optimum-rbln 0.8.3a4__py3-none-any.whl → 0.8.4a0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +14 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +15 -0
- optimum/rbln/modeling.py +2 -4
- optimum/rbln/modeling_base.py +44 -13
- optimum/rbln/transformers/__init__.py +14 -0
- optimum/rbln/transformers/configuration_generic.py +2 -0
- optimum/rbln/transformers/modeling_generic.py +12 -4
- optimum/rbln/transformers/models/__init__.py +18 -0
- optimum/rbln/transformers/models/auto/__init__.py +1 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +7 -0
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +8 -4
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +6 -1
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +6 -3
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +7 -1
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +12 -31
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +1 -1
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +7 -1
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +86 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +507 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1032 -0
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +2 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +32 -7
- optimum/rbln/transformers/utils/rbln_quantization.py +47 -31
- optimum/rbln/utils/submodule.py +10 -4
- {optimum_rbln-0.8.3a4.dist-info → optimum_rbln-0.8.4a0.dist-info}/METADATA +1 -1
- {optimum_rbln-0.8.3a4.dist-info → optimum_rbln-0.8.4a0.dist-info}/RECORD +31 -26
- {optimum_rbln-0.8.3a4.dist-info → optimum_rbln-0.8.4a0.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.3a4.dist-info → optimum_rbln-0.8.4a0.dist-info}/licenses/LICENSE +0 -0
|
@@ -20,7 +20,7 @@ import torch.nn.functional as F
|
|
|
20
20
|
from transformers import SwinConfig
|
|
21
21
|
from transformers.models.swin.modeling_swin import BackboneOutput
|
|
22
22
|
|
|
23
|
-
from ....configuration_utils import RBLNCompileConfig
|
|
23
|
+
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
24
24
|
from ....modeling import RBLNModel
|
|
25
25
|
from ....utils.logging import get_logger
|
|
26
26
|
from .configuration_swin import RBLNSwinBackboneConfig
|
|
@@ -214,6 +214,31 @@ class RBLNSwinBackbone(RBLNModel):
|
|
|
214
214
|
}
|
|
215
215
|
return _SwinBackbone(model, **wrapper_cfg).eval()
|
|
216
216
|
|
|
217
|
+
@classmethod
|
|
218
|
+
def _update_submodule_config(
|
|
219
|
+
cls,
|
|
220
|
+
model: "PreTrainedModel",
|
|
221
|
+
rbln_config: RBLNModelConfig,
|
|
222
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
223
|
+
):
|
|
224
|
+
for processor in preprocessors:
|
|
225
|
+
if rbln_config.image_size is None and hasattr(processor, "image_processor"):
|
|
226
|
+
if "height" in processor.image_processor.size and "width" in processor.image_processor.size:
|
|
227
|
+
rbln_config.image_size = (
|
|
228
|
+
processor.image_processor.size["height"],
|
|
229
|
+
processor.image_processor.size["width"],
|
|
230
|
+
)
|
|
231
|
+
elif (
|
|
232
|
+
"longest_edge" in processor.image_processor.size
|
|
233
|
+
and "shortest_edge" in processor.image_processor.size
|
|
234
|
+
):
|
|
235
|
+
rbln_config.image_size = processor.image_processor.size["longest_edge"]
|
|
236
|
+
elif "shortest_edge" in processor.image_processor.size:
|
|
237
|
+
rbln_config.image_size = processor.image_processor.size["shortest_edge"]
|
|
238
|
+
break
|
|
239
|
+
|
|
240
|
+
return rbln_config
|
|
241
|
+
|
|
217
242
|
@classmethod
|
|
218
243
|
def _update_rbln_config(
|
|
219
244
|
cls,
|
|
@@ -235,8 +260,8 @@ class RBLNSwinBackbone(RBLNModel):
|
|
|
235
260
|
[
|
|
236
261
|
rbln_config.batch_size,
|
|
237
262
|
3,
|
|
238
|
-
rbln_config.
