optimum-rbln 0.9.1__py3-none-any.whl → 0.9.2a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +54 -7
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +30 -14
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +11 -8
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +23 -13
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +10 -6
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +14 -10
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +14 -7
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +9 -11
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +35 -3
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +21 -22
- optimum/rbln/transformers/models/clip/modeling_clip.py +4 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +2 -2
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +17 -1
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +72 -79
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +2 -2
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +11 -3
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +58 -43
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +27 -3
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +22 -15
- optimum/rbln/transformers/models/llava/configuration_llava.py +16 -2
- optimum/rbln/transformers/models/llava/modeling_llava.py +106 -49
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +11 -13
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +232 -342
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +6 -11
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +11 -1
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +22 -0
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +11 -1
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +22 -0
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +3 -14
- optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
- optimum/rbln/utils/submodule.py +21 -5
- {optimum_rbln-0.9.1.dist-info → optimum_rbln-0.9.2a1.dist-info}/METADATA +2 -2
- {optimum_rbln-0.9.1.dist-info → optimum_rbln-0.9.2a1.dist-info}/RECORD +36 -35
- {optimum_rbln-0.9.1.dist-info → optimum_rbln-0.9.2a1.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.9.1.dist-info → optimum_rbln-0.9.2a1.dist-info}/licenses/LICENSE +0 -0
|
@@ -36,8 +36,6 @@ logger = get_logger(__name__)
|
|
|
36
36
|
if TYPE_CHECKING:
|
|
37
37
|
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
|
|
38
38
|
|
|
39
|
-
from ....diffusers.modeling_diffusers import RBLNDiffusionMixin, RBLNDiffusionMixinConfig
|
|
40
|
-
|
|
41
39
|
|
|
42
40
|
class RBLNRuntimePixtralVisionModel(RBLNPytorchRuntime):
|
|
43
41
|
mandatory_members = ["main_input_name"]
|
|
@@ -128,8 +126,11 @@ class RBLNRuntimePixtralVisionModel(RBLNPytorchRuntime):
|
|
|
128
126
|
(1, patch_embed_seq.shape[-2]), fill_value=torch.finfo(patch_embed_seq.dtype).min
|
|
129
127
|
)
|
|
130
128
|
attention_mask[:, : h_patched_original * w_patched_original] = 0
|
|
131
|
-
|
|
132
|
-
|
|
129
|
+
if "out" in kwargs:
|
|
130
|
+
super().forward(patch_embed_seq, attention_mask, cos, sin, **kwargs)
|
|
131
|
+
transformer_output = kwargs["out"]
|
|
132
|
+
else:
|
|
133
|
+
transformer_output = super().forward(patch_embed_seq, attention_mask, cos, sin, **kwargs)
|
|
133
134
|
|
|
134
135
|
last_hidden_state_list.append(transformer_output[0][:, : h_patched_original * w_patched_original, :])
|
|
135
136
|
hidden_states = transformer_output[1:]
|
|
@@ -236,12 +237,6 @@ class RBLNPixtralVisionModel(RBLNModel):
|
|
|
236
237
|
}
|
|
237
238
|
return _PixtralVisionModel(model, **wrapper_cfg).eval()
|
|
238
239
|
|
|
239
|
-
@classmethod
|
|
240
|
-
def update_rbln_config_using_pipe(
|
|
241
|
-
cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
|
|
242
|
-
) -> "RBLNDiffusionMixinConfig":
|
|
243
|
-
return rbln_config
|
|
244
|
-
|
|
245
240
|
@classmethod
|
|
246
241
|
def _update_rbln_config(
|
|
247
242
|
cls,
|
|
@@ -309,7 +304,7 @@ class RBLNPixtralVisionModel(RBLNModel):
|
|
|
309
304
|
)
|
|
310
305
|
|
|
311
306
|
output = self.model(
|
|
312
|
-
