optimum-rbln 0.8.2rc0__py3-none-any.whl → 0.8.3a0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +4 -9
- optimum/rbln/__version__.py +16 -3
- optimum/rbln/configuration_utils.py +4 -4
- optimum/rbln/diffusers/__init__.py +1 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +3 -3
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +4 -4
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +2 -2
- optimum/rbln/diffusers/modeling_diffusers.py +1 -1
- optimum/rbln/diffusers/models/__init__.py +3 -13
- optimum/rbln/diffusers/pipelines/__init__.py +1 -5
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +11 -6
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +1 -1
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +1 -1
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
- optimum/rbln/modeling.py +2 -2
- optimum/rbln/modeling_base.py +12 -4
- optimum/rbln/ops/attn.py +158 -0
- optimum/rbln/ops/flash_attn.py +166 -0
- optimum/rbln/transformers/__init__.py +2 -0
- optimum/rbln/transformers/configuration_generic.py +4 -4
- optimum/rbln/transformers/modeling_generic.py +1 -4
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/models/__init__.py +6 -16
- optimum/rbln/transformers/models/auto/__init__.py +1 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +7 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
- optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +2 -2
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +1 -5
- optimum/rbln/transformers/models/clip/configuration_clip.py +3 -3
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +1 -4
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +2 -2
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +2 -10
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +43 -174
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +101 -91
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +450 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +88 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +296 -986
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +9 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +3 -3
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +217 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +19 -250
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +2 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +2 -2
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +3 -9
- optimum/rbln/transformers/models/llama/modeling_llama.py +12 -3
- optimum/rbln/transformers/models/llava/configuration_llava.py +2 -2
- optimum/rbln/transformers/models/llava/modeling_llava.py +53 -14
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +2 -2
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +6 -16
- optimum/rbln/transformers/models/opt/modeling_opt.py +2 -30
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +4 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +2 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +1 -3
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +2 -2
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +1 -4
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +3 -3
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +6 -15
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +4 -7
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +77 -3
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -4
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +19 -2
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +20 -1
- optimum/rbln/transformers/models/siglip/__init__.py +2 -6
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +2 -2
- optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +2 -2
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -14
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +10 -2
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +20 -1
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
- optimum/rbln/transformers/utils/rbln_quantization.py +249 -46
- optimum/rbln/utils/runtime_utils.py +3 -3
- {optimum_rbln-0.8.2rc0.dist-info → optimum_rbln-0.8.3a0.dist-info}/METADATA +1 -1
- {optimum_rbln-0.8.2rc0.dist-info → optimum_rbln-0.8.3a0.dist-info}/RECORD +90 -86
- {optimum_rbln-0.8.2rc0.dist-info → optimum_rbln-0.8.3a0.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.2rc0.dist-info → optimum_rbln-0.8.3a0.dist-info}/licenses/LICENSE +0 -0
|
@@ -13,10 +13,7 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
|
|
16
|
-
from ...models.decoderonly.decoderonly_architecture import
|
|
17
|
-
DecoderOnlyModel,
|
|
18
|
-
DecoderOnlyWrapper,
|
|
19
|
-
)
|
|
16
|
+
from ...models.decoderonly.decoderonly_architecture import DecoderOnlyModel, DecoderOnlyWrapper
|
|
20
17
|
|
|
21
18
|
|
|
22
19
|
class GemmaWrapper(DecoderOnlyWrapper):
|
|
@@ -90,6 +90,15 @@ class RBLNGemmaModel(RBLNDecoderOnlyModel):
|
|
|
90
90
|
|
|
91
91
|
A class to convert and run pre-trained transformers based GemmaModel model on RBLN devices.
|
|
92
92
|
It implements the methods to convert a pre-trained transformers GemmaModel model into a RBLN transformer model by:
|
|
93
|
+
|
|
94
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
|
95
|
+
- compiling the resulting graph using the RBLN compiler.
|
|
96
|
+
|
|
97
|
+
**Configuration:**
|
|
98
|
+
This model uses [`RBLNGemmaModelConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
|
99
|
+
the `rbln_config` parameter should be an instance of [`RBLNGemmaModelConfig`] or a dictionary conforming to its structure.
|
|
100
|
+
|
|
101
|
+
See the [`RBLNGemmaModelConfig`] class for all available configuration options.
