optimum-rbln 0.8.3a3__py3-none-any.whl → 0.8.3rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +18 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +16 -0
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +1 -1
- optimum/rbln/modeling.py +1 -0
- optimum/rbln/modeling_base.py +24 -7
- optimum/rbln/transformers/__init__.py +18 -0
- optimum/rbln/transformers/configuration_generic.py +2 -0
- optimum/rbln/transformers/modeling_generic.py +12 -4
- optimum/rbln/transformers/models/__init__.py +23 -0
- optimum/rbln/transformers/models/auto/__init__.py +1 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +7 -0
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +8 -4
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +6 -1
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +1 -1
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +6 -1
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +86 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +507 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1032 -0
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +341 -0
- optimum/rbln/utils/submodule.py +10 -4
- {optimum_rbln-0.8.3a3.dist-info → optimum_rbln-0.8.3rc0.dist-info}/METADATA +1 -1
- {optimum_rbln-0.8.3a3.dist-info → optimum_rbln-0.8.3rc0.dist-info}/RECORD +29 -21
- {optimum_rbln-0.8.3a3.dist-info → optimum_rbln-0.8.3rc0.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.3a3.dist-info → optimum_rbln-0.8.3rc0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .configuration_swin import RBLNSwinBackboneConfig
|
|
16
|
+
from .modeling_swin import RBLNSwinBackbone
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
2
|
+
# you may not use this file except in compliance with the License.
|
|
3
|
+
# You may obtain a copy of the License at:
|
|
4
|
+
|
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
6
|
+
|
|
7
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
8
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
9
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
10
|
+
# See the License for the specific language governing permissions and
|
|
11
|
+
# limitations under the License.
|
|
12
|
+
|
|
13
|
+
from typing import Any, Optional, Tuple, Union
|
|
14
|
+
|
|
15
|
+
from ...configuration_generic import RBLNModelForImageClassificationConfig
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class RBLNSwinBackboneConfig(RBLNModelForImageClassificationConfig):
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
|
22
|
+
batch_size: Optional[int] = None,
|
|
23
|
+
output_hidden_states: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
**kwargs: Any,
|
|
26
|
+
):
|
|
27
|
+
"""
|
|
28
|
+
Args:
|
|
29
|
+
batch_size (Optional[int]): The batch size for text processing. Defaults to 1.
|
|
30
|
+
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
31
|
+
|
|
32
|
+
Raises:
|
|
33
|
+
ValueError: If batch_size is not a positive integer.
|
|
34
|
+
"""
|
|
35
|
+
super().__init__(**kwargs)
|
|
36
|
+
self.batch_size = batch_size or 1
|
|
37
|
+
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
|
38
|
+
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
39
|
+
|
|
40
|
+
self.image_size = image_size
|
|
41
|
+
self.output_hidden_states = output_hidden_states
|
|
42
|
+
self.output_attentions = output_attentions
|
|
@@ -0,0 +1,341 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import types
|
|
16
|
+
from typing import TYPE_CHECKING, Optional, Tuple, Union
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
import torch.nn.functional as F
|
|
20
|
+
from transformers import SwinConfig
|
|
21
|
+
from transformers.models.swin.modeling_swin import BackboneOutput
|
|
22
|
+
|
|
23
|
+
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
24
|
+
from ....modeling import RBLNModel
|
|
25
|
+
from ....utils.logging import get_logger
|
|
26
|
+
from .configuration_swin import RBLNSwinBackboneConfig
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
logger = get_logger(__name__)
|
|
30
|
+
|
|
31
|
+
if TYPE_CHECKING:
|
|
32
|
+
from transformers import (
|
|
33
|
+
AutoFeatureExtractor,
|
|
34
|
+
AutoProcessor,
|
|
35
|
+
AutoTokenizer,
|
|
36
|
+
PreTrainedModel,
|
|
37
|
+
SwinBackbone,
|
|
38
|
+
SwinEncoder,
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def window_partition(input_feature, window_size):
|
|
43
|
+
"""
|
|
44
|
+
Partitions the given input into windows.