pixel_values, image_sizes, output_hidden_states=output_hidden_states, return_dict=return_dict
|
|
307
|
+
pixel_values, image_sizes, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs
|
|
313
308
|
)
|
|
314
309
|
|
|
315
310
|
return output
|
|
@@ -23,6 +23,7 @@ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
|
|
|
23
23
|
Qwen2_5_VisionPatchEmbed,
|
|
24
24
|
Qwen2_5_VisionRotaryEmbedding,
|
|
25
25
|
Qwen2_5_VisionTransformerPretrainedModel,
|
|
26
|
+
Qwen2_5_VLModel,
|
|
26
27
|
Qwen2_5_VLRotaryEmbedding,
|
|
27
28
|
)
|
|
28
29
|
|
|
@@ -391,6 +392,14 @@ class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
|
|
|
391
392
|
def can_generate(self):
|
|
392
393
|
return True
|
|
393
394
|
|
|
395
|
+
@classmethod
|
|
396
|
+
def get_pytorch_model(cls, *args, **kwargs):
|
|
397
|
+
model = super().get_pytorch_model(*args, **kwargs)
|
|
398
|
+
model.model.lm_head = model.lm_head
|
|
399
|
+
model.lm_head = None
|
|
400
|
+
del model.lm_head
|
|
401
|
+
return model
|
|
402
|
+
|
|
394
403
|
@classmethod
|
|
395
404
|
def update_kwargs(cls, kwargs):
|
|
396
405
|
kwargs.update(
|
|
@@ -532,7 +541,8 @@ class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
|
|
|
532
541
|
vision_tokens = input_id[0][vision_start_indices + 1]
|
|
533
542
|
image_nums = (vision_tokens == image_token_id).sum()
|
|
534
543
|
video_nums = (vision_tokens == video_token_id).sum()
|
|
535
|
-
position_ids, rope_deltas =
|
|
544
|
+
position_ids, rope_deltas = Qwen2_5_VLModel.get_rope_index(
|
|
545
|
+
self,
|
|
536
546
|
input_id,
|
|
537
547
|
image_grid_thw[image_idx : image_idx + image_nums] if image_grid_thw is not None else None,
|
|
538
548
|
video_grid_thw[video_idx : video_idx + video_nums] if video_grid_thw is not None else None,
|
|
@@ -3,6 +3,7 @@ from typing import Tuple
|
|
|
3
3
|
|
|
4
4
|
import torch
|
|
5
5
|
import torch.nn as nn
|
|
6
|
+
from transformers import PreTrainedModel
|
|
6
7
|
|
|
7
8
|
from ..decoderonly.decoderonly_architecture import DecoderOnlyWrapper, apply_rotary_pos_emb
|
|
8
9
|
|
|
@@ -194,3 +195,24 @@ class Qwen2_5_VL_LanguageModelWrapper(DecoderOnlyWrapper):
|
|
|
194
195
|
past_key_values,
|
|
195
196
|
position_embeds,
|
|
196
197
|
)
|
|
198
|
+
|
|
199
|
+
def convert_to_rbln_class(self, model: PreTrainedModel, max_seq_len: int):
|
|
200
|
+
new_layers = []
|
|
201
|
+
|
|
202
|
+
for layer_idx, layer in enumerate(model.model.language_model.layers):
|
|
203
|
+
is_sliding = layer_idx in self.rbln_config.sliding_window_layers
|
|
204
|
+
new_self_attn = self.get_rbln_attn_class()(
|
|
205
|
+
self.get_attn_layer(layer), self.rbln_config, is_sliding=is_sliding
|
|
206
|
+
)
|
|
207
|
+
new_layer = self.get_rbln_layer_class()(layer, new_self_attn)
|
|
208
|
+
new_layers.append(new_layer)
|
|
209
|
+
|
|
210
|
+
new_model = self.get_rbln_model_class()(
|
|
211
|
+
model.model.language_model,
|
|
212
|
+
new_layers,
|
|
213
|
+
self.rbln_config,
|
|
214
|
+
use_learned_pos_emb=self.__class__._use_learned_pos_emb,
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
new_model = self.get_rbln_causal_lm_class()(model.model, new_model)
|
|
218
|
+
return new_model
|
|
@@ -27,6 +27,7 @@ from transformers.modeling_utils import no_init_weights
|
|
|
27
27
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
|
|
28
28
|
PatchEmbed,
|
|
29
29
|
Qwen2VisionTransformerPretrainedModel,
|
|
30
|
+
Qwen2VLModel,
|
|
30
31
|
Qwen2VLRotaryEmbedding,
|
|
31
32
|
VisionRotaryEmbedding,
|
|
32
33
|
)
|
|
@@ -280,6 +281,14 @@ class RBLNQwen2VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
|
|
|
280
281
|
def can_generate(self):
|
|
281
282
|
return True
|
|
282
283
|
|
|
284
|
+
@classmethod
|
|
285
|
+
def get_pytorch_model(cls, *args, **kwargs):
|
|
286
|
+
model = super().get_pytorch_model(*args, **kwargs)
|
|
287
|
+
model.model.lm_head = model.lm_head
|
|
288
|
+
model.lm_head = None
|
|
289
|
+
del model.lm_head
|
|
290
|
+
return model
|
|
291
|
+
|
|
283
292
|
@classmethod
|
|
284
293
|
def get_input_info(
|
|
285
294
|
cls,
|
|
@@ -402,7 +411,8 @@ class RBLNQwen2VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