|
|
239
|
-
rbln_config.
|
|
263
|
+
rbln_config.image_height,
|
|
264
|
+
rbln_config.image_width,
|
|
240
265
|
],
|
|
241
266
|
"float32",
|
|
242
267
|
),
|
|
@@ -276,14 +301,14 @@ class RBLNSwinBackbone(RBLNModel):
|
|
|
276
301
|
)
|
|
277
302
|
|
|
278
303
|
_, _, original_h, original_w = pixel_values.shape
|
|
279
|
-
if original_h > self.rbln_config.
|
|
304
|
+
if original_h > self.rbln_config.image_height or original_w > self.rbln_config.image_width:
|
|
280
305
|
raise ValueError(
|
|
281
306
|
f"Input image size ({original_h}x{original_w}) exceeds the configured maximum size"
|
|
282
|
-
f" ({self.rbln_config.
|
|
307
|
+
f" ({self.rbln_config.image_height}x{self.rbln_config.image_width})."
|
|
283
308
|
)
|
|
284
309
|
|
|
285
|
-
pad_h = self.rbln_config.
|
|
286
|
-
pad_w = self.rbln_config.
|
|
310
|
+
pad_h = self.rbln_config.image_height - original_h
|
|
311
|
+
pad_w = self.rbln_config.image_width - original_w
|
|
287
312
|
padded_pixel_values = F.pad(pixel_values, (0, pad_w, 0, pad_h))
|
|
288
313
|
|
|
289
314
|
output = self.model[0](padded_pixel_values)
|
|
@@ -14,18 +14,23 @@
|
|
|
14
14
|
|
|
15
15
|
import glob
|
|
16
16
|
import os
|
|
17
|
-
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
|
17
|
+
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type, Union
|
|
18
18
|
|
|
19
19
|
import torch
|
|
20
20
|
from huggingface_hub import hf_hub_download, list_repo_files
|
|
21
21
|
from safetensors.torch import load_file
|
|
22
22
|
from torch.nn import Linear, Parameter
|
|
23
23
|
from torch.nn import functional as F
|
|
24
|
+
from transformers import AutoConfig
|
|
25
|
+
from transformers.modeling_utils import get_state_dict_dtype, no_init_weights
|
|
24
26
|
|
|
25
27
|
from ...configuration_utils import RBLNSerializableConfigProtocol
|
|
26
28
|
from ...utils.logging import get_logger
|
|
27
29
|
|
|
28
30
|
|
|
31
|
+
if TYPE_CHECKING:
|
|
32
|
+
from transformers.models.auto.modeling_auto import _BaseAutoModelClass
|
|
33
|
+
|
|
29
34
|
logger = get_logger()
|
|
30
35
|
|
|
31
36
|
|
|
@@ -138,22 +143,31 @@ class QuantizedLayerFactory:
|
|
|
138
143
|
return create_fp8linear(layer, self.quantization_config)
|
|
139
144
|
|
|
140
145
|
|
|
141
|
-
def
|
|
142
|
-
|
|
146
|
+
def get_quantized_model(
|
|
147
|
+
hf_auto_model_class: Type["_BaseAutoModelClass"],
|
|
143
148
|
model_id: str,
|
|
144
|
-
n_layer: Optional[int] = None,
|
|
145
149
|
use_auth_token: Optional[Union[bool, str]] = None,
|
|
146
150
|
revision: Optional[str] = None,
|
|
147
151
|
cache_dir: Optional[str] = None,
|
|
148
152
|
force_download: bool = False,
|
|
149
153
|
local_files_only: bool = False,
|
|
150
154
|
rbln_quantization: Optional[RBLNQuantizationConfig] = None,
|
|
151
|
-
|
|
155
|
+
**kwargs,
|
|
156
|
+
):
|
|
152
157
|
"""
|
|
153
|
-
|
|
158
|
+
Get a quantized model from a model class and model id.