|
|
45
|
+
"""
|
|
46
|
+
batch_size, height, width, num_channels = input_feature.shape
|
|
47
|
+
input_feature = input_feature.view(
|
|
48
|
+
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
|
|
49
|
+
)
|
|
50
|
+
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
|
|
51
|
+
return windows
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def get_attn_mask(self, height, width, dtype, device):
|
|
55
|
+
if self.shift_size > 0:
|
|
56
|
+
# calculate attention mask for SW-MSA
|
|
57
|
+
img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device)
|
|
58
|
+
height_slices = (
|
|
59
|
+
slice(0, -self.window_size),
|
|
60
|
+
slice(-self.window_size, -self.shift_size),
|
|
61
|
+
slice(-self.shift_size, None),
|
|
62
|
+
)
|
|
63
|
+
width_slices = (
|
|
64
|
+
slice(0, -self.window_size),
|
|
65
|
+
slice(-self.window_size, -self.shift_size),
|
|
66
|
+
slice(-self.shift_size, None),
|
|
67
|
+
)
|
|
68
|
+
count = torch.zeros(1)
|
|
69
|
+
for height_slice in height_slices:
|
|
70
|
+
for width_slice in width_slices:
|
|
71
|
+
img_mask[:, height_slice, width_slice, :] = count
|
|
72
|
+
count += 1
|
|
73
|
+
|
|
74
|
+
mask_windows = window_partition(img_mask, self.window_size)
|
|
75
|
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
|
76
|
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
|
77
|
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
|
78
|
+
else:
|
|
79
|
+
attn_mask = None
|
|
80
|
+
return attn_mask
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
class _SwinEncoder(torch.nn.Module):
|
|
84
|
+
def __init__(self, model: "SwinEncoder"):
|
|
85
|
+
super().__init__()
|
|
86
|
+
self.layers = model.layers
|
|
87
|
+
|
|
88
|
+
def forward(
|
|
89
|
+
self,
|
|
90
|
+
hidden_states: torch.Tensor,
|
|
91
|
+
input_dimensions: Tuple[int, int],
|
|
92
|
+
head_mask: Optional[torch.FloatTensor] = None,
|
|
93
|
+
output_attentions: Optional[bool] = False,
|
|
94
|
+
output_hidden_states: Optional[bool] = False,
|
|
95
|
+
output_hidden_states_before_downsampling: Optional[bool] = False,
|
|
96
|
+
always_partition: Optional[bool] = False,
|
|
97
|
+
return_dict: Optional[bool] = True,
|
|
98
|
+
):
|
|
99
|
+
all_hidden_states = () if output_hidden_states else None
|
|
100
|
+
all_reshaped_hidden_states = () if output_hidden_states else None
|
|
101
|
+
all_self_attentions = () if output_attentions else None
|
|
102
|
+
|
|
103
|
+
if output_hidden_states:
|
|
104
|
+
batch_size, _, hidden_size = hidden_states.shape
|
|
105
|
+
# rearrange b (h w) c -> b c h w
|
|
106
|
+
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
|
|
107
|
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
|
108
|
+
all_hidden_states += (hidden_states,)
|
|
109
|
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
|
110
|
+
|
|
111
|
+
for i, layer_module in enumerate(self.layers):
|
|
112
|
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
|
113
|
+
|
|
114
|
+
layer_outputs = layer_module(
|
|
115
|
+
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
hidden_states = layer_outputs[0]
|
|
119
|
+
hidden_states_before_downsampling = layer_outputs[1]
|
|
120
|
+
output_dimensions = layer_outputs[2]
|
|
121
|
+
|
|
122
|
+
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
|
|
123
|
+
|
|
124
|
+
if output_hidden_states and output_hidden_states_before_downsampling:
|
|
125
|
+
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
|
|
126
|
+
# rearrange b (h w) c -> b c h w
|
|
127
|
+
# here we use the original (not downsampled) height and width
|
|
128
|
+
reshaped_hidden_state = hidden_states_before_downsampling.view(
|
|
129
|
+
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
|
|
130
|
+
)
|
|
131
|
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
|
132
|
+
all_hidden_states += (hidden_states_before_downsampling,)
|
|
133
|