|
|
93
102
|
"""
|
|
94
103
|
|
|
95
104
|
_decoder_wrapper_cls = GemmaWrapper
|
|
@@ -11,7 +11,7 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
-
from typing import Any,
|
|
14
|
+
from typing import Any, Optional
|
|
15
15
|
|
|
16
16
|
from ....configuration_utils import RBLNModelConfig
|
|
17
17
|
from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
|
|
@@ -25,7 +25,7 @@ class RBLNGemma3ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
|
|
|
25
25
|
use_attention_mask: Optional[bool] = None,
|
|
26
26
|
prefill_chunk_size: Optional[int] = None,
|
|
27
27
|
image_prefill_chunk_size: Optional[int] = None,
|
|
28
|
-
**kwargs:
|
|
28
|
+
**kwargs: Any,
|
|
29
29
|
):
|
|
30
30
|
# use_attention_mask and use_position_ids are always True for Gemma3
|
|
31
31
|
use_attention_mask = use_attention_mask or True
|
|
@@ -57,7 +57,7 @@ class RBLNGemma3ForConditionalGenerationConfig(RBLNModelConfig):
|
|
|
57
57
|
batch_size: Optional[int] = None,
|
|
58
58
|
vision_tower: Optional[RBLNModelConfig] = None,
|
|
59
59
|
language_model: Optional[RBLNModelConfig] = None,
|
|
60
|
-
**kwargs:
|
|
60
|
+
**kwargs: Any,
|
|
61
61
|
):
|
|
62
62
|
"""
|
|
63
63
|
Args:
|
|
@@ -0,0 +1,217 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
from typing import Optional
|
|
15
|
+
|
|
16
|
+
import rebel
|
|
17
|
+
import torch
|
|
18
|
+
|
|
19
|
+
from ...modeling_outputs import RBLNDecoderOnlyOutput, RBLNGemma3ForCausalLMOutput
|
|
20
|
+
from ..decoderonly.modeling_decoderonly import RBLNRuntimeModel
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
24
|
+
def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
|
|
25
|
+
super().__init__(*args, **kwargs)
|
|
26
|
+
self.image_prefill = image_prefill # FIXME(taehoon)
|
|
27
|
+
self.prefill = self.runtime if self.phase == "prefill" else None # FIXME
|
|
28
|
+
self.decode = self.runtime if self.phase == "decode" else None
|
|
29
|
+
|
|
30
|
+
def _prepare_prefill_inputs(self, *args, **kwargs):
|
|
31
|
+
(
|
|
32
|
+
inputs,
|
|
33
|
+
cache_position,
|
|
34
|
+
chunked_attention_mask,
|
|
35
|
+
position_ids,
|
|
36
|
+
position_embed,
|
|
37
|
+
padded_cache_lengths,
|
|
38
|
+
query_length,
|
|
39
|
+
token_type_ids,
|
|
40
|
+
) = super()._prepare_prefill_inputs(*args, **kwargs)
|
|
41
|
+
|
|
42
|
+
# chunked_attention_mask shape
|
|
43
|
+
chunked_attention_mask = torch.zeros(1, chunked_attention_mask.shape[-1], dtype=torch.float32)
|
|
44
|
+
|
|
45
|
+
# In case of Gemma3ForConditionalGeneration, the loop counter may not be a prefill_chunk_size,
|
|
46
|
+
# so we cannot guarantee that the last chunk starts at a position that is a multiple of prefill_chunk_size.
|
|
47
|
+
if self.rbln_config.use_image_prefill:
|
|
48
|
+
padding_size = self.rbln_config.image_prefill_chunk_size
|
|
49
|
+
inputs = torch.nn.functional.pad(inputs, (0, 0, 0, padding_size))
|
|
50
|
+
cache_position = torch.nn.functional.pad(cache_position, (0, padding_size))
|
|
51
|
+
position_ids = torch.nn.functional.pad(position_ids, (0, padding_size))
|
|
52
|
+
token_type_ids = torch.nn.functional.pad(token_type_ids, (0, padding_size), value=-1)
|
|
53
|
+
|
|
54
|
+
return (
|
|
55
|
+
inputs,
|
|
56
|
+
cache_position,
|
|
57
|
+
chunked_attention_mask,
|
|
58
|
+
position_ids,
|
|
59
|
+
position_embed,
|
|
60
|
+
padded_cache_lengths,
|
|
61
|
+
query_length,
|
|
62
|
+
token_type_ids,
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
def prefill_forward(
|
|
66
|
+
self,
|
|
67
|
+
inputs: torch.Tensor,
|
|
68
|
+
cache_position: torch.Tensor = None,
|
|
69
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
70
|
+
batch_idx: int = None,
|
|
71
|
+
block_tables: torch.Tensor = None,
|
|
72
|
+
is_external_block_tables: bool = None,
|
|
73
|
+
position_embed: Optional[torch.Tensor] = None,
|
|
74
|
+
token_type_ids: Optional[torch.Tensor] = None,
|
|
75
|
+
local_block_tables: Optional[torch.Tensor] = None,
|
|
76
|
+
) -> torch.FloatTensor:
|
|
77
|
+
"""
|
|
78
|
+
Performs chunked prefill for efficient KV-cache updates and memory optimization.
