optimum-rbln 0.8.4a0__py3-none-any.whl → 0.8.4a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '0.8.4a0'
32
- __version_tuple__ = version_tuple = (0, 8, 4, 'a0')
31
+ __version__ = version = '0.8.4a1'
32
+ __version_tuple__ = version_tuple = (0, 8, 4, 'a1')
33
33
 
34
34
  __commit_id__ = commit_id = None
@@ -248,9 +248,6 @@ class RBLNAutoConfig:
248
248
  if key[5:] not in RUNTIME_KEYWORDS and key[5:] not in cls.submodules
249
249
  }
250
250
 
251
- if len(rbln_kwargs) > 0:
252
- raise ValueError(f"Cannot set the following arguments: {list(rbln_kwargs.keys())}")
253
-
254
251
  # Process submodule's rbln_config
255
252
  for submodule in cls.submodules:
256
253
  if submodule not in config_file:
@@ -265,6 +262,16 @@ class RBLNAutoConfig:
265
262
 
266
263
  config_file.update(rbln_runtime_kwargs)
267
264
 
265
+ rbln_config = cls(**config_file)
266
+
267
+ if len(rbln_kwargs) > 0:
268
+ for key, value in rbln_kwargs.items():
269
+ if getattr(rbln_config, key) != value:
270
+ raise ValueError(
271
+ f"Cannot set the following arguments: {list(rbln_kwargs.keys())} "
272
+ f"Since the value is already set to {getattr(rbln_config, key)}"
273
+ )
274
+
268
275
  if return_unused_kwargs:
269
276
  return cls(**config_file), kwargs
270
277
  else:
@@ -130,7 +130,7 @@ class RBLNDiffusionMixin:
130
130
  cls,
131
131
  model_id: str,
132
132
  *,
133
- export: bool = False,
133
+ export: bool = None,
134
134
  model_save_dir: Optional[PathLike] = None,
135
135
  rbln_config: Dict[str, Any] = {},
136
136
  lora_ids: Optional[Union[str, List[str]]] = None,
@@ -181,6 +181,20 @@ class RBLNDiffusionMixin:
181
181
  """
182
182
  rbln_config, kwargs = cls.get_rbln_config_class().initialize_from_kwargs(rbln_config, **kwargs)
183
183
 
184
+ if export is None:
185
+ export = any(
186
+ not RBLNModel._is_compiled(
187
+ model_id,
188
+ token=kwargs.get("token"),
189
+ revision=kwargs.get("revision"),
190
+ force_download=kwargs.get("force_download", False),
191
+ cache_dir=kwargs.get("cache_dir"),
192
+ subfolder=submodule_name,
193
+ local_files_only=kwargs.get("local_files_only", False),
194
+ )
195
+ for submodule_name in cls._submodules
196
+ )
197
+
184
198
  if export:
185
199
  # keep submodules if user passed any of them.
186
200
  passed_submodules = {
@@ -14,7 +14,8 @@
14
14
 
15
15
 
16
16
  import importlib
17
- from typing import Type
17
+ from pathlib import Path
18
+ from typing import Type, Union
18
19
 
19
20
  from diffusers.models.controlnets import ControlNetUnionModel
20
21
  from diffusers.pipelines.auto_pipeline import (
@@ -42,7 +43,13 @@ class RBLNAutoPipelineBase:
42
43
  _model_mapping_names = None
43
44
 
44
45
  @classmethod
45
- def get_rbln_cls(cls, pretrained_model_name_or_path, export=True, **kwargs):
46
+ def get_rbln_cls(cls, pretrained_model_name_or_path: Union[str, Path], export: bool = None, **kwargs):
47
+ if isinstance(pretrained_model_name_or_path, Path):
48
+ pretrained_model_name_or_path = pretrained_model_name_or_path.as_posix()
49
+
50
+ if export is None:
51
+ export = not cls._is_compiled_pipeline(pretrained_model_name_or_path, **kwargs)
52
+
46
53
  if export:
47
54
  hf_model_class = cls.infer_hf_model_class(pretrained_model_name_or_path, **kwargs)
48
55
  rbln_class_name = convert_hf_to_rbln_model_name(hf_model_class.__name__)
@@ -66,7 +73,7 @@ class RBLNAutoPipelineBase:
66
73
  return rbln_cls
67
74
 
68
75
  @classmethod
69
- def get_rbln_model_cls_name(cls, pretrained_model_name_or_path, **kwargs):
76
+ def get_rbln_model_cls_name(cls, pretrained_model_name_or_path: Union[str, Path], **kwargs):
70
77
  """
71
78
  Retrieve the path to the compiled model directory for a given RBLN model.
72
79
 