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
|
134
|
+
elif output_hidden_states and not output_hidden_states_before_downsampling:
|
|
135
|
+
batch_size, _, hidden_size = hidden_states.shape
|
|
136
|
+
# rearrange b (h w) c -> b c h w
|
|
137
|
+
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
|
|
138
|
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
|
139
|
+
all_hidden_states += (hidden_states,)
|
|
140
|
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
|
141
|
+
|
|
142
|
+
if output_attentions:
|
|
143
|
+
all_self_attentions += layer_outputs[3:]
|
|
144
|
+
|
|
145
|
+
return tuple(
|
|
146
|
+
v
|
|
147
|
+
for v in [hidden_states, all_hidden_states, all_self_attentions, all_reshaped_hidden_states]
|
|
148
|
+
if v is not None
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
class _SwinBackbone(torch.nn.Module):
|
|
153
|
+
def __init__(self, model: "SwinBackbone", output_hidden_states: bool, output_attentions: bool):
|
|
154
|
+
super().__init__()
|
|
155
|
+
self.model = model
|
|
156
|
+
self.embeddings = model.embeddings
|
|
157
|
+
self.encoder = model.encoder
|
|
158
|
+
self.stage_names = model.stage_names
|
|
159
|
+
self.out_features = model.out_features
|
|
160
|
+
self.hidden_states_norms = model.hidden_states_norms
|
|
161
|
+
self.output_hidden_states = output_hidden_states
|
|
162
|
+
self.output_attentions = output_attentions
|
|
163
|
+
|
|
164
|
+
def forward(
|
|
165
|
+
self,
|
|
166
|
+
pixel_values: torch.Tensor,
|
|
167
|
+
):
|
|
168
|
+
embedding_output, input_dimensions = self.embeddings(pixel_values)
|
|
169
|
+
outputs = _SwinEncoder(self.encoder)(
|
|
170
|
+
embedding_output,
|
|
171
|
+
input_dimensions,
|
|
172
|
+
head_mask=None,
|
|
173
|
+
output_attentions=self.output_attentions,
|
|
174
|
+
output_hidden_states=True,
|
|
175
|
+
output_hidden_states_before_downsampling=True,
|
|
176
|
+
always_partition=True,
|
|
177
|
+
return_dict=False,
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
hidden_states = outputs[-1]
|
|
181
|
+
|
|
182
|
+
feature_maps = ()
|
|
183
|
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
|
184
|
+
if stage in self.out_features:
|
|
185
|
+
batch_size, num_channels, height, width = hidden_state.shape
|
|
186
|
+
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
|
|
187
|
+
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
|
|
188
|
+
hidden_state = self.hidden_states_norms[stage](hidden_state)
|
|
189
|
+
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
|
|
190
|
+
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
|
191
|
+
feature_maps += (hidden_state,)
|
|
192
|
+
|
|
193
|
+
output = (feature_maps,)
|
|
194
|
+
|
|
195
|
+
if self.output_hidden_states:
|
|
196
|
+
output += (outputs[1],)
|
|
197
|
+
|
|
198
|
+
if self.output_attentions:
|
|
199
|
+
output += (outputs[2],)
|
|
200
|
+
|
|
201
|
+
return output
|
|
202
|
+
|
|
203
|
+
|
|
204
|
+
class RBLNSwinBackbone(RBLNModel):
|
|
205
|
+
@classmethod
|
|
206
|
+
def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNSwinBackboneConfig) -> torch.nn.Module:
|
|
207
|
+
for layer in model.encoder.layers:
|
|
208
|
+
for block in layer.blocks:
|
|
209
|
+
block.get_attn_mask = types.MethodType(get_attn_mask, block)
|
|
210
|
+
|
|
211
|
+
wrapper_cfg = {
|
|
212
|
+
"output_hidden_states": rbln_config.output_hidden_states,
|
|
213
|
+
"output_attentions": rbln_config.output_attentions,
|
|
214
|
+
}
|
|
215
|
+
return _SwinBackbone(model, **wrapper_cfg).eval()
|
|
216
|
+
|
|
217
|
+
@classmethod
|
|
218
|
+
def _update_submodule_config(
|
|
219
|
+
cls,
|
|
220
|
+
model: "PreTrainedModel",
|
|
221
|
+
rbln_config: RBLNModelConfig,
|
|
222
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
223
|
+
):
|
|
224
|
+
for processor in preprocessors:
|
|
225
|
+
