optimum-rbln 0.8.3a4__py3-none-any.whl → 0.8.4a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (31) hide show
  1. optimum/rbln/__init__.py +14 -0
  2. optimum/rbln/__version__.py +2 -2
  3. optimum/rbln/configuration_utils.py +15 -0
  4. optimum/rbln/modeling.py +2 -4
  5. optimum/rbln/modeling_base.py +44 -13
  6. optimum/rbln/transformers/__init__.py +14 -0
  7. optimum/rbln/transformers/configuration_generic.py +2 -0
  8. optimum/rbln/transformers/modeling_generic.py +12 -4
  9. optimum/rbln/transformers/models/__init__.py +18 -0
  10. optimum/rbln/transformers/models/auto/__init__.py +1 -0
  11. optimum/rbln/transformers/models/auto/modeling_auto.py +7 -0
  12. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  13. optimum/rbln/transformers/models/bert/modeling_bert.py +8 -4
  14. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +6 -1
  15. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +6 -3
  16. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +7 -1
  17. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +12 -31
  18. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +1 -1
  19. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +7 -1
  20. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  21. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +86 -0
  22. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +507 -0
  23. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1032 -0
  24. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +2 -0
  25. optimum/rbln/transformers/models/swin/modeling_swin.py +32 -7
  26. optimum/rbln/transformers/utils/rbln_quantization.py +47 -31
  27. optimum/rbln/utils/submodule.py +10 -4
  28. {optimum_rbln-0.8.3a4.dist-info → optimum_rbln-0.8.4a0.dist-info}/METADATA +1 -1
  29. {optimum_rbln-0.8.3a4.dist-info → optimum_rbln-0.8.4a0.dist-info}/RECORD +31 -26
  30. {optimum_rbln-0.8.3a4.dist-info → optimum_rbln-0.8.4a0.dist-info}/WHEEL +0 -0
  31. {optimum_rbln-0.8.3a4.dist-info → optimum_rbln-0.8.4a0.dist-info}/licenses/LICENSE +0 -0
@@ -372,6 +372,8 @@ class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
372
372
  ```
373
373
  """
374
374
 
375
+ _supports_non_fp32 = False
376
+
375
377
  auto_model_class = AutoModelForVision2Seq
376
378
  _rbln_submodules = [
377
379
  {"name": "visual"},
@@ -20,7 +20,7 @@ import torch.nn.functional as F
20
20
  from transformers import SwinConfig
21
21
  from transformers.models.swin.modeling_swin import BackboneOutput
22
22
 
23
- from ....configuration_utils import RBLNCompileConfig
23
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
24
24
  from ....modeling import RBLNModel
25
25
  from ....utils.logging import get_logger
26
26
  from .configuration_swin import RBLNSwinBackboneConfig
@@ -214,6 +214,31 @@ class RBLNSwinBackbone(RBLNModel):
214
214
  }
215
215
  return _SwinBackbone(model, **wrapper_cfg).eval()
216
216
 
217
+ @classmethod
218
+ def _update_submodule_config(
219
+ cls,
220
+ model: "PreTrainedModel",
221
+ rbln_config: RBLNModelConfig,
222
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
223
+ ):
224
+ for processor in preprocessors:
225
+ if rbln_config.image_size is None and hasattr(processor, "image_processor"):
226
+ if "height" in processor.image_processor.size and "width" in processor.image_processor.size:
227
+ rbln_config.image_size = (
228
+ processor.image_processor.size["height"],
229
+ processor.image_processor.size["width"],
230
+ )
231
+ elif (
232
+ "longest_edge" in processor.image_processor.size
233
+ and "shortest_edge" in processor.image_processor.size
234
+ ):
235
+ rbln_config.image_size = processor.image_processor.size["longest_edge"]
236
+ elif "shortest_edge" in processor.image_processor.size:
237
+ rbln_config.image_size = processor.image_processor.size["shortest_edge"]
238
+ break
239
+
240
+ return rbln_config
241
+
217
242
  @classmethod
218
243
  def _update_rbln_config(
219
244
  cls,
@@ -235,8 +260,8 @@ class RBLNSwinBackbone(RBLNModel):
235
260
  [
236
261
  rbln_config.batch_size,
237
262
  3,
238
- rbln_config.image_size[0],
239
- rbln_config.image_size[1],
263
+ rbln_config.image_height,
264
+ rbln_config.image_width,
240
265
  ],
241
266
  "float32",
242
267
  ),
@@ -276,14 +301,14 @@ class RBLNSwinBackbone(RBLNModel):
276
301
  )
277
302
 
278
303
  _, _, original_h, original_w = pixel_values.shape
279
- if original_h > self.rbln_config.image_size[0] or original_w > self.rbln_config.image_size[1]:
304
+ if original_h > self.rbln_config.image_height or original_w > self.rbln_config.image_width:
280
305
  raise ValueError(
281
306
  f"Input image size ({original_h}x{original_w}) exceeds the configured maximum size"
282
- f" ({self.rbln_config.image_size[0]}x{self.rbln_config.image_size[1]})."