|
|
154
159
|
"""
|
|
160
|
+
# torch_dtype should not be passed to AutoConfig.from_pretrained
|
|
161
|
+
# since it doesn't support 'auto'
|
|
162
|
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
|
163
|
+
if torch_dtype is not None:
|
|
164
|
+
logger.warning(
|
|
165
|
+
"torch_dtype is not supported for quantized models. "
|
|
166
|
+
"It will be ignored and the dtype of the model will be determined by the weights."
|
|
167
|
+
)
|
|
168
|
+
torch_dtype = None
|
|
155
169
|
|
|
156
|
-
#
|
|
170
|
+
# get paths of safetensors files in the model repo
|
|
157
171
|
safetensor_files = load_weight_files(
|
|
158
172
|
model_id,
|
|
159
173
|
use_auth_token=use_auth_token,
|
|
@@ -163,17 +177,31 @@ def prepare_model_for_quantization(
|
|
|
163
177
|
local_files_only=local_files_only,
|
|
164
178
|
)
|
|
165
179
|
|
|
166
|
-
#
|
|
167
|
-
|
|
180
|
+
# load safetensors files into memory
|
|
181
|
+
safetensors = [load_file(safetensor_file) for safetensor_file in safetensor_files]
|
|
182
|
+
|
|
183
|
+
# get the dtype of the model from the first safetensor file
|
|
184
|
+
torch_dtype = get_state_dict_dtype(safetensors[0])
|
|
168
185
|
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
186
|
+
config = AutoConfig.from_pretrained(
|
|
187
|
+
model_id,
|
|
188
|
+
use_auth_token=use_auth_token,
|
|
189
|
+
revision=revision,
|
|
190
|
+
cache_dir=cache_dir,
|
|
191
|
+
force_download=force_download,
|
|
192
|
+
local_files_only=local_files_only,
|
|
193
|
+
**kwargs,
|
|
175
194
|
)
|
|
176
195
|
|
|
196
|
+
with no_init_weights():
|
|
197
|
+
model = hf_auto_model_class.from_config(config, torch_dtype=torch_dtype)
|
|
198
|
+
|
|
199
|
+
# Quantize the model
|
|
200
|
+
update_layers_to_quantize(model, rbln_quantization)
|
|
201
|
+
|
|
202
|
+
# Load weights into the model
|
|
203
|
+
load_weights_from_files(model, safetensors, rbln_quantization)
|
|
204
|
+
|
|
177
205
|
return model
|
|
178
206
|
|
|
179
207
|
|
|
@@ -372,32 +400,26 @@ def canonicalize_checkpoint_items(
|
|
|
372
400
|
|
|
373
401
|
def load_weights_from_files(
|
|
374
402
|
model: torch.nn.Module,
|
|
375
|
-
|
|
376
|
-
n_layer: Optional[int] = None,
|
|
403
|
+
safetensors: List[Dict[str, torch.Tensor]],
|
|
377
404
|
rbln_quantization: Optional[RBLNQuantizationConfig] = None,
|
|
378
405
|
):
|
|
379
406
|
"""
|
|
380
|
-
Load safetensor file data directly into the model from provided safetensor files
|
|
381
|
-
filtering by layer if n_layer is provided.
|
|
407
|
+
Load safetensor file data directly into the model from provided safetensor files.