|
|
|
402
411
|
vision_tokens = input_id[0][vision_start_indices + 1]
|
|
403
412
|
image_nums = (vision_tokens == image_token_id).sum()
|
|
404
413
|
video_nums = (vision_tokens == video_token_id).sum()
|
|
405
|
-
position_ids, rope_deltas =
|
|
414
|
+
position_ids, rope_deltas = Qwen2VLModel.get_rope_index(
|
|
415
|
+
self,
|
|
406
416
|
input_id,
|
|
407
417
|
image_grid_thw[image_idx : image_idx + image_nums] if image_grid_thw is not None else None,
|
|
408
418
|
video_grid_thw[video_idx : video_idx + video_nums] if video_grid_thw is not None else None,
|
|
@@ -3,6 +3,7 @@ from typing import Tuple
|
|
|
3
3
|
|
|
4
4
|
import torch
|
|
5
5
|
import torch.nn as nn
|
|
6
|
+
from transformers import PreTrainedModel
|
|
6
7
|
|
|
7
8
|
from ..decoderonly.decoderonly_architecture import (
|
|
8
9
|
DecoderOnlyWrapper,
|
|
@@ -139,3 +140,24 @@ class Qwen2VL_LanguageModelWrapper(DecoderOnlyWrapper):
|
|
|
139
140
|
past_key_values,
|
|
140
141
|
position_embeds,
|
|
141
142
|
)
|
|
143
|
+
|
|
144
|
+
def convert_to_rbln_class(self, model: PreTrainedModel, max_seq_len: int):
|
|
145
|
+
new_layers = []
|
|
146
|
+
|
|
147
|
+
for layer_idx, layer in enumerate(model.model.language_model.layers):
|
|
148
|
+
is_sliding = layer_idx in self.rbln_config.sliding_window_layers
|
|
149
|
+
new_self_attn = self.get_rbln_attn_class()(
|
|
150
|
+
self.get_attn_layer(layer), self.rbln_config, is_sliding=is_sliding
|
|
151
|
+
)
|
|
152
|
+
new_layer = self.get_rbln_layer_class()(layer, new_self_attn)
|
|
153
|
+
new_layers.append(new_layer)
|
|
154
|
+
|
|
155
|
+
new_model = self.get_rbln_model_class()(
|
|
156
|
+
model.model.language_model,
|
|
157
|
+
new_layers,
|
|
158
|
+
self.rbln_config,
|
|
159
|
+
use_learned_pos_emb=self.__class__._use_learned_pos_emb,
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
new_model = self.get_rbln_causal_lm_class()(model.model, new_model)
|
|
163
|
+
return new_model
|
|
@@ -29,8 +29,6 @@ logger = get_logger(__name__)
|
|
|
29
29
|
if TYPE_CHECKING:
|
|
30
30
|
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
|
|
31
31
|
|
|
32
|
-
from ....diffusers.modeling_diffusers import RBLNDiffusionMixin, RBLNDiffusionMixinConfig
|
|
33
|
-
|
|
34
32
|
|
|
35
33
|
class _SiglipVisionModel(torch.nn.Module):
|
|
36
34
|
def __init__(
|
|
@@ -65,6 +63,8 @@ class RBLNSiglipVisionModel(RBLNModel):
|
|
|
65
63
|
on RBLN devices, supporting image encoding for multimodal vision-language tasks.
|
|
66
64
|
"""
|
|
67
65
|
|
|
66
|
+
_tp_support = False
|
|
67
|
+
|
|
68
68
|
@classmethod
|
|
69
69
|
def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNSiglipVisionModelConfig) -> torch.nn.Module:
|
|
70
70
|
wrapper_cfg = {
|
|
@@ -74,12 +74,6 @@ class RBLNSiglipVisionModel(RBLNModel):
|
|
|
74
74
|
}
|
|
75
75
|
return _SiglipVisionModel(model, **wrapper_cfg).eval()
|
|
76
76
|
|
|
77
|
-
@classmethod
|
|
78
|
-
def update_rbln_config_using_pipe(
|
|
79
|
-
cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
|
|
80
|
-
) -> "RBLNDiffusionMixinConfig":
|
|
81
|
-
return rbln_config
|
|
82
|
-
|
|
83
77
|
@classmethod
|
|
84
78
|
def _update_rbln_config(
|
|
85
79
|
cls,
|
|
@@ -128,11 +122,6 @@ class RBLNSiglipVisionModel(RBLNModel):
|
|
|
128
122
|
interpolate_pos_encoding: bool = False,
|
|
129
123
|
**kwargs: Any,
|
|
130
124
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
131
|
-
if len(kwargs) > 0 and any(value is not None for value in kwargs.values()):
|
|
132
|
-
logger.warning(
|
|
133
|
-
f"Currently, optimum-rbln does not support kwargs {kwargs.keys()} for {self.__class__.__name__}."
|
|
134
|
-
)
|
|
135
|
-
|
|
136
125
|
output_attentions = output_attentions if output_attentions is not None else self.rbln_config.output_attentions
|
|
137
126
|
output_hidden_states = (
|
|
138
127
|
output_hidden_states if output_hidden_states is not None else self.rbln_config.output_hidden_states
|
|
@@ -156,7 +145,7 @@ class RBLNSiglipVisionModel(RBLNModel):
|
|
|
156
145
|
f"Please compile again with the correct argument."