307
+ f" ({self.rbln_config.image_height}x{self.rbln_config.image_width})."
283
308
  )
284
309
 
285
- pad_h = self.rbln_config.image_size[0] - original_h
286
- pad_w = self.rbln_config.image_size[1] - original_w
310
+ pad_h = self.rbln_config.image_height - original_h
311
+ pad_w = self.rbln_config.image_width - original_w
287
312
  padded_pixel_values = F.pad(pixel_values, (0, pad_w, 0, pad_h))
288
313
 
289
314
  output = self.model[0](padded_pixel_values)
@@ -14,18 +14,23 @@
14
14
 
15
15
  import glob
16
16
  import os
17
- from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
17
+ from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type, Union
18
18
 
19
19
  import torch
20
20
  from huggingface_hub import hf_hub_download, list_repo_files
21
21
  from safetensors.torch import load_file
22
22
  from torch.nn import Linear, Parameter
23
23
  from torch.nn import functional as F
24
+ from transformers import AutoConfig
25
+ from transformers.modeling_utils import get_state_dict_dtype, no_init_weights
24
26
 
25
27
  from ...configuration_utils import RBLNSerializableConfigProtocol
26
28
  from ...utils.logging import get_logger
27
29
 
28
30
 
31
+ if TYPE_CHECKING:
32
+ from transformers.models.auto.modeling_auto import _BaseAutoModelClass
33
+
29
34
  logger = get_logger()
30
35
 
31
36
 
@@ -138,22 +143,31 @@ class QuantizedLayerFactory:
138
143
  return create_fp8linear(layer, self.quantization_config)
139
144
 
140
145
 
141
- def prepare_model_for_quantization(
142
- model: torch.nn.Module,
146
+ def get_quantized_model(
147
+ hf_auto_model_class: Type["_BaseAutoModelClass"],
143
148
  model_id: str,
144
- n_layer: Optional[int] = None,
145
149
  use_auth_token: Optional[Union[bool, str]] = None,
146
150
  revision: Optional[str] = None,
147
151
  cache_dir: Optional[str] = None,
148
152
  force_download: bool = False,
149
153
  local_files_only: bool = False,
150
154
  rbln_quantization: Optional[RBLNQuantizationConfig] = None,
151
- ) -> torch.nn.Module:
155
+ **kwargs,
156
+ ):
152
157
  """
153
- Prepare the model for quantization by updating specified linear layers to quantized (qlinear) layers.
158
+ Get a quantized model from a model class and model id.
154
159
  """
160
+ # torch_dtype should not be passed to AutoConfig.from_pretrained
161
+ # since it doesn't support 'auto'
162
+ torch_dtype = kwargs.pop("torch_dtype", None)
163
+ if torch_dtype is not None:
164
+ logger.warning(
165
+ "torch_dtype is not supported for quantized models. "
166
+ "It will be ignored and the dtype of the model will be determined by the weights."
