding_window_pattern", None)
|
|
411
|
+
if sliding_window_pattern is None:
|
|
412
|
+
if hasattr(model_config, "layer_types"):
|
|
413
|
+
first_full_attention_index = model_config.layer_types.index("full_attention")
|
|
414
|
+
sliding_window_pattern = first_full_attention_index + 1
|
|
415
|
+
else:
|
|
416
|
+
raise ValueError("Cannot determine sliding_window_pattern from model_config")
|
|
417
|
+
|
|
411
418
|
if sliding_window_pattern <= model_config.num_hidden_layers:
|
|
412
419
|
rbln_config.cache_impl = "hybrid"
|
|
413
420
|
rbln_config.sliding_window = sliding_window
|
|
@@ -75,7 +75,10 @@ class GPT2Attention(DecoderOnlyAttention):
|
|
|
75
75
|
self.o_proj = self._original_mod.c_proj
|
|
76
76
|
self.split_size = self._original_mod.split_size
|
|
77
77
|
|
|
78
|
-
def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
78
|
+
def projection(self, hidden_states, lora_int_id) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
79
|
+
if lora_int_id is not None:
|
|
80
|
+
raise NotImplementedError("LoRA is not supported for GPT2Attention")
|
|
81
|
+
|
|
79
82
|
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
|
80
83
|
return query_states, key_states, value_states
|
|
81
84
|
|
|
@@ -123,7 +123,10 @@ class MidmAttention(DecoderOnlyAttention):
|
|
|
123
123
|
self.split_size = self._original_mod.split_size
|
|
124
124
|
self.num_key_value_heads = self._original_mod.num_heads
|
|
125
125
|
|
|
126
|
-
def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
126
|
+
def projection(self, hidden_states, lora_int_id) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
127
|
+
if lora_int_id is not None:
|
|
128
|
+
raise NotImplementedError("LoRA is not supported for MidmAttention")
|
|
129
|
+
|
|
127
130
|
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
|
128
131
|
return query_states, key_states, value_states
|
|
129
132
|
|
|
@@ -56,7 +56,10 @@ class PhiAttention(DecoderOnlyAttention):
|
|
|
56
56
|
self.qk_layernorm = self._original_mod.qk_layernorm
|
|
57
57
|
self.rotary_ndims = self._original_mod.rotary_ndims
|
|
58
58
|
|
|
59
|
-
def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
59
|
+
def projection(self, hidden_states, lora_int_id) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
60
|
+
if lora_int_id is not None:
|
|
61
|
+
raise NotImplementedError("LoRA is not supported for PhiAttention")
|
|
62
|
+
|
|
60
63
|
query_states = self.q_proj(hidden_states)
|
|
61
64
|
key_states = self.k_proj(hidden_states)
|
|
62
65
|
value_states = self.v_proj(hidden_states)
|
|
@@ -84,6 +87,7 @@ class PhiLayer(DecoderOnlyLayer):
|
|
|
84
87
|
cos: Optional[torch.Tensor] = None,
|
|
85
88
|
sin: Optional[torch.Tensor] = None,
|
|
86
89
|
block_tables: Optional[torch.Tensor] = None,
|
|
90
|
+
lora_int_id: Optional[torch.Tensor] = None,
|
|
87
91
|
):
|
|
88
92
|
residual = hidden_states
|
|
89
93
|
|
|
@@ -165,6 +165,7 @@ class Qwen2_5_VL_LanguageModelWrapper(DecoderOnlyWrapper):
|
|
|
165
165
|
position_embeds = args.pop(0)
|
|
166
166
|
query_position = args.pop(0) if self.phase == "prefill" else None
|
|
167
167
|
position_ids = None
|
|
168
|
+
lora_int_id = None
|
|
168
169
|
attention_mask = args.pop(0) if self.rbln_config.use_attention_mask else None
|
|
169
170
|
past_key_values = args
|
|
170
171
|
|
|
@@ -192,6 +193,7 @@ class Qwen2_5_VL_LanguageModelWrapper(DecoderOnlyWrapper):