if rbln_config.image_size is None and hasattr(processor, "image_processor"):
|
|
226
|
+
if "height" in processor.image_processor.size and "width" in processor.image_processor.size:
|
|
227
|
+
rbln_config.image_size = (
|
|
228
|
+
processor.image_processor.size["height"],
|
|
229
|
+
processor.image_processor.size["width"],
|
|
230
|
+
)
|
|
231
|
+
elif (
|
|
232
|
+
"longest_edge" in processor.image_processor.size
|
|
233
|
+
and "shortest_edge" in processor.image_processor.size
|
|
234
|
+
):
|
|
235
|
+
rbln_config.image_size = processor.image_processor.size["longest_edge"]
|
|
236
|
+
elif "shortest_edge" in processor.image_processor.size:
|
|
237
|
+
rbln_config.image_size = processor.image_processor.size["shortest_edge"]
|
|
238
|
+
break
|
|
239
|
+
|
|
240
|
+
return rbln_config
|
|
241
|
+
|
|
242
|
+
@classmethod
|
|
243
|
+
def _update_rbln_config(
|
|
244
|
+
cls,
|
|
245
|
+
preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
|
|
246
|
+
model: Optional["PreTrainedModel"] = None,
|
|
247
|
+
model_config: "SwinConfig" = None,
|
|
248
|
+
rbln_config: Optional[RBLNSwinBackboneConfig] = None,
|
|
249
|
+
) -> RBLNSwinBackboneConfig:
|
|
250
|
+
if rbln_config.image_size is None:
|
|
251
|
+
for processor in preprocessors:
|
|
252
|
+
if hasattr(processor, "size"):
|
|
253
|
+
if all(required_key in processor.size.keys() for required_key in ["height", "width"]):
|
|
254
|
+
rbln_config.image_size = (processor.size["height"], processor.size["width"])
|
|
255
|
+
break
|
|
256
|
+
|
|
257
|
+
input_info = [
|
|
258
|
+
(
|
|
259
|
+
"pixel_values",
|
|
260
|
+
[
|
|
261
|
+
rbln_config.batch_size,
|
|
262
|
+
3,
|
|
263
|
+
rbln_config.image_height,
|
|
264
|
+
rbln_config.image_width,
|
|
265
|
+
],
|
|
266
|
+
"float32",
|
|
267
|
+
),
|
|
268
|
+
]
|
|
269
|
+
|
|
270
|
+
rbln_config.set_compile_cfgs([RBLNCompileConfig(input_info=input_info)])
|
|
271
|
+
return rbln_config
|
|
272
|
+
|
|
273
|
+
def forward(
|
|
274
|
+
self,
|
|
275
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
276
|
+
return_dict: bool = True,
|
|
277
|
+
output_attentions: bool = None,
|
|
278
|
+
output_hidden_states: bool = None,
|
|
279
|
+
**kwargs,
|
|
280
|
+
) -> Union[Tuple, BackboneOutput]:
|
|
281
|
+
if len(kwargs) > 0 and any(value is not None for value in kwargs.values()):
|
|
282
|
+
logger.warning(
|
|
283
|
+
f"Currently, optimum-rbln does not support kwargs {kwargs.keys()} for {self.__class__.__name__}."
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
output_attentions = output_attentions if output_attentions is not None else self.rbln_config.output_attentions
|
|
287
|
+
output_hidden_states = (
|
|
288
|
+
output_hidden_states if output_hidden_states is not None else self.rbln_config.output_hidden_states
|
|
289
|
+
)
|
|
290
|
+
|
|
291
|
+
if output_attentions != self.rbln_config.output_attentions:
|
|
292
|
+
raise ValueError(
|
|
293
|
+
f"Variable output_attentions {output_attentions} is not equal to rbln_config.output_attentions {self.rbln_config.output_attentions} "
|
|
294
|
+
f"Please compile again with the correct argument."
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
if output_hidden_states != self.rbln_config.output_hidden_states:
|
|
298
|
+
raise ValueError(
|
|
299
|
+
f"Variable output_hidden_states {output_hidden_states} is not equal to rbln_config.output_hidden_states {self.rbln_config.output_hidden_states} "
|
|
300
|
+
f"Please compile again with the correct argument."
|
|
301
|
+
)
|
|
302
|
+
|
|
303
|
+
_, _, original_h, original_w = pixel_values.shape
|
|
304
|
+
if original_h > self.rbln_config.image_height or original_w > self.rbln_config.image_width:
|
|
305
|
+
raise ValueError(
|
|
306
|
+
f"Input image size ({original_h}x{original_w}) exceeds the configured maximum size"
|
|
307
|
+
f" ({self.rbln_config.image_height}x{self.rbln_config.image_width})."