|
|
382
408
|
"""
|
|
383
409
|
|
|
384
410
|
model_params = dict(model.named_parameters(recurse=True))
|
|
385
411
|
model_buffers = dict(model.named_buffers(recurse=True))
|
|
386
412
|
|
|
387
|
-
target_layers = list(range(n_layer)) if n_layer is not None else None
|
|
388
|
-
|
|
389
413
|
unloaded_keys = []
|
|
390
414
|
loaded_input_scale = False
|
|
391
415
|
loaded_kv_scale = False
|
|
392
416
|
loaded_weight_scale = False
|
|
393
417
|
|
|
394
|
-
for
|
|
395
|
-
file_data = load_file(safetensor_file)
|
|
396
|
-
|
|
418
|
+
for safetensor in safetensors:
|
|
397
419
|
# Normalize all (key, tensor) pairs to the internal schema
|
|
398
420
|
normalized_items = canonicalize_checkpoint_items(
|
|
399
421
|
model=model,
|
|
400
|
-
items=
|
|
422
|
+
items=safetensor.items(),
|
|
401
423
|
rbln_quantization=rbln_quantization,
|
|
402
424
|
)
|
|
403
425
|
|
|
@@ -410,12 +432,6 @@ def load_weights_from_files(
|
|
|
410
432
|
if key.endswith("k_scale") or key.endswith("v_scale"):
|
|
411
433
|
loaded_kv_scale = True
|
|
412
434
|
|
|
413
|
-
# Filter by layer index if requested
|
|
414
|
-
if target_layers is not None:
|
|
415
|
-
parts = key.split(".")
|
|
416
|
-
if len(parts) > 2 and parts[2].isdigit() and (int(parts[2]) not in target_layers):
|
|
417
|
-
continue
|
|
418
|
-
|
|
419
435
|
# Copy into parameters or buffers
|
|
420
436
|
if key in model_params:
|
|
421
437
|
# Ensure dtype compatibility
|
optimum/rbln/utils/submodule.py
CHANGED
|
@@ -13,7 +13,7 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
from pathlib import Path
|
|
16
|
-
from typing import TYPE_CHECKING, Any, Dict, List, Type
|
|
16
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union
|
|
17
17
|
|
|
18
18
|
from transformers import PretrainedConfig
|
|
19
19
|
|
|
@@ -22,7 +22,7 @@ from ..utils.model_utils import get_rbln_model_cls
|
|
|
22
22
|
|
|
23
23
|
|
|
24
24
|
if TYPE_CHECKING:
|
|
25
|
-
from transformers import PreTrainedModel
|
|
25
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
|
|
26
26
|
|
|
27
27
|
from ..modeling import RBLNModel
|
|
28
28
|
|
|
@@ -42,7 +42,12 @@ class SubModulesMixin:
|
|
|
42
42
|
setattr(self, submodule_meta["name"], submodule)
|
|
43
43
|
|
|
44
44
|
@classmethod
|
|
45
|
-
def _update_submodule_config(
|
|
45
|
+
def _update_submodule_config(
|
|
46
|
+
cls,
|
|
47
|
+
model: "PreTrainedModel",
|
|
48
|
+
rbln_config: RBLNModelConfig,
|
|
49
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
50
|
+
):
|
|
46
51
|
return rbln_config
|
|
47
52
|
|
|
48
53
|
@classmethod
|
|
@@ -51,6 +56,7 @@ class SubModulesMixin:
|
|
|
51
56
|
) -> List["RBLNModel"]:
|
|
52
57
|
rbln_submodules = []
|
|
53
58
|
submodule_prefix = getattr(cls, "_rbln_submodule_prefix", None)
|
|
59
|
+
preprocessors = kwargs.pop("preprocessors", [])
|
|
54
60
|
|
|
55
61
|
for submodule in cls._rbln_submodules:
|
|
56
62
|
submodule_name = submodule["name"]
|
|
@@ -69,7 +75,7 @@ class SubModulesMixin:
|
|
|
69
75
|
submodule_rbln_config = submodule_rbln_config_class(**submodule_rbln_config)
|
|
70
76
|
setattr(rbln_config, submodule_name, submodule_rbln_config)
|
|
71
77
|
|
|