167
+ )
168
+ torch_dtype = None
155
169
 
156
- # 1. Load weight files
170
+ # get paths of safetensors files in the model repo
157
171
  safetensor_files = load_weight_files(
158
172
  model_id,
159
173
  use_auth_token=use_auth_token,
@@ -163,17 +177,31 @@ def prepare_model_for_quantization(
163
177
  local_files_only=local_files_only,
164
178
  )
165
179
 
166
- # 2. Update linear layers based on the quantization config
167
- update_layers_to_quantize(model, rbln_quantization)
180
+ # load safetensors files into memory
181
+ safetensors = [load_file(safetensor_file) for safetensor_file in safetensor_files]
182
+
183
+ # get the dtype of the model from the first safetensor file
184
+ torch_dtype = get_state_dict_dtype(safetensors[0])
168
185
 
169
- # 3. Load weights into model parameters
170
- load_weights_from_files(
171
- model,
172
- safetensor_files,
173
- n_layer,
174
- rbln_quantization=rbln_quantization,
186
+ config = AutoConfig.from_pretrained(
187
+ model_id,
188
+ use_auth_token=use_auth_token,
189
+ revision=revision,
190
+ cache_dir=cache_dir,
191
+ force_download=force_download,
192
+ local_files_only=local_files_only,
193
+ **kwargs,
175
194
  )
176
195
 
196
+ with no_init_weights():
197
+ model = hf_auto_model_class.from_config(config, torch_dtype=torch_dtype)
198
+
199
+ # Quantize the model
200
+ update_layers_to_quantize(model, rbln_quantization)
201
+
202
+ # Load weights into the model
203
+ load_weights_from_files(model, safetensors, rbln_quantization)
204
+
177
205
  return model
178
206
 
179
207
 
@@ -372,32 +400,26 @@ def canonicalize_checkpoint_items(
372
400
 
373
401
  def load_weights_from_files(
374
402
  model: torch.nn.Module,
375
- safetensor_files: list[str],
376
- n_layer: Optional[int] = None,
403
+ safetensors: List[Dict[str, torch.Tensor]],
377
404
  rbln_quantization: Optional[RBLNQuantizationConfig] = None,
378
405
  ):
379
406
  """
380
- Load safetensor file data directly into the model from provided safetensor files,
381
- filtering by layer if n_layer is provided.
407
+ Load safetensor file data directly into the model from provided safetensor files.
382
408
  """
383
409
 
384
410
  model_params = dict(model.named_parameters(recurse=True))
385
411
  model_buffers = dict(model.named_buffers(recurse=True))
386
412
 
387
- target_layers = list(range(n_layer)) if n_layer is not None else None
388
-
389
413
  unloaded_keys = []
390
414
  loaded_input_scale = False
391
415
  loaded_kv_scale = False
392
416
  loaded_weight_scale = False
393
417
 
394
- for safetensor_file in safetensor_files:
395
- file_data = load_file(safetensor_file)
396
-
418
+ for safetensor in safetensors:
397
419
  # Normalize all (key, tensor) pairs to the internal schema
398
420
  normalized_items = canonicalize_checkpoint_items(
399
421
  model=model,
400
- items=file_data.items(),
422
+ items=safetensor.items(),
401
423
  rbln_quantization=rbln_quantization,
402
424
  )
403
425
 
@@ -410,12 +432,6 @@ def load_weights_from_files(
410
432
  if key.endswith("k_scale") or key.endswith("v_scale"):
411
433
  loaded_kv_scale = True
412
434
 
413
- # Filter by layer index if requested
414
- if target_layers is not None:
415
- parts = key.split(".")
416
- if len(parts) > 2 and parts[2].isdigit() and (int(parts[2]) not in target_layers):
417
- continue
418
-
419
435
  # Copy into parameters or buffers
420
436
  if key in model_params:
421
437
  # Ensure dtype compatibility
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
 
15
15
  from pathlib import Path
16
- from typing import TYPE_CHECKING, Any, Dict, List, Type
16
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union