@@ -86,10 +93,36 @@ class RBLNAutoPipelineBase:
86
93
 
87
94
  return model_index_config["_class_name"]
88
95
 
96
+ @classmethod
97
+ def _is_compiled_pipeline(
98
+ cls,
99
+ pretrained_model_name_or_path: Union[str, Path],
100
+ cache_dir=None,
101
+ force_download=False,
102
+ proxies=None,
103
+ token=None,
104
+ local_files_only=False,
105
+ revision=None,
106
+ **kwargs,
107
+ ):
108
+ config: dict = cls.load_config(
109
+ pretrained_model_name_or_path,
110
+ cache_dir=cache_dir,
111
+ force_download=force_download,
112
+ proxies=proxies,
113
+ token=token,
114
+ local_files_only=local_files_only,
115
+ revision=revision,
116
+ )
117
+ for value in config.values():
118
+ if isinstance(value, list) and len(value) > 0 and value[0] == "optimum.rbln":
119
+ return True
120
+ return False
121
+
89
122
  @classmethod
90
123
  def infer_hf_model_class(
91
124
  cls,
92
- pretrained_model_or_path,
125
+ pretrained_model_or_path: Union[str, Path],
93
126
  cache_dir=None,
94
127
  force_download=False,
95
128
  proxies=None,
@@ -343,11 +343,37 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
343
343
  rbln_config, kwargs = config_cls.initialize_from_kwargs(rbln_config, **kwargs)
344
344
  return rbln_config, kwargs
345
345
 
346
+ @classmethod
347
+ def _is_compiled(
348
+ cls,
349
+ model_id: Union[str, Path],
350
+ token: Optional[Union[bool, str]] = None,
351
+ revision: Optional[str] = None,
352
+ force_download: bool = False,
353
+ cache_dir: Optional[str] = None,
354
+ subfolder: str = "",
355
+ local_files_only: bool = False,
356
+ ) -> bool:
357
+ # Check if the model is already compiled.
358
+ try:
359
+ cls._load_compiled_model_dir(
360
+ model_id=model_id,
361
+ token=token,
362
+ revision=revision,
363
+ force_download=force_download,
364
+ cache_dir=cache_dir,
365
+ subfolder=subfolder,
366
+ local_files_only=local_files_only,
367
+ )
368
+ return True
369
+ except (FileNotFoundError, KeyError):
370
+ return False
371
+
346
372
  @classmethod
347
373
  def from_pretrained(
348
374
  cls: Type["RBLNBaseModel"],
349
375
  model_id: Union[str, Path],
350
- export: bool = False,
376
+ export: bool = None,
351
377
  rbln_config: Optional[Union[Dict, RBLNModelConfig]] = None,
352
378
  **kwargs: Any,
353
379
  ) -> "RBLNBaseModel":
@@ -357,7 +383,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
357
383
 
358
384
  Args:
359
385
  model_id: The model id of the pre-trained model to be loaded. It can be downloaded from the HuggingFace model hub or a local path, or a model id of a compiled model using the RBLN Compiler.
360
- export: A boolean flag to indicate whether the model should be compiled.
386
+ export: A boolean flag to indicate whether the model should be compiled. If None, it will be determined based on the existence of the compiled model files in the model_id.
361
387
  rbln_config: Configuration for RBLN model compilation and runtime. This can be provided as a dictionary or an instance of the model's configuration class (e.g., `RBLNLlamaForCausalLMConfig` for Llama models).
362
388
  For detailed configuration options, see the specific model's configuration class documentation.
363
389
 
@@ -369,6 +395,18 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
369
395
 
370
396
  if isinstance(model_id, Path):
371
397
  model_id = model_id.as_posix()
398
+
399
+ if export is None:
400
+ export = not cls._is_compiled(
401
+ model_id=model_id,
402
+ token=kwargs.get("token"),
403
+ revision=kwargs.get("revision"),
404
+ force_download=kwargs.get("force_download", False),
405
+ cache_dir=kwargs.get("cache_dir"),
406
+ subfolder=kwargs.get("subfolder", ""),
407
+ local_files_only=kwargs.get("local_files_only", False),
408
+ )
409
+
372
410
  from_pretrained_method = cls._export if export else cls._from_pretrained
373
411
  return from_pretrained_method(model_id=model_id, **kwargs, rbln_config=rbln_config)
374
412
 
@@ -14,9 +14,10 @@
14
14
  import importlib
15
15
  import inspect
16
16
  import warnings
17
- from typing import Type
17
+ from pathlib import Path
18
+ from typing import Any, Type, Union
18
19
 