|
|
157
146
|
)
|
|
158
147
|
|
|
159
|
-
output = super().forward(pixel_values, return_dict=return_dict)
|
|
148
|
+
output = super().forward(pixel_values, return_dict=return_dict, **kwargs)
|
|
160
149
|
return output
|
|
161
150
|
|
|
162
151
|
def _prepare_output(self, output, return_dict):
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
from abc import ABC, abstractmethod
|
|
17
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
|
|
18
|
+
|
|
19
|
+
from torch.nn import Module
|
|
20
|
+
|
|
21
|
+
from ...modeling import RBLNModel
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
if TYPE_CHECKING:
|
|
25
|
+
import rebel
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class LoopProcessor(Module, ABC):
|
|
29
|
+
def __init__(self, model: Union[RBLNModel, "rebel.Runtime"]):
|
|
30
|
+
super().__init__()
|
|
31
|
+
self.model = model
|
|
32
|
+
|
|
33
|
+
def __repr__(self) -> str:
|
|
34
|
+
return repr(self.model)
|
|
35
|
+
|
|
36
|
+
def _is_batch_implemented(self) -> bool:
|
|
37
|
+
return self._forward_batch.__func__ is not LoopProcessor._forward_batch
|
|
38
|
+
|
|
39
|
+
def forward(self, *args, force_loop: bool = False, **kwargs) -> Any:
|
|
40
|
+
if not force_loop and self._is_batch_implemented():
|
|
41
|
+
return self._forward_batch(*args, **kwargs)
|
|
42
|
+
else:
|
|
43
|
+
return self._forward_loop(*args, **kwargs)
|
|
44
|
+
|
|
45
|
+
def _forward_loop(self, *args, **kwargs) -> Any:
|
|
46
|
+
batch_size = self._get_batch_size(*args, **kwargs)
|
|
47
|
+
|
|
48
|
+
if not isinstance(batch_size, int) or batch_size == 0:
|
|
49
|
+
return self._process_outputs([])
|
|
50
|
+
|
|
51
|
+
common_inputs = self._prepare_inputs_before_loop(*args, **kwargs)
|
|
52
|
+
|
|
53
|
+
outputs = []
|
|
54
|
+
for i in range(batch_size):
|
|
55
|
+
item_args, item_kwargs = self._prepare_inputs_for_iteration(i, common_inputs, *args, **kwargs)
|
|
56
|
+
item_output = self.model(*item_args, **item_kwargs)
|
|
57
|
+
outputs.append(item_output)
|
|
58
|
+
|
|
59
|
+
return self._process_outputs(outputs, **kwargs)
|
|
60
|
+
|
|
61
|
+
def _forward_batch(self, *args, **kwargs) -> Any:
|
|
62
|
+
raise NotImplementedError("The batch processing logic (_forward_batch) is not implemented in this class.")
|
|
63
|
+
|
|
64
|
+
@abstractmethod
|
|
65
|
+
def _get_batch_size(self, *args, **kwargs) -> int:
|
|
66
|
+
pass
|
|
67
|
+
|
|
68
|
+
@abstractmethod
|
|
69
|
+
def _prepare_inputs_for_iteration(
|
|
70
|
+
self, index: int, common_inputs: Dict[str, Any], *args, **kwargs
|
|
71
|
+
) -> Tuple[List[Any], Dict[str, Any]]:
|
|
72
|
+
pass
|
|
73
|
+
|
|
74
|
+
def _prepare_inputs_before_loop(self, *args, **kwargs) -> Dict[str, Any]:
|
|
75
|
+
pass
|
|
76
|
+
|
|
77
|
+
@abstractmethod
|
|
78
|
+
def _process_outputs(self, outputs: List[Any], **kwargs) -> Any:
|
|
79
|
+
pass
|
optimum/rbln/utils/submodule.py
CHANGED
|
@@ -17,7 +17,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union
|
|
|
17
17
|
|
|
18
18
|
from transformers import PretrainedConfig
|
|
19
19
|
|
|
20
|
-
from ..configuration_utils import RBLNModelConfig
|
|
20
|
+
from ..configuration_utils import RBLNModelConfig, get_rbln_config_class
|
|
21
21
|
from ..utils.model_utils import get_rbln_model_cls
|
|
22
22
|
|
|
23
23
|
|
|
@@ -41,6 +41,15 @@ class SubModulesMixin:
|
|
|
41
41
|
for submodule_meta, submodule in zip(self._rbln_submodules, rbln_submodules):
|
|
42
42
|
setattr(self, submodule_meta["name"], submodule)
|
|
43
43
|
|
|
44
|
+
@classmethod
|
|
45
|
+
def _get_submodule_config_class(
|
|
46
|
+
cls, cls_name: str, submodule_rbln_config: Dict[str, Any]
|
|
47
|
+
) -> Type[RBLNModelConfig]:
|
|
48
|
+
if isinstance(submodule_rbln_config, dict) and "cls_name" in submodule_rbln_config:
|
|
49
|
+
config_cls_name = submodule_rbln_config["cls_name"]
|
|
50
|
+
return get_rbln_config_class(config_cls_name)
|
|
51
|
+
return get_rbln_config_class(f"RBLN{cls_name}Config")
|
|
52
|
+
|
|
44
53
|
@classmethod
|
|
45
54
|
def _update_submodule_config(
|
|
46
55
|
cls,
|
|
@@ -69,12 +78,19 @@ class SubModulesMixin:
|
|
|
69
78
|
cls_name = torch_submodule.__class__.__name__
|
|
70
79
|
submodule_cls: Type["RBLNModel"] = get_rbln_model_cls(f"RBLN{cls_name}")
|
|
71
80
|
submodule_rbln_config = getattr(rbln_config, submodule_name) or {}
|
|
81
|
+
submodule_config_cls = cls._get_submodule_config_class(cls_name, submodule_rbln_config)
|
|
72
82
|
|
|
73
83
|
if isinstance(submodule_rbln_config, dict):
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
84
|
+
filtered_kwargs = rbln_config.filter_parameters(submodule_config_cls, submodule_rbln_config)
|
|
85
|
+
filtered_kwargs["cls_name"] = submodule_config_cls.__name__
|
|
86
|
+
submodule_rbln_config = submodule_config_cls(**filtered_kwargs)
|
|
87
|
+
elif not isinstance(submodule_rbln_config, submodule_config_cls):
|
|
88
|
+
config_dict = {k: v for k, v in submodule_rbln_config.__dict__.items() if not k.startswith("_")}
|
|
89
|
+
filtered_kwargs = rbln_config.filter_parameters(submodule_config_cls, config_dict)
|
|
90
|
+
filtered_kwargs["cls_name"] = submodule_config_cls.__name__
|
|
91
|
+
submodule_rbln_config = submodule_config_cls(**filtered_kwargs)
|
|
92
|
+
|
|
93
|
+
setattr(rbln_config, submodule_name, submodule_rbln_config)
|
|
78
94
|
submodule_rbln_config = submodule_cls._update_submodule_config(model, submodule_rbln_config, preprocessors)
|
|
79
95
|
|
|
80
96
|
rbln_submodule = submodule_cls.from_model(
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.9.