72
|
-
submodule_rbln_config = submodule_cls._update_submodule_config(model, submodule_rbln_config)
|
|
78
|
+
submodule_rbln_config = submodule_cls._update_submodule_config(model, submodule_rbln_config, preprocessors)
|
|
73
79
|
|
|
74
80
|
rbln_submodule = submodule_cls.from_model(
|
|
75
81
|
model=torch_submodule,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.4a0
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -1,8 +1,8 @@
|
|
|
1
|
-
optimum/rbln/__init__.py,sha256=
|
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
|
3
|
-
optimum/rbln/configuration_utils.py,sha256=
|
|
4
|
-
optimum/rbln/modeling.py,sha256=
|
|
5
|
-
optimum/rbln/modeling_base.py,sha256=
|
|
1
|
+
optimum/rbln/__init__.py,sha256=32ouGKDGus9k5_kD27CxP8jIQOw66zpDTfS0xs1XlfE,18298
|
|
2
|
+
optimum/rbln/__version__.py,sha256=YNGYpHnDhFwKFL4ZTx3BIJGtmgon0Pv2G2E10GhWRaY,712
|
|
3
|
+
optimum/rbln/configuration_utils.py,sha256=KtbDM7HnFGiO0PsuvkrCE3R9NF6OJVmV_fyQcQNrmUk,34469
|
|
4
|
+
optimum/rbln/modeling.py,sha256=cAIPWEw5DGzUWeqjCbocRhU6OO3jyhVGW60AmBLh1Nw,14134
|
|
5
|
+
optimum/rbln/modeling_base.py,sha256=kQsBfUoDncNgR5P8_BvyzY6H_4YEXOBzN20lFmOZV_g,26190
|
|
6
6
|
optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
|
|
7
7
|
optimum/rbln/diffusers/modeling_diffusers.py,sha256=TAuMb7PSMjNwK7mh5ItE_CtAEgYeZKI27XkFFmxjHlQ,19902
|
|
8
8
|
optimum/rbln/diffusers/configurations/__init__.py,sha256=vMRnPY4s-Uju43xP038D2EA18X_mhy2YfsZVpSU-VoA,1322
|
|
@@ -72,29 +72,30 @@ optimum/rbln/ops/flash_attn.py,sha256=yTCdYQVqm_1rHMHWjrMQaIR8WTuG_xA6t033x1IVvT
|
|
|
72
72
|
optimum/rbln/ops/kv_cache_update.py,sha256=aIvK2Sp7M3EfJzJgNvIvAJv4emoN6QOhmgaWj-VboLs,1440
|
|
73
73
|
optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,1328
|
|
74
74
|
optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
|
|
75
|
-
optimum/rbln/transformers/__init__.py,sha256=
|
|
76
|
-
optimum/rbln/transformers/configuration_generic.py,sha256=
|
|
75
|
+
optimum/rbln/transformers/__init__.py,sha256=6s-VhsqwptqwUuq7vb847bJlfFgBGshOoK3vaN9i_lI,12043
|
|
76
|
+
optimum/rbln/transformers/configuration_generic.py,sha256=jrehv1oONOS-iBTY5gj2TKUfWjDTnukNJt6cZfNMylU,5213
|
|
77
77
|
optimum/rbln/transformers/modeling_attention_utils.py,sha256=aLyOaq4me1m-JMmnKbuyNQageDxNU2jjEhGE_ew2P5o,11465
|
|
78
|
-
optimum/rbln/transformers/modeling_generic.py,sha256=
|
|
78
|
+
optimum/rbln/transformers/modeling_generic.py,sha256=82Wi2K6zAp5tjef05lzYIEqbK93h0_OkPDbElB-VMMs,12568
|
|
79
79
|
optimum/rbln/transformers/modeling_outputs.py,sha256=cd8ZlhHAGq7S6i5-QK6TJCxgORvoPMnZpqPBlUc_pMY,1177
|
|
80
80
|
optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
|
|
81
|
-
optimum/rbln/transformers/models/__init__.py,sha256=
|
|
81
|
+
optimum/rbln/transformers/models/__init__.py,sha256=V36KWN0fTL0MvfDduUfjIiwXvWmwDKm43G-g5Y773-I,12943
|
|
82
82
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
|
|
83
83
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
|
|
84
84
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
|
|
85
|
-
optimum/rbln/transformers/models/auto/__init__.py,sha256=
|
|
85
|
+