19
- from transformers import AutoConfig, PretrainedConfig
20
+ from transformers import AutoConfig, PretrainedConfig, PreTrainedModel
20
21
  from transformers.dynamic_module_utils import get_class_from_dynamic_module
21
22
  from transformers.models.auto.auto_factory import _get_model_class
22
23
 
@@ -43,10 +44,10 @@ class _BaseAutoModelClass:
43
44
  @classmethod
44
45
  def get_rbln_cls(
45
46
  cls,
46
- pretrained_model_name_or_path,
47
- *args,
48
- export=True,
49
- **kwargs,
47
+ pretrained_model_name_or_path: Union[str, Path],
48
+ *args: Any,
49
+ export: bool = None,
50
+ **kwargs: Any,
50
51
  ):
51
52
  """
52
53
  Determine the appropriate RBLN model class based on the given model ID and configuration.
@@ -59,6 +60,20 @@ class _BaseAutoModelClass:
59
60
  Returns:
60
61
  RBLNBaseModel: The corresponding RBLN model class.
61
62
  """
63
+ if isinstance(pretrained_model_name_or_path, Path):
64
+ pretrained_model_name_or_path = pretrained_model_name_or_path.as_posix()
65
+
66
+ if export is None:
67
+ export = not RBLNBaseModel._is_compiled(
68
+ model_id=pretrained_model_name_or_path,
69
+ token=kwargs.get("token"),
70
+ revision=kwargs.get("revision"),
71
+ force_download=kwargs.get("force_download", False),
72
+ cache_dir=kwargs.get("cache_dir"),
73
+ subfolder=kwargs.get("subfolder", ""),
74
+ local_files_only=kwargs.get("local_files_only", False),
75
+ )
76
+
62
77
  if export:
63
78
  hf_model_class = cls.infer_hf_model_class(pretrained_model_name_or_path, **kwargs)
64
79
  rbln_class_name = convert_hf_to_rbln_model_name(hf_model_class.__name__)
@@ -85,9 +100,9 @@ class _BaseAutoModelClass:
85
100
  @classmethod
86
101
  def infer_hf_model_class(
87
102
  cls,
88
- pretrained_model_name_or_path,
89
- *args,
90
- **kwargs,
103
+ pretrained_model_name_or_path: Union[str, Path],
104
+ *args: Any,
105
+ **kwargs: Any,
91
106
  ):
92
107
  """
93
108
  Infer the HuggingFace model class based on the configuration or model name.
@@ -140,7 +155,7 @@ class _BaseAutoModelClass:
140
155
  return model_class
141
156
 
142
157
  @classmethod
143
- def get_rbln_model_cls_name(cls, pretrained_model_name_or_path, **kwargs):
158
+ def get_rbln_model_cls_name(cls, pretrained_model_name_or_path: Union[str, Path], **kwargs):
144
159
  """
145
160
  Retrieve the path to the compiled model directory for a given RBLN model.
146
161
 
@@ -163,17 +178,17 @@ class _BaseAutoModelClass:
163
178
  return rbln_config.rbln_model_cls_name
164
179
 
165
180
  @classmethod
166
- def from_pretrained(cls, model_id, *args, **kwargs):
181
+ def from_pretrained(cls, model_id: Union[str, Path], *args, **kwargs):
167
182
  rbln_cls = cls.get_rbln_cls(model_id, *args, **kwargs)
168
183
  return rbln_cls.from_pretrained(model_id, *args, **kwargs)
169
184
 
170
185
  @classmethod
171
- def from_model(cls, model, *args, **kwargs):
186
+ def from_model(cls, model: PreTrainedModel, *args, **kwargs):
172
187
  rbln_cls = get_rbln_model_cls(f"RBLN{model.__class__.__name__}")
173
188
  return rbln_cls.from_model(model, *args, **kwargs)
174
189
 
175
190
  @staticmethod
176
- def register(rbln_cls: Type[RBLNBaseModel], exist_ok=False):
191
+ def register(rbln_cls: Type[RBLNBaseModel], exist_ok: bool = False):
177
192
  """
178
193
  Register a new RBLN model class.
179
194
 
@@ -357,10 +357,16 @@ class _GroundingDinoMultiscaleDeformableAttention(torch.nn.Module):
357
357
  batch_size, num_queries, _ = hidden_states.shape
358
358
  batch_size, sequence_length, _ = encoder_hidden_states.shape
359
359
  # Ignore copy
360
- if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
361
- raise ValueError(
362
- "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
360
+ if torch.compiler.is_exporting():
361
+ torch._check(
362
+ (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum().item() == sequence_length,
363
+ "Make sure to align the spatial shapes with the sequence length of the encoder hidden states",
363
364
  )
365
+ else:
366
+ if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
367
+ raise ValueError(
368
+ "Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
369
+ )
364
370
 