17
17
 
18
18
  from transformers import PretrainedConfig
19
19
 
@@ -22,7 +22,7 @@ from ..utils.model_utils import get_rbln_model_cls
22
22
 
23
23
 
24
24
  if TYPE_CHECKING:
25
- from transformers import PreTrainedModel
25
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
26
26
 
27
27
  from ..modeling import RBLNModel
28
28
 
@@ -42,7 +42,12 @@ class SubModulesMixin:
42
42
  setattr(self, submodule_meta["name"], submodule)
43
43
 
44
44
  @classmethod
45
- def _update_submodule_config(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
45
+ def _update_submodule_config(
46
+ cls,
47
+ model: "PreTrainedModel",
48
+ rbln_config: RBLNModelConfig,
49
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
50
+ ):
46
51
  return rbln_config
47
52
 
48
53
  @classmethod
@@ -51,6 +56,7 @@ class SubModulesMixin:
51
56
  ) -> List["RBLNModel"]:
52
57
  rbln_submodules = []
53
58
  submodule_prefix = getattr(cls, "_rbln_submodule_prefix", None)
59
+ preprocessors = kwargs.pop("preprocessors", [])
54
60
 
55
61
  for submodule in cls._rbln_submodules:
56
62
  submodule_name = submodule["name"]
@@ -69,7 +75,7 @@ class SubModulesMixin:
69
75
  submodule_rbln_config = submodule_rbln_config_class(**submodule_rbln_config)
70
76
  setattr(rbln_config, submodule_name, submodule_rbln_config)
71
77
 
72
- submodule_rbln_config = submodule_cls._update_submodule_config(model, submodule_rbln_config)
78
+ submodule_rbln_config = submodule_cls._update_submodule_config(model, submodule_rbln_config, preprocessors)
73
79
 
74
80
  rbln_submodule = submodule_cls.from_model(
75
81
  model=torch_submodule,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.8.3a4
3
+ Version: 0.8.4a0
4
4
  Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -1,8 +1,8 @@
1
- optimum/rbln/__init__.py,sha256=1AF2jfrUGYLo4ps_OAPxCUagSnHF60N3W45cTeXlDJE,17698
2
- optimum/rbln/__version__.py,sha256=vl5bkt2g1rkDYLzC7btKWOmkJwvyed8HxQBkBGIvFzA,712
3
- optimum/rbln/configuration_utils.py,sha256=fE3HlZblxukKSdS-4VofjuyCAiqwPMX8bqXpOiTZp4g,33926
4
- optimum/rbln/modeling.py,sha256=0CMQnpVvW9evNrTFHM2XFbNpRY1HkbFzYJ5sRyYFq0o,14293
5
- optimum/rbln/modeling_base.py,sha256=gHfqIO6lKT8smkUthUuRHnbITpxHpnDeBPT8iTeasCk,24575
1
+ optimum/rbln/__init__.py,sha256=32ouGKDGus9k5_kD27CxP8jIQOw66zpDTfS0xs1XlfE,18298
2
+ optimum/rbln/__version__.py,sha256=YNGYpHnDhFwKFL4ZTx3BIJGtmgon0Pv2G2E10GhWRaY,712
3
+ optimum/rbln/configuration_utils.py,sha256=KtbDM7HnFGiO0PsuvkrCE3R9NF6OJVmV_fyQcQNrmUk,34469
4
+ optimum/rbln/modeling.py,sha256=cAIPWEw5DGzUWeqjCbocRhU6OO3jyhVGW60AmBLh1Nw,14134
5
+ optimum/rbln/modeling_base.py,sha256=kQsBfUoDncNgR5P8_BvyzY6H_4YEXOBzN20lFmOZV_g,26190
6
6
  optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
7
7
  optimum/rbln/diffusers/modeling_diffusers.py,sha256=TAuMb7PSMjNwK7mh5ItE_CtAEgYeZKI27XkFFmxjHlQ,19902
8
8
  optimum/rbln/diffusers/configurations/__init__.py,sha256=vMRnPY4s-Uju43xP038D2EA18X_mhy2YfsZVpSU-VoA,1322
@@ -72,29 +72,30 @@ optimum/rbln/ops/flash_attn.py,sha256=yTCdYQVqm_1rHMHWjrMQaIR8WTuG_xA6t033x1IVvT
72
72
  optimum/rbln/ops/kv_cache_update.py,sha256=aIvK2Sp7M3EfJzJgNvIvAJv4emoN6QOhmgaWj-VboLs,1440
73
73
  optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,1328
74
74
  optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
75
- optimum/rbln/transformers/__init__.py,sha256=uV2rEhw93alpbZ-fnVrAex_6QF1sFHcVM5tsJh64osk,11443
76
- optimum/rbln/transformers/configuration_generic.py,sha256=95ks6REJYuzI1zLwGlPSlxVV45saVcYOob6ihn-WAAY,5092
75
+ optimum/rbln/transformers/__init__.py,sha256=6s-VhsqwptqwUuq7vb847bJlfFgBGshOoK3vaN9i_lI,12043
76