optimum/rbln/transformers/models/auto/__init__.py,sha256=tdYqXkg9xBGNr4fZjH7_O3qRVbHvpEVjrJ6wtNUMMJM,1150
|
|
86
86
|
optimum/rbln/transformers/models/auto/auto_factory.py,sha256=1CA52xV2dS1Uzumcgqe4zobdpoi-Xt2oNjP3uLFtm08,8020
|
|
87
|
-
optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=
|
|
87
|
+
optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=SMsWnD8f7VhKmh7h_S2voksEWlNccfF4fQ7AmwLYq6U,4790
|
|
88
88
|
optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
|
|
89
89
|
optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=mAepjL0paPMK180vGTTCxXQ-hVZ1DD6JR-GvVNGJLqY,6268
|
|
90
90
|
optimum/rbln/transformers/models/bart/configuration_bart.py,sha256=PrRA7OwPTegPamd_mmVnwNygRbNG7pZrsrXdKyfZ6Bo,1351
|
|
91
91
|
optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=H4MmQZbofb9kJq5WKqoFVjmj3HVtgns3t2F3QdSU-QQ,2337
|
|
92
92
|
optimum/rbln/transformers/models/bert/__init__.py,sha256=86FuGRBLw315_Roa9D5OUx6Ku2PM0DqSPZ-YSqbF-io,806
|
|
93
|
+
optimum/rbln/transformers/models/bert/bert_architecture.py,sha256=cZgf-B-FV8qbeJdz2Oa-cHu7crrpwBhr081cEalC-h4,473
|
|
93
94
|
optimum/rbln/transformers/models/bert/configuration_bert.py,sha256=nEZnX6LXpLKWaoPEd4pWSysw9h-PLb2ld0ibC3dcJ7w,1611
|
|
94
|
-
optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=
|
|
95
|
+
optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=7MQZS11k4__oyeni5ek2SzRf-gtD3_hMKl_oOzN7_XQ,2263
|
|
95
96
|
optimum/rbln/transformers/models/blip_2/__init__.py,sha256=L01gPXcUCa8Vg-bcng20vZvBIN_jlqCzwUSFuq0QOag,855
|
|
96
97
|
optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=JUUp4SahBYwv_o2dsHMsgESbPCJHgrng5m7wwtd7HRQ,3193
|
|
97
|
-
optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=
|
|
98
|
+
optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=pI0HCYIy6SsBc2umWuzXHM6tdu_9e2I5gntoQRoxuhA,16264
|
|
98
99
|
optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
|
|
99
100
|
optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=ishrDbTdJm7_AfOn2MPAdAzCWXMdQldwgx9wR_6GcWU,3808
|
|
100
101
|
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=knK7gINAluSHcWvg3zaByb3XRLNmSEGw2NcsOGHnIow,12364
|
|
@@ -104,13 +105,13 @@ optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=eDWPVlo
|
|
|
104
105
|
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=v9rPLmNx-BQZhDFhKnr2kmARElTtKdFZCgFIU4m-HPw,15703
|
|
105
106
|
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=w3VZOIBYaHXVdnuhK4y0zWAj0IAv7_5LGTJYaz9oYmI,1056
|
|
106
107
|
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=H2i9Iefy-q5X-0BLWQ-CrxK8ZoT3p9t0lt_3r4TFSCY,15182
|
|
107
|
-
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=
|
|
108
|
-
optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=
|
|
108
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=L5LArhjN36fTdiwrUABgn3cnS7hh4SVCF4FMHBbiLZU,42760
|
|
109
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py,sha256=v3mfIlQImQkYYr-rPn7rQR3GYdVUhALRttEduLI7H9c,20012
|
|
109
110
|
optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=4D89IF0yQju_Dp_vLJN_dBkpe2U_LMWaUciYx57D-0M,3379
|
|
110
|
-
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=
|
|
111
|
+