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
pad_h = self.rbln_config.image_height - original_h
|
|
311
|
+
pad_w = self.rbln_config.image_width - original_w
|
|
312
|
+
padded_pixel_values = F.pad(pixel_values, (0, pad_w, 0, pad_h))
|
|
313
|
+
|
|
314
|
+
output = self.model[0](padded_pixel_values)
|
|
315
|
+
|
|
316
|
+
feature_maps = ()
|
|
317
|
+
for i in range(len(self.config.out_features)):
|
|
318
|
+
feature_maps += (output.pop(0),)
|
|
319
|
+
|
|
320
|
+
if self.rbln_config.output_hidden_states:
|
|
321
|
+
hidden_states = ()
|
|
322
|
+
for i in range(len(self.config.stage_names)):
|
|
323
|
+
hidden_states += (output.pop(0),)
|
|
324
|
+
else:
|
|
325
|
+
hidden_states = None
|
|
326
|
+
|
|
327
|
+
if self.rbln_config.output_attentions:
|
|
328
|
+
attentions = ()
|
|
329
|
+
for i in range(len(self.config.depths)):
|
|
330
|
+
attentions += (output.pop(0),)
|
|
331
|
+
else:
|
|
332
|
+
attentions = None
|
|
333
|
+
|
|
334
|
+
if not return_dict:
|
|
335
|
+
return tuple(item for item in (feature_maps, hidden_states, attentions) if item is not None)
|
|
336
|
+
else:
|
|
337
|
+
return BackboneOutput(
|
|
338
|
+
feature_maps=feature_maps,
|
|
339
|
+
hidden_states=hidden_states,
|
|
340
|
+
attentions=attentions,
|
|
341
|
+
)
|
optimum/rbln/utils/submodule.py
CHANGED
|
@@ -13,7 +13,7 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
from pathlib import Path
|
|
16
|
-
from typing import TYPE_CHECKING, Any, Dict, List, Type
|
|
16
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union
|
|
17
17
|
|
|
18
18
|
from transformers import PretrainedConfig
|
|
19
19
|
|
|
@@ -22,7 +22,7 @@ from ..utils.model_utils import get_rbln_model_cls
|
|
|
22
22
|
|
|
23
23
|
|
|
24
24
|
if TYPE_CHECKING:
|
|
25
|
-
from transformers import PreTrainedModel
|
|
25
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
|
|
26
26
|
|
|
27
27
|
from ..modeling import RBLNModel
|
|
28
28
|
|
|
@@ -42,7 +42,12 @@ class SubModulesMixin:
|
|
|
42
42
|
setattr(self, submodule_meta["name"], submodule)
|
|
43
43
|
|
|
44
44
|
@classmethod
|
|
45
|
-
def _update_submodule_config(
|
|
45
|
+
def _update_submodule_config(
|
|
46
|
+
cls,
|
|
47
|
+
model: "PreTrainedModel",
|
|
48
|
+
rbln_config: RBLNModelConfig,
|
|
49
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
50
|
+
):
|
|
46
51
|
return rbln_config
|
|
47
52
|
|
|
48
53
|
@classmethod
|
|
@@ -51,6 +56,7 @@ class SubModulesMixin:
|
|
|
51
56
|
) -> List["RBLNModel"]:
|
|
52
57
|
rbln_submodules = []
|
|
53
58
|
submodule_prefix = getattr(cls, "_rbln_submodule_prefix", None)
|
|
59
|
+
preprocessors = kwargs.pop("preprocessors", [])
|
|
54
60
|
|
|
55
61
|
for submodule in cls._rbln_submodules:
|
|
56
62
|
submodule_name = submodule["name"]
|
|
@@ -69,7 +75,7 @@ class SubModulesMixin:
|
|
|
69
75
|
submodule_rbln_config = submodule_rbln_config_class(**submodule_rbln_config)
|
|
70
76
|
setattr(rbln_config, submodule_name, submodule_rbln_config)
|
|
71
77
|
|
|
72
|
-
submodule_rbln_config = submodule_cls._update_submodule_config(model, submodule_rbln_config)
|
|
78
|
+
submodule_rbln_config = submodule_cls._update_submodule_config(model, submodule_rbln_config, preprocessors)
|
|
73
79
|
|
|
74
80
|
rbln_submodule = submodule_cls.from_model(
|
|
75
81
|
model=torch_submodule,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.3rc0
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -1,8 +1,8 @@
|
|
|
1
|
-
optimum/rbln/__init__.py,sha256=
|
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
|
3
|
-
optimum/rbln/configuration_utils.py,sha256=