|
|
|
192
193
|
query_position,
|
|
193
194
|
attention_mask,
|
|
194
195
|
position_ids,
|
|
196
|
+
lora_int_id,
|
|
195
197
|
past_key_values,
|
|
196
198
|
position_embeds,
|
|
197
199
|
)
|
|
@@ -111,6 +111,7 @@ class Qwen2VL_LanguageModelWrapper(DecoderOnlyWrapper):
|
|
|
111
111
|
query_position = args.pop(0) if self.phase == "prefill" else None
|
|
112
112
|
position_ids = None
|
|
113
113
|
attention_mask = args.pop(0) if self.rbln_config.use_attention_mask else None
|
|
114
|
+
lora_int_id = args.pop(0) if self.rbln_config.lora_config else None
|
|
114
115
|
past_key_values = args
|
|
115
116
|
|
|
116
117
|
if len(past_key_values) != 2 * self.num_hidden_layers:
|
|
@@ -137,6 +138,7 @@ class Qwen2VL_LanguageModelWrapper(DecoderOnlyWrapper):
|
|
|
137
138
|
query_position,
|
|
138
139
|
attention_mask,
|
|
139
140
|
position_ids,
|
|
141
|
+
lora_int_id,
|
|
140
142
|
past_key_values,
|
|
141
143
|
position_embeds,
|
|
142
144
|
)
|
|
@@ -39,11 +39,21 @@ from transformers.models.whisper.generation_whisper import WhisperGenerationMixi
|
|
|
39
39
|
|
|
40
40
|
|
|
41
41
|
class RBLNWhisperGenerationMixin(WhisperGenerationMixin, GenerationMixin):
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
42
|
+
def generate(self, *args, generation_config=None, **kwargs):
|
|
43
|
+
num_beams = kwargs.get(
|
|
44
|
+
"num_beams",
|
|
45
|
+
generation_config.num_beams
|
|
46
|
+
if hasattr(generation_config, "num_beams") and generation_config.num_beams is not None
|
|
47
|
+
else 1,
|
|
48
|
+
)
|
|
49
|
+
if num_beams > 1:
|
|
50
|
+
raise ValueError(
|
|
51
|
+
f"Beam search is not supported in RBLNWhisperGenerationMixin. "
|
|
52
|
+
f"Received num_beams={num_beams}, but only num_beams=1 is allowed. "
|
|
53
|
+
f"Please set num_beams=1 for greedy search or adjust your configuration."
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
return super().generate(*args, **kwargs)
|
|
47
57
|
|
|
48
58
|
def _postprocess_outputs(
|
|
49
59
|
self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config, *args, **kwargs
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.9.
|
|
3
|
+
Version: 0.9.2a4
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
optimum/rbln/__init__.py,sha256=
|
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
|
3
|
-
optimum/rbln/configuration_utils.py,sha256=
|
|
1
|
+
optimum/rbln/__init__.py,sha256=AZ-7X3ZCjMNcz4mkC_98y-HWRw38ijh8gETJet9tiyM,18828
|
|
2
|
+
optimum/rbln/__version__.py,sha256=z2uQrmRnC9pwi3WkC72y8UjBbBRNzVjlrzh6d2XytNE,712
|
|
3
|
+
optimum/rbln/configuration_utils.py,sha256=KFibQ8IYcapw3M1GpgNLgQ1ZolRIip0_bOlwfU0OYac,38193
|
|
4
4
|
optimum/rbln/modeling.py,sha256=IZ8loagxm--2BcqTl16KRHUR3hkccpeaY2grOWOtwqk,14473
|
|
5
5
|
optimum/rbln/modeling_base.py,sha256=poXfHZCAlFd28MY9dvMi7tC2RytLx77Lee2XGS_KeZg,27684
|
|
6
6
|
optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
|
|
@@ -72,13 +72,13 @@ optimum/rbln/ops/flash_attn.py,sha256=yTCdYQVqm_1rHMHWjrMQaIR8WTuG_xA6t033x1IVvT
|
|
|
72
72
|
optimum/rbln/ops/kv_cache_update.py,sha256=aIvK2Sp7M3EfJzJgNvIvAJv4emoN6QOhmgaWj-VboLs,1440
|
|
73
73
|
optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,1328
|
|
74
74
|
optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
|
|
75
|
-
optimum/rbln/transformers/__init__.py,sha256=
|
|
75
|
+
optimum/rbln/transformers/__init__.py,sha256=hyv53b_d_IJ9KYsDogTmKHDNuXIGNCFkrJI21RHE5ak,12573