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=dAHV9NgdpXHyTJGT0lieXOB3Pzi_NPlR4rqmRtmAWzM,32412
|
|
111
112
|
optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
|
|
112
113
|
optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
|
|
113
|
-
optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=
|
|
114
|
+
optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=tTmsVaW9Wb2WD3nKRLwp7swn3hbMvgwUEJwwVIfNYEc,1008
|
|
114
115
|
optimum/rbln/transformers/models/distilbert/__init__.py,sha256=zXL78SOEORTnUN_wrdoaDaYpntG8lcFHvPobM6jC0CI,841
|
|
115
116
|
optimum/rbln/transformers/models/distilbert/configuration_distilbert.py,sha256=O3BW9JjyYk9PLyiofvOKEgTdMZ_jpIuPfot281pSsyg,984
|
|
116
117
|
optimum/rbln/transformers/models/distilbert/modeling_distilbert.py,sha256=LUh6zYGa8AR3Yxaj3gtyJRc-czBN3qnHTc-JTAhuqY0,1099
|
|
@@ -129,11 +130,15 @@ optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_
|
|
|
129
130
|
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=rKjKJhyaIM7YoiLR-q8GAZKIQNzDzcb5X7qf_FJE72M,3398
|
|
130
131
|
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=fpLDAXCe5paWVsfc0tL59JkRQMRF-WNgIzOIb_QpSLU,6191
|
|
131
132
|
optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=vYQ9sjRlkfamxZca_hVMQI0ylKeExsV02gOWaYVMjyg,9640
|
|
132
|
-
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=
|
|
133
|
+
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=TxbgkvW2Nv0VGdXNXnN_Beas6E_1D9NAH8f09Fo8t0E,24239
|
|
133
134
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
|
|
134
135
|
optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
|
|
135
136
|
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=MyAWReXmyuHnDpW5HI_TI7psyJZxLujZ9KT5XnNm7nA,2802
|
|
136
137
|
optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijKCsRfTx-VCkTqqqNwqqMSrjqRE,2230
|
|
138
|
+
optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
|
|
139
|
+
optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=b6aeAlAMf0aOoTKAqe5nnBfontu_H3zvIHgOiCNMJ1I,3127
|
|
140
|
+
optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=A_YBgvPVHwwKgsGLL0z4MyTKb6Hb6r3y6sU3oVIrKiU,22779
|
|
141
|
+
optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=bXAOs2QH4sy2UFoFLUSM6u1_VHouUT5COERLQX20F6Y,46897
|
|
137
142
|
optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
|
|
138
143
|
optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=8BhPLkfE1_ZU0eSm2iTbWQOnVe1q0g99srYHWZM6VJ4,2373
|
|
139
144
|
optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=UqKUVZ6pZjP2VMfBa3-dJkLNPDqr3H1wHiOo9LPucjs,19636
|
|
@@ -177,7 +182,7 @@ optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=VOboPJF1rvvSVWkH
|
|
|
177
182
|
optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
|
|
178
183
|
optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
|
|
179
184
|
optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=1yyMFxh1SKsKR7rOjuotPvpSneN2_4a89bYfNk42370,4735
|
|
180
|
-
optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=
|
|
185
|
+
optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=hRvA37sPFC9xH1FqnFbtHS9rQOPwAvLYg4zl4oEyK-w,26639
|
|
181
186
|
optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=i_UUWhKoFjJ5CCpgeWicqABM23TxMEKPQ354LoZ6iUU,7445
|
|
182
187
|
optimum/rbln/transformers/models/qwen3/__init__.py,sha256=tI4KwvXpD35dUUaa8aLUXpWoU9gJGcmKXeywOlH14ZE,746
|
|
183
188
|
optimum/rbln/transformers/models/qwen3/configuration_qwen3.py,sha256=BFRPggnH4VlsXlOa19C6KAID-bPgQ8ooQ29dvogh5zk,2102
|
|
@@ -198,7 +203,7 @@ optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=m1h8iDx_X
|
|
|
198
203
|
optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=1TyRaxmhp6mg6UfhQTbZhW26013TE3nVnroYG7EROcU,8033
|
|
199
204
|
optimum/rbln/transformers/models/swin/__init__.py,sha256=gUsLDB8ceNxt53Cf69OT32JuZoRdmmIsRfjRdHTLDd0,698
|
|
200
205
|
optimum/rbln/transformers/models/swin/configuration_swin.py,sha256=iVtpT2jXY5LNkUbbr5J08z97unc43KEhArIZ1tBRzEU,1692
|
|
201
|
-
optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=
|
|
206
|
+
optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=npQgTCEkonG41HzHzEk-a13NFLJHA-K82HFW2VyR0xc,13968
|
|
202
207
|
optimum/rbln/transformers/models/t5/__init__.py,sha256=R1Q8Z1vaIdx4rDjeCmm_ZMSgewWaqaI0l93AHwewtew,818
|
|
203
208
|
optimum/rbln/transformers/models/t5/configuration_t5.py,sha256=nqDbibqykeeWn1TlKk6LmCn-DawTVudMMuBn2c2jds8,1362
|
|
204
209
|
optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=pdAWBLVknTzbma0Ij-VQ2Qve-frPjxL-AwMyU-zouPY,5123
|
|
@@ -222,7 +227,7 @@ optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=O3o2KzJ8Li3QhB7G
|
|
|
222
227
|
optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256=wHRpGTXL9khYqSkKL1IgA7__6_lt9QpOz9tHumjK7fo,1260
|
|
223
228
|
optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=EZd3flRUEE38DYtdqEnG70LV7fHhkamRZV51xrVyjYI,1093
|
|
224
229
|
optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
225
|
-
optimum/rbln/transformers/utils/rbln_quantization.py,sha256=
|
|
230
|
+
optimum/rbln/transformers/utils/rbln_quantization.py,sha256=pORshQUgTInNaibUtd0HL-T8bKW5wuulZs2q0Oshppc,21659
|
|
226
231
|
optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
|
|
227
232
|
optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
|
|
228
233
|
optimum/rbln/utils/depreacate_utils.py,sha256=uKxl3ENUCNaZXPnaDQvNxrH8hUIWdBWfZH6BM7ZV__4,385
|
|
@@ -232,8 +237,8 @@ optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE
|
|
|
232
237
|
optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
|
|
233
238
|
optimum/rbln/utils/runtime_utils.py,sha256=R6uXDbeJP03-FWdd4vthNe2D4aCra5n12E3WB1ifiGM,7933
|
|
234
239
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
|
235
|
-
optimum/rbln/utils/submodule.py,sha256=
|
|
236
|
-
optimum_rbln-0.8.
|
|
237
|
-
optimum_rbln-0.8.
|
|
238
|
-
optimum_rbln-0.8.
|
|
239
|
-
optimum_rbln-0.8.
|
|
240
|
+
optimum/rbln/utils/submodule.py,sha256=60NGLFvnhjP1DJg1opdb-FVQDsthcLCwWjW_1WQaasU,5280
|
|
241
|
+
optimum_rbln-0.8.4a0.dist-info/METADATA,sha256=QqrF_vPDFZO-DiTK0p328Y54qXyk1wApO86SAISpNcc,5299
|
|
242
|
+
optimum_rbln-0.8.4a0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
243
|
+
optimum_rbln-0.8.4a0.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
|
244
|
+
optimum_rbln-0.8.4a0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|