|
|
4
|
-
optimum/rbln/modeling.py,sha256=
|
|
5
|
-
optimum/rbln/modeling_base.py,sha256=
|
|
1
|
+
optimum/rbln/__init__.py,sha256=32ouGKDGus9k5_kD27CxP8jIQOw66zpDTfS0xs1XlfE,18298
|
|
2
|
+
optimum/rbln/__version__.py,sha256=boIaJ8T6HCT9Qh8wBU3n-6ZyjtAKYgztQh0WMaN7BxM,714
|
|
3
|
+
optimum/rbln/configuration_utils.py,sha256=fE3HlZblxukKSdS-4VofjuyCAiqwPMX8bqXpOiTZp4g,33926
|
|
4
|
+
optimum/rbln/modeling.py,sha256=jMiJy9PGjZpXpAmRTFD5fTuj8xEbLCUmncIxGD6XWLk,14338
|
|
5
|
+
optimum/rbln/modeling_base.py,sha256=txBab-zVXcjqnF2gZJBzhrp5ruA3vwt3hjls0Q2S_0w,25492
|
|
6
6
|
optimum/rbln/diffusers/__init__.py,sha256=1tgU_xWA42BmInqu9bBz_5R_E9TGhhK3mI06YlaiTLg,7232
|
|
7
7
|
optimum/rbln/diffusers/modeling_diffusers.py,sha256=TAuMb7PSMjNwK7mh5ItE_CtAEgYeZKI27XkFFmxjHlQ,19902
|
|
8
8
|
optimum/rbln/diffusers/configurations/__init__.py,sha256=vMRnPY4s-Uju43xP038D2EA18X_mhy2YfsZVpSU-VoA,1322
|
|
@@ -36,7 +36,7 @@ optimum/rbln/diffusers/models/transformers/transformer_sd3.py,sha256=yF7sS0Qvawo
|
|
|
36
36
|
optimum/rbln/diffusers/models/unets/__init__.py,sha256=MaICuK9CWjgzejXy8y2NDrphuEq1rkzanF8u45k6O5I,655
|
|
37
37
|
optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=v3WS9EGKROE_QClXrxC7rmRko1BspAvAbeIfh83LK88,15832
|
|
38
38
|
optimum/rbln/diffusers/pipelines/__init__.py,sha256=r8mu21102cKXdkG1II9tpfpUS6wuyren2oK9y_MptZY,3703
|
|
39
|
-
optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=
|
|
39
|
+
optimum/rbln/diffusers/pipelines/auto_pipeline.py,sha256=zFDXbO9Iv0LO7maefV82dmi5Ta6L9oZxY09QFVX6F_Q,9511
|
|
40
40
|
optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
|
|
41
41
|
optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=3S9dogIHW8Bqg5kIlCudhCQG-4g3FcdOPEWhBOf7CJA,4059
|
|
42
42
|
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=G96bh4D9Cu-w4F9gZBQF6wNzhJQv9kvI34ZFsuEDjSw,35714
|
|
@@ -72,29 +72,30 @@ optimum/rbln/ops/flash_attn.py,sha256=yTCdYQVqm_1rHMHWjrMQaIR8WTuG_xA6t033x1IVvT
|
|
|
72
72
|
optimum/rbln/ops/kv_cache_update.py,sha256=aIvK2Sp7M3EfJzJgNvIvAJv4emoN6QOhmgaWj-VboLs,1440
|
|
73
73
|
optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,1328
|
|
74
74
|
optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
|
|
75
|
-
optimum/rbln/transformers/__init__.py,sha256=
|
|
76
|
-
optimum/rbln/transformers/configuration_generic.py,sha256=
|
|
75
|
+
optimum/rbln/transformers/__init__.py,sha256=6s-VhsqwptqwUuq7vb847bJlfFgBGshOoK3vaN9i_lI,12043
|
|
76
|
+
optimum/rbln/transformers/configuration_generic.py,sha256=jrehv1oONOS-iBTY5gj2TKUfWjDTnukNJt6cZfNMylU,5213
|
|
77
77
|
optimum/rbln/transformers/modeling_attention_utils.py,sha256=aLyOaq4me1m-JMmnKbuyNQageDxNU2jjEhGE_ew2P5o,11465
|
|
78
|
-
optimum/rbln/transformers/modeling_generic.py,sha256=
|
|
78
|
+
optimum/rbln/transformers/modeling_generic.py,sha256=82Wi2K6zAp5tjef05lzYIEqbK93h0_OkPDbElB-VMMs,12568
|
|
79
79
|
optimum/rbln/transformers/modeling_outputs.py,sha256=cd8ZlhHAGq7S6i5-QK6TJCxgORvoPMnZpqPBlUc_pMY,1177
|
|
80
80
|
optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
|
|
81
|
-
optimum/rbln/transformers/models/__init__.py,sha256=
|
|
81
|
+
optimum/rbln/transformers/models/__init__.py,sha256=V36KWN0fTL0MvfDduUfjIiwXvWmwDKm43G-g5Y773-I,12943
|
|
82
82
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
|
|
83
83
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
|
|
84
84
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
|
|
85
|
-
optimum/rbln/transformers/models/auto/__init__.py,sha256=
|
|
85
|
+
optimum/rbln/transformers/models/auto/__init__.py,sha256=tdYqXkg9xBGNr4fZjH7_O3qRVbHvpEVjrJ6wtNUMMJM,1150