|
|
3
|
+
Version: 0.9.2a1
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -29,7 +29,7 @@ Requires-Dist: packaging>=24.1
|
|
|
29
29
|
Requires-Dist: torch==2.7.0
|
|
30
30
|
Requires-Dist: torchaudio<=2.7.0
|
|
31
31
|
Requires-Dist: torchvision<=0.22.0
|
|
32
|
-
Requires-Dist: transformers==4.
|
|
32
|
+
Requires-Dist: transformers==4.53.1
|
|
33
33
|
Description-Content-Type: text/markdown
|
|
34
34
|
|
|
35
35
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
optimum/rbln/__init__.py,sha256=DAJM5PWAYFiWVlyxVXUvj3CaFOEhX1yhEfhIt1LxL-A,18714
|
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
|
3
|
-
optimum/rbln/configuration_utils.py,sha256=
|
|
2
|
+
optimum/rbln/__version__.py,sha256=qn9EdLZXcFp0a70h4h3Ss-m7WAiSHVr0nYKWmxywqFE,712
|
|
3
|
+
optimum/rbln/configuration_utils.py,sha256=nAzDwa_2-X32bikEJ2zbRZIk68s50hAP7gTmKN07Ig0,38080
|
|
4
4
|
optimum/rbln/modeling.py,sha256=IZ8loagxm--2BcqTl16KRHUR3hkccpeaY2grOWOtwqk,14473
|
|
5
5
|
optimum/rbln/modeling_base.py,sha256=poXfHZCAlFd28MY9dvMi7tC2RytLx77Lee2XGS_KeZg,27684
|
|
6
6
|
optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
|
|
@@ -16,12 +16,12 @@ optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py,sh
|
|
|
16
16
|
optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py,sha256=11kOnB-o5MjCJHDQvEhGxXpBNZLC1r3HU3-wiZ_3bL0,3611
|
|
17
17
|
optimum/rbln/diffusers/configurations/models/configuration_vq_model.py,sha256=GbJKrTOUdvpcGQ786IIKF0rqkRrvZh_E5n3o9bLN8uY,3240
|
|
18
18
|
optimum/rbln/diffusers/configurations/pipelines/__init__.py,sha256=RfJXQiYvgGc3Rp7JYk5s0AQd0XB5JCAb37_riGWQAYg,1268
|
|
19
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=
|
|
20
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py,sha256=
|
|
21
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=
|
|
22
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=
|
|
23
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=
|
|
24
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=
|
|
19
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=ALwMwJret_KQKXld-Y-ZRJh_Wp4qza1xZsbOEUJutg0,14525
|
|
20
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py,sha256=niblhj4brobRCHF0NoVfdIhChUsup2O9IvFddnopIUc,4701
|
|
21
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=_lNqy0OFA4sIsn3tOvYwR6X_-y3JTN67ePTWBkt2pFc,16598
|
|
22
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=NnisLdUkW3QQfzn8ZtWUbBwXZF6JF3vj9UI0MthH0EM,6625
|
|
23
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=vDb7vqH2XycB86L5JH-ofXfdngU2BseJvVw7YXrzmgg,8039
|
|
24
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=qX6-HvOt8SBstEeigWWcor-z2bmyoqAucjRirNfma5o,7161
|
|
25
25
|
optimum/rbln/diffusers/models/__init__.py,sha256=4xHGuJ0HmZXBt6Xc8rVmGKvvQ366yxJarV5Vg_4-cso,1541
|
|
26
26
|
optimum/rbln/diffusers/models/controlnet.py,sha256=6owledPe9BXhbZOG8lbuuYvpBU0UrQV7zmat6SoMXOM,10585
|
|
27
27
|
optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=kpINW4bWwy-Q2doPME4nZ8gXRmkK2DRv2kDdbZuQ3m8,738
|
|
@@ -44,7 +44,7 @@ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha25
|
|
|
44
44
|
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=2w6dmGQuBWqVoocn27z2yMkG7fL7_MVDBcQNJPJsRXU,45300
|
|
45
45
|
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=HX56itORMqXLjZcwv25C-_z3JyZn3v6BpfIjsrDO3mE,46640
|
|
46
46
|
optimum/rbln/diffusers/pipelines/cosmos/__init__.py,sha256=h2j6S8IJPVHeNU8qmW9vyXMgHBw0d7kQcuMAA5YoHPU,795
|
|
47
|
-
optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py,sha256=
|
|
47
|
+
optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py,sha256=BRHWXCxRO5l0YTFTBSkS4sd5Hx8YeuHB14Fr2copYFY,3747
|
|
48
48
|
optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py,sha256=Hmklj-sGNtUst6sTLLDXyQzt7zFoNIHytZpPQ-V1CPw,16676
|
|
49
49
|
optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py,sha256=biveGIpJVGL0rH_YLgynvt47QQA41QdjRtY7G32jDXY,5638
|
|
50
50
|
optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py,sha256=96dHWMIe1x_Q3G64fsNhulfjmd_PrSXRt0GwgNjYMlg,5645
|
|
@@ -94,21 +94,21 @@ optimum/rbln/transformers/models/bert/bert_architecture.py,sha256=cZgf-B-FV8qbeJ