|
|
76
76
|
optimum/rbln/transformers/configuration_generic.py,sha256=rM4XY1a_UlRf3ZCZkCav59JKRuvqiEEUUgnqNlgdcv8,5207
|
|
77
77
|
optimum/rbln/transformers/modeling_attention_utils.py,sha256=aLyOaq4me1m-JMmnKbuyNQageDxNU2jjEhGE_ew2P5o,11465
|
|
78
78
|
optimum/rbln/transformers/modeling_generic.py,sha256=QXFCD35NSelRTMkiYkWnN3qfkkepQ29G0sZ4IOFZmpE,12569
|
|
79
79
|
optimum/rbln/transformers/modeling_outputs.py,sha256=cd8ZlhHAGq7S6i5-QK6TJCxgORvoPMnZpqPBlUc_pMY,1177
|
|
80
80
|
optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
|
|
81
|
-
optimum/rbln/transformers/models/__init__.py,sha256=
|
|
81
|
+
optimum/rbln/transformers/models/__init__.py,sha256=yzcjyHCHH4-Mi26N34HzNs7Tl5HjjT1rrwQ8f_W2_nc,13532
|
|
82
82
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
|
|
83
83
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
|
|
84
84
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
|
|
@@ -102,13 +102,15 @@ optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=BLAYJAtv_2ZnKOlZ8i
|
|
|
102
102
|
optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic0YkVK24CW5hZBPa-0L8so6Y,119
|
|
103
103
|
optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=TCOW3v5l9fIt1uIFtWa8ZAxq1cdCER8gXWjmbLQD20M,8079
|
|
104
104
|
optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=_HuZBVV-ponml95UapkYpRhffZy53-9jSZknx7hID7o,3348
|
|
105
|
-
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=
|
|
106
|
-
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=
|
|
107
|
-
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=
|
|
108
|
-
optimum/rbln/transformers/models/decoderonly/
|
|
109
|
-
optimum/rbln/transformers/models/decoderonly/
|
|
105
|
+
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=2lHxvtrK3x2GOv7r-5nZelmjezm3ehe6Qf28cMdNmoQ,17961
|
|
106
|
+
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pKBXAtE3y_6nnwYfQJjdPmWqUwxuJ0lr8rrqkgyH07M,1126
|
|
107
|
+
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=GX-IwTe6ywM9hmyquIu66y0YgIVZS5JNIz8LKAb4Ow8,17003
|
|
108
|
+
optimum/rbln/transformers/models/decoderonly/configuration_lora.py,sha256=5DuTs2vy7jF7MLy161QD_KvCTaNW-5Mok7hBH0yK44U,17356
|
|
109
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=h1n9vSHgQc7D0ds1C9SAzWxmIdTaqnDL7auDU_VJNXg,46813
|
|
110
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=2yGU1JfxCepG37DbyY8oWq3gMIKhMnPyBkLH8VniKfA,21530
|
|
110
111
|
optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=zabSgQd2VzHhkpbhUFW5Z-CjYB1JvSJOb5yXKjXCQV0,4326
|
|
111
|
-
optimum/rbln/transformers/models/decoderonly/
|
|
112
|
+
optimum/rbln/transformers/models/decoderonly/lora_architecture.py,sha256=jo-jYy95JhdvOsX1UTCXeYTNer37wBbtY578C0QQpZo,8306
|
|
113
|
+
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=MqZUKffOvpVDPtVYSlm8hQEF4Tw1GV2ZPuevbjsNv7Y,35238
|
|
112
114
|
optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
|
|
113
115
|
optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
|
|
114
116
|
optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=tTmsVaW9Wb2WD3nKRLwp7swn3hbMvgwUEJwwVIfNYEc,1008
|
|
@@ -128,12 +130,12 @@ optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=4Ry2pFfWg0sV
|
|
|
128
130
|
optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=AsuFnrwZcRCKtF39BpHHNea0S34N2lNWKV4qZimmY8I,4170
|
|
129
131
|
optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