365
371
  value = self.value_proj(encoder_hidden_states)
366
372
  if attention_mask is not None:
@@ -162,7 +162,13 @@ class TimeSeriesTransformersDecoder(nn.Module):
162
162
  attention_mask = _prepare_4d_causal_attention_mask(attention_mask, input_shape, inputs_embeds, cache_position)
163
163
 
164
164
  hidden_states = self.value_embedding(inputs_embeds)
165
- embed_pos = self.embed_positions.weight[cache_position + self.config.context_length]
165
+ embed_idx = cache_position + self.config.context_length
166
+ if torch.compiler.is_exporting():
167
+ embed_idx = embed_idx.item()
168
+ torch._check_is_size(embed_idx)
169
+ torch._check(embed_idx >= 0)
170
+ torch._check(embed_idx < len(self.embed_positions.weight))
171
+ embed_pos = self.embed_positions.weight[embed_idx]
166
172
  hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
167
173
 
168
174
  # iterate decoder_layer
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.8.4a0
3
+ Version: 0.8.4a1
4
4
  Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -1,10 +1,10 @@
1
1
  optimum/rbln/__init__.py,sha256=32ouGKDGus9k5_kD27CxP8jIQOw66zpDTfS0xs1XlfE,18298
2
- optimum/rbln/__version__.py,sha256=YNGYpHnDhFwKFL4ZTx3BIJGtmgon0Pv2G2E10GhWRaY,712
3
- optimum/rbln/configuration_utils.py,sha256=KtbDM7HnFGiO0PsuvkrCE3R9NF6OJVmV_fyQcQNrmUk,34469
2
+ optimum/rbln/__version__.py,sha256=Xldcu_i01nl8cPxjp-cO8CxxNYyVzFEpw4QQPEW-cj4,712
3
+ optimum/rbln/configuration_utils.py,sha256=WNubd8EJIrdBkLOGT2UJJorgNL3lzhjg3a4bihAIptY,34761
4
4
  optimum/rbln/modeling.py,sha256=cAIPWEw5DGzUWeqjCbocRhU6OO3jyhVGW60AmBLh1Nw,14134
5
- optimum/rbln/modeling_base.py,sha256=kQsBfUoDncNgR5P8_BvyzY6H_4YEXOBzN20lFmOZV_g,26190
5
+ optimum/rbln/modeling_base.py,sha256=97ju0uHJXB7PaorKaspf-FbLfsaHy0HwRVLJqtVscXA,27574
6
6
  optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
7
- optimum/rbln/diffusers/modeling_diffusers.py,sha256=TAuMb7PSMjNwK7mh5ItE_CtAEgYeZKI27XkFFmxjHlQ,19902
7
+ optimum/rbln/diffusers/modeling_diffusers.py,sha256=3bzL0ZH7XyS8nGMWRSMIGjl9H3H2fhiZgmPaIF50mwg,20464
8
8
  optimum/rbln/diffusers/configurations/__init__.py,sha256=vMRnPY4s-Uju43xP038D2EA18X_mhy2YfsZVpSU-VoA,1322
9
9
  optimum/rbln/diffusers/configurations/models/__init__.py,sha256=7q95gtgDzCeIBogGw8SLQoHT4Wch7vpLJVF2UQovuoo,567
10
10
  optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=ADS4SGZbwY6fy3SVNhgo3Zg4KxzAAGq5_zsJ97Dezh4,3201
@@ -36,7 +36,7 @@ optimum/rbln/diffusers/models/transformers/transformer_sd3.py,sha256=yF7sS0Qvawo
36
36
  optimum/rbln/diffusers/models/unets/__init__.py,sha256=MaICuK9CWjgzejXy8y2NDrphuEq1rkzanF8u45k6O5I,655
37
37
  optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=v3WS9EGKROE_QClXrxC7rmRko1BspAvAbeIfh83LK88,15832
38
38
  optimum/rbln/diffusers/pipelines/__init__.py,sha256=r8mu21102cKXdkG1II9tpfpUS6wuyren2oK9y_MptZY,3703
39
- optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=zFDXbO9Iv0LO7maefV82dmi5Ta6L9oZxY09QFVX6F_Q,9511
39
+ optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=DaDWla59LhKGv7h8sdnJrwYaxvcwnO3-qFc47NHvx20,10644
40
40
  optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
41
41
  optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=3S9dogIHW8Bqg5kIlCudhCQG-4g3FcdOPEWhBOf7CJA,4059
42
42
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=G96bh4D9Cu-w4F9gZBQF6wNzhJQv9kvI34ZFsuEDjSw,35714
@@ -83,7 +83,7 @@ optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha25
83
83
  optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
84
84
  optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
85
85