|
|
|
94
94
|
optimum/rbln/transformers/models/bert/configuration_bert.py,sha256=nEZnX6LXpLKWaoPEd4pWSysw9h-PLb2ld0ibC3dcJ7w,1611
|
|
95
95
|
optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=7MQZS11k4__oyeni5ek2SzRf-gtD3_hMKl_oOzN7_XQ,2263
|
|
96
96
|
optimum/rbln/transformers/models/blip_2/__init__.py,sha256=L01gPXcUCa8Vg-bcng20vZvBIN_jlqCzwUSFuq0QOag,855
|
|
97
|
-
optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=
|
|
98
|
-
optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=
|
|
97
|
+
optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=8eSilBwcPWQhBg-oilCmDPo-DN6V5lpLMlTB7WPknII,4630
|
|
98
|
+
optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=_IGDGS7VJfw5Qi5AJYCjduRVlWHGADhSAiTY42Jppys,16389
|
|
99
99
|
optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
|
|
100
100
|
optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=Ea8TCVmMayydfw9p4kTP3UdtvoaPWf4Z4claB61JuE4,4175
|
|
101
|
-
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=
|
|
101
|
+
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=BLAYJAtv_2ZnKOlZ8iDBr2Su3bKM_eMWeUSK9MOaj7I,13198
|
|
102
102
|
optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic0YkVK24CW5hZBPa-0L8so6Y,119
|
|
103
|
-
optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=
|
|
104
|
-
optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=
|
|
105
|
-
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=
|
|
103
|
+
optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=TCOW3v5l9fIt1uIFtWa8ZAxq1cdCER8gXWjmbLQD20M,8079
|
|
104
|
+
optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=_HuZBVV-ponml95UapkYpRhffZy53-9jSZknx7hID7o,3348
|
|
105
|
+
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=YnAUMTbcX2idRLMkZ3Qiv-GZFodfCun5-3sDfiIz77s,17955
|
|
106
106
|
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=w3VZOIBYaHXVdnuhK4y0zWAj0IAv7_5LGTJYaz9oYmI,1056
|
|
107
107
|
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=yUhB9yMFVbq7B9WtAM6m8cQ4K0U3a2N-TU34N5zvjRM,15180
|
|
108
108
|
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=ySsiU0Acj5enJW-SqtFMAfBeH0HeqlhCd78QlpKJNQw,42780
|
|
109
109
|
optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=v3mfIlQImQkYYr-rPn7rQR3GYdVUhALRttEduLI7H9c,20012
|
|
110
110
|
optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=zabSgQd2VzHhkpbhUFW5Z-CjYB1JvSJOb5yXKjXCQV0,4326
|
|
111
|
-
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=
|
|
111
|
+
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=1umcuZg_ifIyVBfp_6oHQJvZsp_y2UCiv45-rv89_VA,32434
|
|
112
112
|
optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
|
|
113
113
|
optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
|
|
114
114
|
optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=tTmsVaW9Wb2WD3nKRLwp7swn3hbMvgwUEJwwVIfNYEc,1008
|
|
@@ -127,10 +127,10 @@ optimum/rbln/transformers/models/gemma/configuration_gemma.py,sha256=H1nVp8HBJxx
|
|
|
127
127
|
optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=4Ry2pFfWg0sVijgTP9SYt1vwJr8DsCVcusg-z0ePX5c,943
|
|
128
128
|
optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=AsuFnrwZcRCKtF39BpHHNea0S34N2lNWKV4qZimmY8I,4170
|
|
129
129
|
optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
|
|
130
|
-
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=
|
|
130
|
+
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=NJJfarzbWJc3pm0XvICN7D0FFF9nqidagIEoOvYLixQ,4696
|
|
131
131
|
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=fpLDAXCe5paWVsfc0tL59JkRQMRF-WNgIzOIb_QpSLU,6191
|
|
132
132
|
optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=vYQ9sjRlkfamxZca_hVMQI0ylKeExsV02gOWaYVMjyg,9640
|
|
133
|
-
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=
|
|
133
|
+
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=WQ5qRZcM2EYLNqogjy-I04abwZXLZilCGFM4vO-MH4c,25381
|
|
134
134
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
|
|
135
135
|
optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
|
|
136
136
|
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=MyAWReXmyuHnDpW5HI_TI7psyJZxLujZ9KT5XnNm7nA,2802
|
|