+ optimum/rbln/transformers/configuration_generic.py,sha256=jrehv1oONOS-iBTY5gj2TKUfWjDTnukNJt6cZfNMylU,5213
77
77
  optimum/rbln/transformers/modeling_attention_utils.py,sha256=aLyOaq4me1m-JMmnKbuyNQageDxNU2jjEhGE_ew2P5o,11465
78
- optimum/rbln/transformers/modeling_generic.py,sha256=2BtroigKuu7z7C98dpLwI875R0EoHN-ceHEVbyPQuYk,12212
78
+ optimum/rbln/transformers/modeling_generic.py,sha256=82Wi2K6zAp5tjef05lzYIEqbK93h0_OkPDbElB-VMMs,12568
79
79
  optimum/rbln/transformers/modeling_outputs.py,sha256=cd8ZlhHAGq7S6i5-QK6TJCxgORvoPMnZpqPBlUc_pMY,1177
80
80
  optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
81
- optimum/rbln/transformers/models/__init__.py,sha256=A9ThjEgBo6RZzqGzoY3tgQucdchkuXWrpgJjuERxjcE,12272
81
+ optimum/rbln/transformers/models/__init__.py,sha256=V36KWN0fTL0MvfDduUfjIiwXvWmwDKm43G-g5Y773-I,12943
82
82
  optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
83
83
  optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
84
84
  optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
85
- optimum/rbln/transformers/models/auto/__init__.py,sha256=cZaOoQBTfdT5qhcfsPbagDvDQ0Vvr6Oej5y0jE9AFbc,1105
85
+ optimum/rbln/transformers/models/auto/__init__.py,sha256=tdYqXkg9xBGNr4fZjH7_O3qRVbHvpEVjrJ6wtNUMMJM,1150
86
86
  optimum/rbln/transformers/models/auto/auto_factory.py,sha256=1CA52xV2dS1Uzumcgqe4zobdpoi-Xt2oNjP3uLFtm08,8020
87
- optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=AbKqxcUxKtuX6Y2T7CdmrQn8I0r5DDkUzLKBnyor-GQ,4470
87
+ optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=SMsWnD8f7VhKmh7h_S2voksEWlNccfF4fQ7AmwLYq6U,4790
88
88
  optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
89
89
  optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=mAepjL0paPMK180vGTTCxXQ-hVZ1DD6JR-GvVNGJLqY,6268
90
90
  optimum/rbln/transformers/models/bart/configuration_bart.py,sha256=PrRA7OwPTegPamd_mmVnwNygRbNG7pZrsrXdKyfZ6Bo,1351
91
91
  optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=H4MmQZbofb9kJq5WKqoFVjmj3HVtgns3t2F3QdSU-QQ,2337
92
92
  optimum/rbln/transformers/models/bert/__init__.py,sha256=86FuGRBLw315_Roa9D5OUx6Ku2PM0DqSPZ-YSqbF-io,806
93
+ optimum/rbln/transformers/models/bert/bert_architecture.py,sha256=cZgf-B-FV8qbeJdz2Oa-cHu7crrpwBhr081cEalC-h4,473
93
94
  optimum/rbln/transformers/models/bert/configuration_bert.py,sha256=nEZnX6LXpLKWaoPEd4pWSysw9h-PLb2ld0ibC3dcJ7w,1611
94
- optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=zR0US2laTT0yUkL6yyvrR5STQNJcYqtG98ez4SUYQAY,2040
95
+ optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=7MQZS11k4__oyeni5ek2SzRf-gtD3_hMKl_oOzN7_XQ,2263
95
96
  optimum/rbln/transformers/models/blip_2/__init__.py,sha256=L01gPXcUCa8Vg-bcng20vZvBIN_jlqCzwUSFuq0QOag,855
96
97
  optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=JUUp4SahBYwv_o2dsHMsgESbPCJHgrng5m7wwtd7HRQ,3193
97
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=WrxH-VljAbYEFnxo5tQYE29s7TvoRX0L0IPB2TKN27I,16158
98
+ optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=pI0HCYIy6SsBc2umWuzXHM6tdu_9e2I5gntoQRoxuhA,16264
98
99
  optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
99
100
  optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=ishrDbTdJm7_AfOn2MPAdAzCWXMdQldwgx9wR_6GcWU,3808
100
101
  optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=knK7gINAluSHcWvg3zaByb3XRLNmSEGw2NcsOGHnIow,12364
@@ -104,13 +105,13 @@ optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=eDWPVlo
104
105
  optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=v9rPLmNx-BQZhDFhKnr2kmARElTtKdFZCgFIU4m-HPw,15703
105
106
  optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=w3VZOIBYaHXVdnuhK4y0zWAj0IAv7_5LGTJYaz9oYmI,1056