|
|
130
132
|
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=NJJfarzbWJc3pm0XvICN7D0FFF9nqidagIEoOvYLixQ,4696
|
|
131
|
-
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=
|
|
132
|
-
optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=
|
|
133
|
-
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=
|
|
133
|
+
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=TkGt2g313hXbB8vPFz8-oDBEsuR3HJI6LjSFgqec_Sc,6533
|
|
134
|
+
optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=ZhWgecT4v4Ewd1hmrlJH47QUZuQweVB1qAaK-Qw24-Q,11127
|
|
135
|
+
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=5kdARfkjkZ9a4LIeSQnNR5RM7ZQSYgavsphz19Vb7bY,25756
|
|
134
136
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
|
|
135
137
|
optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
|
|
136
|
-
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=
|
|
138
|
+
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=ul87zvaLkqsuNJirvl6QtGXM147taNEbnb9qPulR1Ps,2933
|
|
137
139
|
optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijKCsRfTx-VCkTqqqNwqqMSrjqRE,2230
|
|
138
140
|
optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
|
|
139
141
|
optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=s-5MjEEle0zDBhskeYZQiPbbNsFvpTNcqcz21-kl6Gk,3820
|
|
@@ -154,7 +156,7 @@ optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=S
|
|
|
154
156
|
optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=ZGVTOaAOpUOvyVLfSsHpfje4W8FDR_PV6MhS9QNj-Uk,21230
|
|
155
157
|
optimum/rbln/transformers/models/midm/__init__.py,sha256=IC3FETwgYinbp3wDj7tp4zIHJhbqM-c6GfTRdYcMNj8,913
|
|
156
158
|
optimum/rbln/transformers/models/midm/configuration_midm.py,sha256=DxhcSJlApxfi00XxYmSkKZ6bY9vfLXT0zh-oMKkZot0,1365
|
|
157
|
-
optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=
|
|
159
|
+
optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=f9IwLLyYErliWJhkRj880QByMEYs_XVwm2Yh6r-Y_ik,5186
|
|
158
160
|
optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=EXTBFaOWco2h3NL8jUACeDmPFJuAjFrtQcgO_BTMuCk,6004
|
|
159
161
|
optimum/rbln/transformers/models/mistral/__init__.py,sha256=bYPqrkmqXmhNDqRgKFaL9iH7piGLSHKzsVrGl_0qs1Q,758
|
|
160
162
|
optimum/rbln/transformers/models/mistral/configuration_mistral.py,sha256=mIfz8J8GZV9ojCMuNj9Zeky_PNu1Ir34DQ7FDZrGkP8,1595
|
|
@@ -171,7 +173,7 @@ optimum/rbln/transformers/models/pegasus/pegasus_architecture.py,sha256=Hk4N7LDA
|
|
|
171
173
|
optimum/rbln/transformers/models/phi/__init__.py,sha256=M5Sh4AtIhJYegl-yAKPggAU3DtJtQOa8MrIQypZ6N7U,734
|
|
172
174
|
optimum/rbln/transformers/models/phi/configuration_phi.py,sha256=CXHIG3xlBdr628oDu_u4OGsu_QZLx5EUSqu3zfmfEnk,1553
|
|
173
175
|
optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=r7B0NlqwIGjm-MmE-h5_xeRJPzs4O2OotgbjI-FYA2o,3403
|
|
174
|
-
optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=
|
|
176
|
+
optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=bzK7Qhd1FAC049fdDhzzPYK7HtlHTjBqVmuFAhTX80Q,3866
|
|
175
177
|
optimum/rbln/transformers/models/pixtral/__init__.py,sha256=fhclVAWnIDsfMfC-TW6mYrJXxgyehlLaadK64LOShH4,716
|
|
176
178
|
optimum/rbln/transformers/models/pixtral/configuration_pixtral.py,sha256=b79zkJB1jzHx4S1wTe-Ju_Yel_PS5Q8bfmlQPzkchKU,1677
|
|
177
179
|
optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=P1lzi6JOTB43nBfCOonUDYhIXoMq6DnQpcvGfOO7ZP8,12252
|
|