@@ -140,18 +140,18 @@ optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,
|
|
|
140
140
|
optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=2BGhyKa7x6fiiZPaLy_S7zKr2NOdJnMLFMf6CEcegGE,26674
|
|
141
141
|
optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=bXAOs2QH4sy2UFoFLUSM6u1_VHouUT5COERLQX20F6Y,46897
|
|
142
142
|
optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
|
|
143
|
-
optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=
|
|
144
|
-
optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=
|
|
143
|
+
optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=7IENNxflZL8ZH3YRqtCXfYdKs-RdUeGiPzq-C03te_s,3679
|
|
144
|
+
optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=ajgLsQsU4n5NwcCqZvG7gswXhjPTHeyTjwjhje5Z7xI,19936
|
|
145
145
|
optimum/rbln/transformers/models/llama/__init__.py,sha256=6tgx9-qlM5r9ouoeZEouVRNLs3r6Sku-cuXNkyfeFHc,746
|
|
146
146
|
optimum/rbln/transformers/models/llama/configuration_llama.py,sha256=_uxfH5kaGbeJTMJfESYn0Vg3OEkINS2ShGtVQTeOcs4,1578
|
|
147
147
|
optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=S7MCPfyjG5eUqgaS-QNBB0ApUD6wnb5fR0RHq7k7-pA,728
|
|
148
148
|
optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=uRxEXYhHOuEwPjBo_Ps3eFU1uwScasla6P8HwsQgAu0,4214
|
|
149
149
|
optimum/rbln/transformers/models/llava/__init__.py,sha256=FaVLgBIqKGjT_nvwYO9k9BVqrzH_Ym3DfjGRCSUhG2s,734
|
|
150
|
-
optimum/rbln/transformers/models/llava/configuration_llava.py,sha256=
|
|
151
|
-
optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=
|
|
150
|
+
optimum/rbln/transformers/models/llava/configuration_llava.py,sha256=c1rie8LCypxlsT7SNjZJE07_xCLAasV4EBs97o1757Q,2998
|
|
151
|
+
optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=R_wDTJDNVweivDIsZ0eDd5Z21NEcH9O3xdTV9z8mpjQ,20239
|
|
152
152
|
optimum/rbln/transformers/models/llava_next/__init__.py,sha256=kDXKr7wMkp1XqE__DER2B8kQF_NYMxhzsQS5ytGg56I,752
|
|
153
|
-
optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=
|
|
154
|
-
optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=
|
|
153
|
+
optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=Sz8L8p_23T7xw7pkUmW5pyK_wZclph1p_kQYbslc8m8,2708
|
|
154
|
+
optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=ZGVTOaAOpUOvyVLfSsHpfje4W8FDR_PV6MhS9QNj-Uk,21230
|
|
155
155
|
optimum/rbln/transformers/models/midm/__init__.py,sha256=IC3FETwgYinbp3wDj7tp4zIHJhbqM-c6GfTRdYcMNj8,913
|
|
156
156
|
optimum/rbln/transformers/models/midm/configuration_midm.py,sha256=DxhcSJlApxfi00XxYmSkKZ6bY9vfLXT0zh-oMKkZot0,1365
|
|
157
157
|
optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=RlkmNhaWE5h_awt9aTtR8VZfshNTah0IoUfD2Z9vfxI,5055
|
|
@@ -174,7 +174,7 @@ optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=r7B0NlqwIGjm-MmE-h5_
|
|
|
174
174
|
optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=ygJIJvn20bnxE9nHKo4CBW9_1FJsz7MEVolB5asTmI0,3684
|
|
175
175
|
optimum/rbln/transformers/models/pixtral/__init__.py,sha256=fhclVAWnIDsfMfC-TW6mYrJXxgyehlLaadK64LOShH4,716
|
|
176
176
|
optimum/rbln/transformers/models/pixtral/configuration_pixtral.py,sha256=b79zkJB1jzHx4S1wTe-Ju_Yel_PS5Q8bfmlQPzkchKU,1677
|
|
177
|
-
optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=
|
|
177
|
+
optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=P1lzi6JOTB43nBfCOonUDYhIXoMq6DnQpcvGfOO7ZP8,12252
|
|
178
178
|
optimum/rbln/transformers/models/pixtral/pixtral_architecture.py,sha256=s-6C9DtHmSZEGJXo5b95RwZE2A5aR6ELMHlj7aK6CIg,2950
|
|
179
179
|
optimum/rbln/transformers/models/qwen2/__init__.py,sha256=h9dWJ3HX4xspMLt44g7r3UGU8QL03Ynmz_Mi3Vlu6UA,746
|
|
180
180
|
optimum/rbln/transformers/models/qwen2/configuration_qwen2.py,sha256=tTWcPOk_ycZvdSPlal9S5elTmWZAX2BbpZP5Ok2ySwI,1567
|
|
@@ -182,12 +182,12 @@ optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=VOboPJF1rvvSVWkH
|
|
|
182
182
|
optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
|
|
183
183
|
optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
|
|
184
184
|
optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=WHLH72i7Pe16Ee1waMixMsR3eD6TsMGN08QD82qdVvw,6162
|
|
185
|
-
optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=
|
|
186
|
-
optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=
|
|
185
|
+
optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=pI1TNDMO-ZiqXtoHboxLlqfplZbRh22lT1gxhqy6Jtg,26939
|
|
186
|
+
optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=y0W5qxrke7JbFNkPTkEOC8TvKnAYZP9bNsQK_IYvxnA,8340
|
|
187
187
|
optimum/rbln/transformers/models/qwen2_vl/__init__.py,sha256=O3t6zKda92CnZDzEnz_dcisMOQ71-OOJxElXzKCH5e0,849
|
|
188
188
|
optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py,sha256=mi5CqSKZ77G5Fib3g8a86_4CEB6lb-qJOhDnSqslvNk,4714
|
|
189
|
-
optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=
|
|
190
|
-
optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=
|
|
189
|
+
optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py,sha256=YO8cKBEb7dU9D--gidYsPyhS2arOwgVqDe3tLlGHdx4,20424
|
|
190
|
+
optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py,sha256=_5Erjk7udq7YFVVtx4XeWaIzpDlEZKJPu2bBSVBGfKE,5728
|
|
191
191
|
optimum/rbln/transformers/models/qwen3/__init__.py,sha256=tI4KwvXpD35dUUaa8aLUXpWoU9gJGcmKXeywOlH14ZE,746
|
|
192
192
|
optimum/rbln/transformers/models/qwen3/configuration_qwen3.py,sha256=BFRPggnH4VlsXlOa19C6KAID-bPgQ8ooQ29dvogh5zk,2102
|
|
193
193
|
optimum/rbln/transformers/models/qwen3/modeling_qwen3.py,sha256=S05efusxjXJhMMYztstGes6ZbqkSr5I4fHFaLSYVG8c,5760
|
|
@@ -204,7 +204,7 @@ optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=G7Rkx4paSDlS
|
|
|
204
204
|
optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=jmBgj7BkUS_S-T-9DI53rE3KXUHSCoIofr7k5JDVPrU,20024
|
|
205
205
|
optimum/rbln/transformers/models/siglip/__init__.py,sha256=X1Fc1GUnJ2EIxFx45nbeoW-T2t0OyP3W73C0HD8Vowo,712
|
|
206
206
|
optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=Fy-ANF91bQno_QVd4ZpyRs-uNgC_XRyBRScBg2uKM6w,3029
|
|
207
|
-
optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=
|
|
207
|
+
optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=9_CeyL9Pgd-ZU7XfqMyoK-mP-ZYL-tia7YyI4wxgKMo,7509
|
|
208
208
|
optimum/rbln/transformers/models/swin/__init__.py,sha256=gUsLDB8ceNxt53Cf69OT32JuZoRdmmIsRfjRdHTLDd0,698
|
|
209
209
|
optimum/rbln/transformers/models/swin/configuration_swin.py,sha256=JE4oMdPhJmRwXxKUWQ3KHccthDLEcDiXEzjMcFx71K0,1690
|
|
210
210
|
optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=npQgTCEkonG41HzHzEk-a13NFLJHA-K82HFW2VyR0xc,13968
|
|
@@ -232,6 +232,7 @@ optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256
|
|
|
232
232
|
optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=EZd3flRUEE38DYtdqEnG70LV7fHhkamRZV51xrVyjYI,1093
|
|
233
233
|
optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
234
234
|
optimum/rbln/transformers/utils/rbln_quantization.py,sha256=pORshQUgTInNaibUtd0HL-T8bKW5wuulZs2q0Oshppc,21659
|
|
235
|
+
optimum/rbln/transformers/utils/rbln_runtime_wrapper.py,sha256=l_-zWpRrp6hp-tDANTrEbspIZH-AUSi_jNJICns_QgE,2672
|
|
235
236
|
optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
|
|
236
237
|
optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
|
|
237
238
|
optimum/rbln/utils/depreacate_utils.py,sha256=uKxl3ENUCNaZXPnaDQvNxrH8hUIWdBWfZH6BM7ZV__4,385
|
|
@@ -241,8 +242,8 @@ optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE
|
|
|
241
242
|
optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
|
|
242
243
|
optimum/rbln/utils/runtime_utils.py,sha256=R6uXDbeJP03-FWdd4vthNe2D4aCra5n12E3WB1ifiGM,7933
|
|
243
244
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
|
244
|
-
optimum/rbln/utils/submodule.py,sha256=
|
|
245
|
-
optimum_rbln-0.9.
|
|
246
|
-
optimum_rbln-0.9.
|
|
247
|
-
optimum_rbln-0.9.
|
|
248
|
-
optimum_rbln-0.9.
|
|
245
|
+
optimum/rbln/utils/submodule.py,sha256=SKLnM3KsX8_rv3HauO4oB2-JSjzuadQjRwo_BhMUzLI,6362
|
|
246
|
+
optimum_rbln-0.9.2a1.dist-info/METADATA,sha256=W4UNtTtoscKjFGIsR1j4Ue8Xk1uvhSE1UzAL_oLwe2c,5350
|
|
247
|
+
optimum_rbln-0.9.2a1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
248
|
+
optimum_rbln-0.9.2a1.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
|
249
|
+
optimum_rbln-0.9.2a1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|