|
|
79
|
+
Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
|
|
80
|
+
and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
|
|
81
|
+
"""
|
|
82
|
+
(
|
|
83
|
+
inputs,
|
|
84
|
+
cache_position,
|
|
85
|
+
chunked_attention_mask,
|
|
86
|
+
position_ids,
|
|
87
|
+
position_embed,
|
|
88
|
+
padded_cache_lengths,
|
|
89
|
+
query_length,
|
|
90
|
+
token_type_ids,
|
|
91
|
+
) = self._prepare_prefill_inputs(
|
|
92
|
+
inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
step = 0
|
|
96
|
+
while step < query_length:
|
|
97
|
+
if self.rbln_config.use_image_prefill:
|
|
98
|
+
# Check if the prefill chunk is an image prefill
|
|
99
|
+
is_image_prefill = torch.all(
|
|
100
|
+
token_type_ids[:, step : step + self.rbln_config.image_prefill_chunk_size] == 1
|
|
101
|
+
)
|
|
102
|
+
# Check if the prefill chunk is a text prefill which have image_tokens in it.
|
|
103
|
+
is_text_prefill_with_image_tokens = not is_image_prefill and torch.any(
|
|
104
|
+
token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
|
|
105
|
+
)
|
|
106
|
+
else:
|
|
107
|
+
is_image_prefill, is_text_prefill_with_image_tokens = False, False
|
|
108
|
+
|
|
109
|
+
# Check if the prefill chunk is the last chunk
|
|
110
|
+
is_last_chunk = step + self.rbln_config.prefill_chunk_size >= query_length
|
|
111
|
+
|
|
112
|
+
input_chunk = inputs[:, step : step + self.rbln_config.prefill_chunk_size]
|
|
113
|
+
cache_pos_chunk = (
|
|
114
|
+
cache_position[:, step : step + self.rbln_config.prefill_chunk_size] + padded_cache_lengths
|
|
115
|
+
)
|
|
116
|
+
position_ids_chunk = position_ids[:, step : step + self.rbln_config.prefill_chunk_size]
|
|
117
|
+
|
|
118
|
+
# if text_prefill end with image_tokens, we only treat the text part.
|
|
119
|
+
num_processed_tokens = self.rbln_config.prefill_chunk_size
|
|
120
|
+
current_padded_cache_lengths = 0
|
|
121
|
+
if is_text_prefill_with_image_tokens:
|
|
122
|
+
first_image_token_idx = torch.where(
|
|
123
|
+
token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
|
|
124
|
+
)[1][0]
|
|
125
|
+
num_processed_tokens = first_image_token_idx.item()
|
|
126
|
+
current_padded_cache_lengths = self.rbln_config.prefill_chunk_size - num_processed_tokens
|
|
127
|
+
if is_last_chunk:
|
|
128
|
+
num_processed_tokens = query_length - step
|
|
129
|
+
|
|
130
|
+
chunked_attention_mask[
|
|
131
|
+
:, step + padded_cache_lengths : step + num_processed_tokens + padded_cache_lengths
|
|
132
|
+
] = 1
|
|
133
|
+
query_position = torch.tensor(num_processed_tokens - 1, dtype=torch.int16)
|
|
134
|
+
|
|
135
|
+
if is_image_prefill:
|
|
136
|
+
logits = self.image_prefill(
|
|
137
|
+
input_chunk,
|
|
138
|
+
cache_pos_chunk,
|
|
139
|
+
block_tables,
|
|
140
|
+
local_block_tables,
|
|
141
|
+
query_position,
|
|
142
|
+
chunked_attention_mask,
|
|
143
|
+
position_ids_chunk,
|
|
144
|
+
)
|
|
145
|
+
else:
|
|
146
|
+
logits = self.prefill(
|
|
147
|
+
input_chunk,
|
|
148
|
+
cache_pos_chunk,
|
|
149
|
+
block_tables,
|
|
150
|
+
local_block_tables,
|
|
151
|
+
query_position,
|
|
152
|
+
chunked_attention_mask,
|
|
153
|
+
position_ids_chunk,
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
padded_cache_lengths += current_padded_cache_lengths
|
|
157
|
+
step += num_processed_tokens
|
|
158
|
+
|
|
159
|
+
if not is_external_block_tables:
|
|
160
|
+
self.dec_attn_mask[batch_idx : batch_idx + 1] = chunked_attention_mask
|
|
161
|
+
|
|
162
|
+
return RBLNGemma3ForCausalLMOutput(
|
|
163
|
+