|
|
86
86
|
optimum/rbln/transformers/models/auto/auto_factory.py,sha256=1CA52xV2dS1Uzumcgqe4zobdpoi-Xt2oNjP3uLFtm08,8020
|
|
87
|
-
optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=
|
|
87
|
+
optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=SMsWnD8f7VhKmh7h_S2voksEWlNccfF4fQ7AmwLYq6U,4790
|
|
88
88
|
optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
|
|
89
89
|
optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=mAepjL0paPMK180vGTTCxXQ-hVZ1DD6JR-GvVNGJLqY,6268
|
|
90
90
|
optimum/rbln/transformers/models/bart/configuration_bart.py,sha256=PrRA7OwPTegPamd_mmVnwNygRbNG7pZrsrXdKyfZ6Bo,1351
|
|
91
91
|
optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=H4MmQZbofb9kJq5WKqoFVjmj3HVtgns3t2F3QdSU-QQ,2337
|
|
92
92
|
optimum/rbln/transformers/models/bert/__init__.py,sha256=86FuGRBLw315_Roa9D5OUx6Ku2PM0DqSPZ-YSqbF-io,806
|
|
93
|
+
optimum/rbln/transformers/models/bert/bert_architecture.py,sha256=cZgf-B-FV8qbeJdz2Oa-cHu7crrpwBhr081cEalC-h4,473
|
|
93
94
|
optimum/rbln/transformers/models/bert/configuration_bert.py,sha256=nEZnX6LXpLKWaoPEd4pWSysw9h-PLb2ld0ibC3dcJ7w,1611
|
|
94
|
-
optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=
|
|
95
|
+
optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=7MQZS11k4__oyeni5ek2SzRf-gtD3_hMKl_oOzN7_XQ,2263
|
|
95
96
|
optimum/rbln/transformers/models/blip_2/__init__.py,sha256=L01gPXcUCa8Vg-bcng20vZvBIN_jlqCzwUSFuq0QOag,855
|
|
96
97
|
optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=JUUp4SahBYwv_o2dsHMsgESbPCJHgrng5m7wwtd7HRQ,3193
|
|
97
|
-
optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=
|
|
98
|
+
optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=pI0HCYIy6SsBc2umWuzXHM6tdu_9e2I5gntoQRoxuhA,16264
|
|
98
99
|
optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
|
|
99
100
|
optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=ishrDbTdJm7_AfOn2MPAdAzCWXMdQldwgx9wR_6GcWU,3808
|
|
100
101
|
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=knK7gINAluSHcWvg3zaByb3XRLNmSEGw2NcsOGHnIow,12364
|
|
@@ -110,7 +111,7 @@ optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py,sha256=4D
|
|
|
110
111
|
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=hu2eJr0CpLHnRPSLhyBhyyC6DfosKmPu7lPjapcBCkE,33061
|
|
111
112
|
optimum/rbln/transformers/models/depth_anything/__init__.py,sha256=xvPSIriMJWyNeVYoVB1Z7YqB4kkHOIkaHq7loNps-dk,756
|
|
112
113
|
optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py,sha256=JujBVEUa_zZDXNPr1y-B_PhK5SgFFcY8Ib4EoGjjtmE,989
|
|
113
|
-
optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=
|
|
114
|
+
optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py,sha256=tTmsVaW9Wb2WD3nKRLwp7swn3hbMvgwUEJwwVIfNYEc,1008
|
|
114
115
|
optimum/rbln/transformers/models/distilbert/__init__.py,sha256=zXL78SOEORTnUN_wrdoaDaYpntG8lcFHvPobM6jC0CI,841
|
|
115
116
|
optimum/rbln/transformers/models/distilbert/configuration_distilbert.py,sha256=O3BW9JjyYk9PLyiofvOKEgTdMZ_jpIuPfot281pSsyg,984
|
|
116
117
|
optimum/rbln/transformers/models/distilbert/modeling_distilbert.py,sha256=LUh6zYGa8AR3Yxaj3gtyJRc-czBN3qnHTc-JTAhuqY0,1099
|
|
@@ -129,11 +130,15 @@ optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_
|
|
|
129
130
|
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=rKjKJhyaIM7YoiLR-q8GAZKIQNzDzcb5X7qf_FJE72M,3398
|
|
130
131
|
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=fpLDAXCe5paWVsfc0tL59JkRQMRF-WNgIzOIb_QpSLU,6191
|
|
131
132
|
optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py,sha256=vYQ9sjRlkfamxZca_hVMQI0ylKeExsV02gOWaYVMjyg,9640