@@ -183,11 +185,11 @@ optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLoh
|
|
|
183
185
|
optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
|
|
184
186
|
optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=WHLH72i7Pe16Ee1waMixMsR3eD6TsMGN08QD82qdVvw,6162
|
|
185
187
|
optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=pI1TNDMO-ZiqXtoHboxLlqfplZbRh22lT1gxhqy6Jtg,26939
|
|
186
|
-
optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=
|
|
188
|
+
optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=hlx9Tt9n9m-fL4m21QFKgsN719CDhwhgfOMjnhde4RE,8392
|
|
187
189
|
optimum/rbln/transformers/models/qwen2_vl/__init__.py,sha256=O3t6zKda92CnZDzEnz_dcisMOQ71-OOJxElXzKCH5e0,849
|
|
188
190
|
optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py,sha256=mi5CqSKZ77G5Fib3g8a86_4CEB6lb-qJOhDnSqslvNk,4714
|
|
189
191
|
optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=YO8cKBEb7dU9D--gidYsPyhS2arOwgVqDe3tLlGHdx4,20424
|
|
190
|
-
optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=
|
|
192
|
+
optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=xjp52RXqKA_BiyZ5CqwFAosav7ysvOJxeRxbPnTVIjM,5829
|
|
191
193
|
optimum/rbln/transformers/models/qwen3/__init__.py,sha256=tI4KwvXpD35dUUaa8aLUXpWoU9gJGcmKXeywOlH14ZE,746
|
|
192
194
|
optimum/rbln/transformers/models/qwen3/configuration_qwen3.py,sha256=BFRPggnH4VlsXlOa19C6KAID-bPgQ8ooQ29dvogh5zk,2102
|
|
193
195
|
optimum/rbln/transformers/models/qwen3/modeling_qwen3.py,sha256=S05efusxjXJhMMYztstGes6ZbqkSr5I4fHFaLSYVG8c,5760
|
|
@@ -224,7 +226,7 @@ optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py,sha256=24sXi
|
|
|
224
226
|
optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=bMKHdUDHgzu1pXH0yrrOFCiA_T9xqb9B19kljCQ9yUU,1945
|
|
225
227
|
optimum/rbln/transformers/models/whisper/__init__.py,sha256=ErquiUlYycSYPsDcq9IwwmbZXoYLn1MVZ8VikWY5gQo,792
|
|
226
228
|
optimum/rbln/transformers/models/whisper/configuration_whisper.py,sha256=bSwDN7VLuk1aVXvfrQIgb9SLdFBDhO5q8ZFaPQPJal0,3077
|
|
227
|
-
optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=
|
|
229
|
+
optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=0MYzMTZwTHFcJV_ZEtCm2AZbKN9RHgAr9jefuOAouVI,5017
|
|
228
230
|
optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=R7o-0Ota8geUNLoyzkm7smP5Pd_cZKhC-kcwiMaVG8U,19293
|
|
229
231
|
optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=fKUbAMIl20o6EBMVcLg9TDSsJ1FDp8NKcl4jT9RWCEM,13981
|
|
230
232
|
optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=O3o2KzJ8Li3QhB7GHdRQASc93SYO2jz00Rx4pxYRuDg,982
|
|
@@ -243,7 +245,7 @@ optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsF
|
|
|
243
245
|
optimum/rbln/utils/runtime_utils.py,sha256=R6uXDbeJP03-FWdd4vthNe2D4aCra5n12E3WB1ifiGM,7933
|
|
244
246
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
|
245
247
|
optimum/rbln/utils/submodule.py,sha256=SKLnM3KsX8_rv3HauO4oB2-JSjzuadQjRwo_BhMUzLI,6362
|
|
246
|
-
optimum_rbln-0.9.
|
|
247
|
-
optimum_rbln-0.9.
|
|
248
|
-
optimum_rbln-0.9.
|
|
249
|
-
optimum_rbln-0.9.
|
|
248
|
+
optimum_rbln-0.9.2a4.dist-info/METADATA,sha256=FZjCn9neDPlv0v6jWtx8gJCuUn0Cw-r5DWaimql02oo,5350
|
|
249
|
+
optimum_rbln-0.9.2a4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
250
|
+
optimum_rbln-0.9.2a4.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
|
251
|
+
optimum_rbln-0.9.2a4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|