106
107
  optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=H2i9Iefy-q5X-0BLWQ-CrxK8ZoT3p9t0lt_3r4TFSCY,15182
107
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=cGkhGc8XlseMWqDCrt13z0Itn9b0emZ2PjHI-1TP0wI,42685
108
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=9acEQxGRzd21YkzxRchkhqxqpX7emQHZigFg60BIulc,19902
108
+ optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=L5LArhjN36fTdiwrUABgn3cnS7hh4SVCF4FMHBbiLZU,42760
109
+ optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=v3mfIlQImQkYYr-rPn7rQR3GYdVUhALRttEduLI7H9c,20012
109
110
  optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=4D89IF0yQju_Dp_vLJN_dBkpe2U_LMWaUciYx57D-0M,3379
110
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=hu2eJr0CpLHnRPSLhyBhyyC6DfosKmPu7lPjapcBCkE,33061
111
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=dAHV9NgdpXHyTJGT0lieXOB3Pzi_NPlR4rqmRtmAWzM,32412
111
112
  optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
112
113
  optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
113
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=ganUtyPKcdKe5QCJ2atQhblzfAstyYkThYDm_DIecU8,1014
114
+ optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=tTmsVaW9Wb2WD3nKRLwp7swn3hbMvgwUEJwwVIfNYEc,1008
114
115
  optimum/rbln/transformers/models/distilbert/__init__.py,sha256=zXL78SOEORTnUN_wrdoaDaYpntG8lcFHvPobM6jC0CI,841
115
116
  optimum/rbln/transformers/models/distilbert/configuration_distilbert.py,sha256=O3BW9JjyYk9PLyiofvOKEgTdMZ_jpIuPfot281pSsyg,984
116
117
  optimum/rbln/transformers/models/distilbert/modeling_distilbert.py,sha256=LUh6zYGa8AR3Yxaj3gtyJRc-czBN3qnHTc-JTAhuqY0,1099
@@ -129,11 +130,15 @@ optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_
129
130
  optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=rKjKJhyaIM7YoiLR-q8GAZKIQNzDzcb5X7qf_FJE72M,3398
130
131
  optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=fpLDAXCe5paWVsfc0tL59JkRQMRF-WNgIzOIb_QpSLU,6191
131
132
  optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=vYQ9sjRlkfamxZca_hVMQI0ylKeExsV02gOWaYVMjyg,9640
132
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=2Fg1eyCDQ8mwGWdcB_jaq_i_iSEzXr3UWjWXe1Z_Ie8,24079
133
+ optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=TxbgkvW2Nv0VGdXNXnN_Beas6E_1D9NAH8f09Fo8t0E,24239
133
134
  optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
134
135
  optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
135
136
  optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=MyAWReXmyuHnDpW5HI_TI7psyJZxLujZ9KT5XnNm7nA,2802
136
137
  optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijKCsRfTx-VCkTqqqNwqqMSrjqRE,2230
138
+ optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
139
+ optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=b6aeAlAMf0aOoTKAqe5nnBfontu_H3zvIHgOiCNMJ1I,3127
140
+ optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=A_YBgvPVHwwKgsGLL0z4MyTKb6Hb6r3y6sU3oVIrKiU,22779
141
+ optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=bXAOs2QH4sy2UFoFLUSM6u1_VHouUT5COERLQX20F6Y,46897
137
142
  optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
138
143
  optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=8BhPLkfE1_ZU0eSm2iTbWQOnVe1q0g99srYHWZM6VJ4,2373
139
144
  optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=UqKUVZ6pZjP2VMfBa3-dJkLNPDqr3H1wHiOo9LPucjs,19636
@@ -177,7 +182,7 @@ optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=VOboPJF1rvvSVWkH
177
182
  optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
178
183
  optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
179
184
  optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=1yyMFxh1SKsKR7rOjuotPvpSneN2_4a89bYfNk42370,4735