|
|
132
|
-
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=
|
|
133
|
+
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=zraPjowA8ni9Lb0NrmsiUai2XdOjgYOOpVnIU1n2jGA,24208
|
|
133
134
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
|
|
134
135
|
optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
|
|
135
136
|
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=MyAWReXmyuHnDpW5HI_TI7psyJZxLujZ9KT5XnNm7nA,2802
|
|
136
137
|
optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=DhF6hU3oCYGbZ7UijKCsRfTx-VCkTqqqNwqqMSrjqRE,2230
|
|
138
|
+
optimum/rbln/transformers/models/grounding_dino/__init__.py,sha256=DE7DipZGvrKC6b1T77k4I4X3G70ss8mlr-PrZCaohto,307
|
|
139
|
+
optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py,sha256=b6aeAlAMf0aOoTKAqe5nnBfontu_H3zvIHgOiCNMJ1I,3127
|
|
140
|
+
optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py,sha256=A_YBgvPVHwwKgsGLL0z4MyTKb6Hb6r3y6sU3oVIrKiU,22779
|
|
141
|
+
optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py,sha256=bXAOs2QH4sy2UFoFLUSM6u1_VHouUT5COERLQX20F6Y,46897
|
|
137
142
|
optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
|
|
138
143
|
optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=8BhPLkfE1_ZU0eSm2iTbWQOnVe1q0g99srYHWZM6VJ4,2373
|
|
139
144
|
optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=UqKUVZ6pZjP2VMfBa3-dJkLNPDqr3H1wHiOo9LPucjs,19636
|
|
@@ -196,6 +201,9 @@ optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=4MupGjhe
|
|
|
196
201
|
optimum/rbln/transformers/models/siglip/__init__.py,sha256=X1Fc1GUnJ2EIxFx45nbeoW-T2t0OyP3W73C0HD8Vowo,712
|
|
197
202
|
optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=m1h8iDx_X9VmHdJi0sc1a2KsAO3OnpMb4cd9jW2Ic-U,3031
|
|
198
203
|
optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=1TyRaxmhp6mg6UfhQTbZhW26013TE3nVnroYG7EROcU,8033
|
|
204
|
+
optimum/rbln/transformers/models/swin/__init__.py,sha256=gUsLDB8ceNxt53Cf69OT32JuZoRdmmIsRfjRdHTLDd0,698
|
|
205
|
+
optimum/rbln/transformers/models/swin/configuration_swin.py,sha256=iVtpT2jXY5LNkUbbr5J08z97unc43KEhArIZ1tBRzEU,1692
|
|
206
|
+
optimum/rbln/transformers/models/swin/modeling_swin.py,sha256=npQgTCEkonG41HzHzEk-a13NFLJHA-K82HFW2VyR0xc,13968
|
|
199
207
|
optimum/rbln/transformers/models/t5/__init__.py,sha256=R1Q8Z1vaIdx4rDjeCmm_ZMSgewWaqaI0l93AHwewtew,818
|
|
200
208
|
optimum/rbln/transformers/models/t5/configuration_t5.py,sha256=nqDbibqykeeWn1TlKk6LmCn-DawTVudMMuBn2c2jds8,1362
|
|
201
209
|
optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=pdAWBLVknTzbma0Ij-VQ2Qve-frPjxL-AwMyU-zouPY,5123
|
|
@@ -229,8 +237,8 @@ optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE
|
|
|
229
237
|
optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsFvz3k,1748
|
|
230
238
|
optimum/rbln/utils/runtime_utils.py,sha256=R6uXDbeJP03-FWdd4vthNe2D4aCra5n12E3WB1ifiGM,7933
|
|
231
239
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
|
232
|
-
optimum/rbln/utils/submodule.py,sha256=
|
|
233
|
-
optimum_rbln-0.8.
|
|
234
|
-
optimum_rbln-0.8.
|
|
235
|
-
optimum_rbln-0.8.
|
|
236
|
-
optimum_rbln-0.8.
|
|
240
|
+
optimum/rbln/utils/submodule.py,sha256=60NGLFvnhjP1DJg1opdb-FVQDsthcLCwWjW_1WQaasU,5280
|
|
241
|
+
optimum_rbln-0.8.3rc0.dist-info/METADATA,sha256=ls15qV7a7bVTpkphb6aHteuBfil7u1xOzkUuysoRPZg,5300
|
|
242
|
+
optimum_rbln-0.8.3rc0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
243
|
+
optimum_rbln-0.8.3rc0.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
|
244
|
+
optimum_rbln-0.8.3rc0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|