  optimum/rbln/transformers/models/auto/__init__.py,sha256=tdYqXkg9xBGNr4fZjH7_O3qRVbHvpEVjrJ6wtNUMMJM,1150
86
- optimum/rbln/transformers/models/auto/auto_factory.py,sha256=1CA52xV2dS1Uzumcgqe4zobdpoi-Xt2oNjP3uLFtm08,8020
86
+ optimum/rbln/transformers/models/auto/auto_factory.py,sha256=9oaynN5f6aL6BTgDu5xF3b-5lz9eFuzLOdfVaZwIwvc,8834
87
87
  optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=SMsWnD8f7VhKmh7h_S2voksEWlNccfF4fQ7AmwLYq6U,4790
88
88
  optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
89
89
  optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=mAepjL0paPMK180vGTTCxXQ-hVZ1DD6JR-GvVNGJLqY,6268
@@ -137,7 +137,7 @@ optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=MyAWReXmyuHnDp
137
137
  optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijKCsRfTx-VCkTqqqNwqqMSrjqRE,2230
138
138
  optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
139
139
  optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=b6aeAlAMf0aOoTKAqe5nnBfontu_H3zvIHgOiCNMJ1I,3127
140
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=A_YBgvPVHwwKgsGLL0z4MyTKb6Hb6r3y6sU3oVIrKiU,22779
140
+ optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=E6HReXGwvSV7YDeetSBuds1rAVSzEeL0AGHYgBOQW6o,23097
141
141
  optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=bXAOs2QH4sy2UFoFLUSM6u1_VHouUT5COERLQX20F6Y,46897
142
142
  optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
143
143
  optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=8BhPLkfE1_ZU0eSm2iTbWQOnVe1q0g99srYHWZM6VJ4,2373
@@ -211,7 +211,7 @@ optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=DlJNrGk35NTBhcp76P
211
211
  optimum/rbln/transformers/models/time_series_transformer/__init__.py,sha256=xJaFWQawlwtv4H5tVFcY1pxLYzjHtMAlLq6nXysdkN8,1243
212
212
  optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py,sha256=MO-T4pcsea4EOmYeeg0tosUH6w76azqIPyV8Em8CMqw,1621
213
213
  optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py,sha256=8orxM-LbShCt2jC8Uyx43cSxWN1CGxamS58pKPjvzxs,17167
214
- optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py,sha256=XJDjQGbWXUq4ZimNojlcbm3mTDpxUMCl6tkFSzfYFl4,13769
214
+ optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py,sha256=hAZXyXxzSDJMdkI883eefzpjz2L9KTVTRBeOVU8e92k,14038
215
215
  optimum/rbln/transformers/models/vit/__init__.py,sha256=CrrkHehfCe3U-_rUS00aMBY7Tncdeh43sNUgVI9Dt_g,807
216
216
  optimum/rbln/transformers/models/vit/configuration_vit.py,sha256=x98CxKR1cpKAG7Eh43uuPeGeGn4gS3HcKLPoDL3SWJo,994
217
217
  optimum/rbln/transformers/models/vit/modeling_vit.py,sha256=Q8xvX2oG2dC2RYM4ocaS0H70a2q_vQ9DZK2mCdyvxa0,1058
@@ -238,7 +238,7 @@ optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsF
238
238
  optimum/rbln/utils/runtime_utils.py,sha256=R6uXDbeJP03-FWdd4vthNe2D4aCra5n12E3WB1ifiGM,7933
239
239
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
240
240
  optimum/rbln/utils/submodule.py,sha256=60NGLFvnhjP1DJg1opdb-FVQDsthcLCwWjW_1WQaasU,5280
241
- optimum_rbln-0.8.4a0.dist-info/METADATA,sha256=QqrF_vPDFZO-DiTK0p328Y54qXyk1wApO86SAISpNcc,5299
242
- optimum_rbln-0.8.4a0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
243
- optimum_rbln-0.8.4a0.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
244
- optimum_rbln-0.8.4a0.dist-info/RECORD,,
241
+ optimum_rbln-0.8.4a1.dist-info/METADATA,sha256=cs0rmwPfLMefC6PHPHGw7XYrZIQVGPP3ax09PhmeUB8,5299
242
+ optimum_rbln-0.8.4a1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
243
+ optimum_rbln-0.8.4a1.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
244
+ optimum_rbln-0.8.4a1.dist-info/RECORD,,