180
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=BfpALuavpdCqe5RuHaNZNo2IDlLjE4SwsoPAlaictgc,26607
185
+ optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=hRvA37sPFC9xH1FqnFbtHS9rQOPwAvLYg4zl4oEyK-w,26639
181
186
  optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=i_UUWhKoFjJ5CCpgeWicqABM23TxMEKPQ354LoZ6iUU,7445
182
187
  optimum/rbln/transformers/models/qwen3/__init__.py,sha256=tI4KwvXpD35dUUaa8aLUXpWoU9gJGcmKXeywOlH14ZE,746
183
188
  optimum/rbln/transformers/models/qwen3/configuration_qwen3.py,sha256=BFRPggnH4VlsXlOa19C6KAID-bPgQ8ooQ29dvogh5zk,2102
@@ -198,7 +203,7 @@ optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=m1h8iDx_X
198
203
  optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=1TyRaxmhp6mg6UfhQTbZhW26013TE3nVnroYG7EROcU,8033
199
204
  optimum/rbln/transformers/models/swin/__init__.py,sha256=gUsLDB8ceNxt53Cf69OT32JuZoRdmmIsRfjRdHTLDd0,698
200
205
  optimum/rbln/transformers/models/swin/configuration_swin.py,sha256=iVtpT2jXY5LNkUbbr5J08z97unc43KEhArIZ1tBRzEU,1692
201
- optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=IvBOyIWq233UGZqUG7XhaoYIHk6gjbisYUEr8HDqRbY,12791
206
+ optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=npQgTCEkonG41HzHzEk-a13NFLJHA-K82HFW2VyR0xc,13968
202
207
  optimum/rbln/transformers/models/t5/__init__.py,sha256=R1Q8Z1vaIdx4rDjeCmm_ZMSgewWaqaI0l93AHwewtew,818
203
208
  optimum/rbln/transformers/models/t5/configuration_t5.py,sha256=nqDbibqykeeWn1TlKk6LmCn-DawTVudMMuBn2c2jds8,1362
204
209
  optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=pdAWBLVknTzbma0Ij-VQ2Qve-frPjxL-AwMyU-zouPY,5123
@@ -222,7 +227,7 @@ optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=O3o2KzJ8Li3QhB7G
222
227
  optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256=wHRpGTXL9khYqSkKL1IgA7__6_lt9QpOz9tHumjK7fo,1260
223
228
  optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=EZd3flRUEE38DYtdqEnG70LV7fHhkamRZV51xrVyjYI,1093
224
229
  optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
225
- optimum/rbln/transformers/utils/rbln_quantization.py,sha256=ARngdvRmeVoOphUU3Md9kT6zS5HDrYdEFYljJwaAaio,21020
230
+ optimum/rbln/transformers/utils/rbln_quantization.py,sha256=pORshQUgTInNaibUtd0HL-T8bKW5wuulZs2q0Oshppc,21659
226
231
  optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
227
232
  optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
228
233
  optimum/rbln/utils/depreacate_utils.py,sha256=uKxl3ENUCNaZXPnaDQvNxrH8hUIWdBWfZH6BM7ZV__4,385
@@ -232,8 +237,8 @@ optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE
232
237
  optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
233
238
  optimum/rbln/utils/runtime_utils.py,sha256=R6uXDbeJP03-FWdd4vthNe2D4aCra5n12E3WB1ifiGM,7933
234
239
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
235
- optimum/rbln/utils/submodule.py,sha256=w5mgPgncI740gVKMu3S-69DGNdUSI0bTZxegQGcZ98Y,5011
236
- optimum_rbln-0.8.3a4.dist-info/METADATA,sha256=4ikxK2ldRi8PkKZrcSmTH4unPPzl3UZ3JBXlC-fr_MU,5299
237
- optimum_rbln-0.8.3a4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
238
- optimum_rbln-0.8.3a4.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
239
- optimum_rbln-0.8.3a4.dist-info/RECORD,,
240
+ optimum/rbln/utils/submodule.py,sha256=60NGLFvnhjP1DJg1opdb-FVQDsthcLCwWjW_1WQaasU,5280
241
+ optimum_rbln-0.8.4a0.dist-info/METADATA,sha256=QqrF_vPDFZO-DiTK0p328Y54qXyk1wApO86SAISpNcc,5299
242
+ optimum_rbln-0.8.4a0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
243
+ optimum_rbln-0.8.4a0.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
244
+ optimum_rbln-0.8.4a0.dist-info/RECORD,,