logits=logits, padded_cache_lengths=padded_cache_lengths, attention_mask=chunked_attention_mask
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
def decode_forward(
|
|
167
|
+
self,
|
|
168
|
+
inputs: torch.Tensor,
|
|
169
|
+
cache_position: torch.Tensor = None,
|
|
170
|
+
block_tables: torch.Tensor = None,
|
|
171
|
+
is_external_block_tables: bool = None,
|
|
172
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
173
|
+
position_embed: Optional[torch.Tensor] = None,
|
|
174
|
+
position_ids: Optional[torch.Tensor] = None,
|
|
175
|
+
local_block_tables: Optional[torch.Tensor] = None,
|
|
176
|
+
) -> torch.FloatTensor:
|
|
177
|
+
batch_size = inputs.shape[0]
|
|
178
|
+
if batch_size != self.batch_size:
|
|
179
|
+
raise RuntimeError(
|
|
180
|
+
f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
if batch_size != cache_position.shape[0]:
|
|
184
|
+
raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
|
|
185
|
+
|
|
186
|
+
# FIXME(taehoon): how to handle pos_attn_mask with external block tables
|
|
187
|
+
if is_external_block_tables:
|
|
188
|
+
if attention_mask is None:
|
|
189
|
+
raise ValueError("attention_mask should be provided with external block tables.")
|
|
190
|
+
if local_block_tables is None:
|
|
191
|
+
raise ValueError("local_block_tables should be provided with external block tables.")
|
|
192
|
+
else:
|
|
193
|
+
local_block_tables = (
|
|
194
|
+
local_block_tables
|
|
195
|
+
if local_block_tables is not None
|
|
196
|
+
else torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, -1)
|
|
197
|
+
)
|
|
198
|
+
if self.rbln_config.use_attention_mask and attention_mask is None:
|
|
199
|
+
for b_idx in range(batch_size):
|
|
200
|
+
decoding_step = cache_position[b_idx].item()
|
|
201
|
+
if not (0 <= decoding_step < self.dec_attn_mask.shape[-1]):
|
|
202
|
+
raise ValueError(
|
|
203
|
+
f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
|
|
204
|
+
)
|
|
205
|
+
self.dec_attn_mask[b_idx, decoding_step] = 1
|
|
206
|
+
|
|
207
|
+
attention_mask = self.dec_attn_mask
|
|
208
|
+
|
|
209
|
+
if self.batch_size < block_tables.shape[0]:
|
|
210
|
+
block_tables = block_tables[: self.batch_size]
|
|
211
|
+
|
|
212
|
+
if attention_mask is not None and self.batch_size < attention_mask.shape[0]:
|
|
213
|
+
attention_mask = attention_mask[: self.batch_size]
|
|
214
|
+
|
|
215
|
+
logits = self.decode(inputs, cache_position, block_tables, local_block_tables, attention_mask, position_ids)
|
|
216
|
+
|
|
217
|
+
return RBLNDecoderOnlyOutput(logits=logits)
|
|
@@ -12,43 +12,32 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
import inspect
|
|
15
|
-
from collections import deque
|
|
16
|
-
from dataclasses import dataclass
|
|
17
15
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
|
18
16
|
|
|
19
17
|
import rebel
|
|
20
18
|
import torch
|
|
21
19
|
from rebel.compile_context import CompileContext
|
|
22
|
-
from transformers import
|
|
23
|
-
AutoModelForImageTextToText,
|
|
24
|
-
Gemma3ForConditionalGeneration,
|
|
25
|
-
PretrainedConfig,
|
|
26
|
-
PreTrainedModel,
|
|
27
|
-
)
|
|
20
|
+
from transformers import AutoModelForImageTextToText, Gemma3ForConditionalGeneration, PretrainedConfig, PreTrainedModel
|
|
28
21
|
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
|
29
22
|
from transformers.modeling_utils import no_init_weights
|
|
30
23
|
from transformers.models.gemma3.modeling_gemma3 import Gemma3TextScaledWordEmbedding
|
|
31
24
|
|
|
32
25
|
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
33
26
|
from ....modeling import RBLNModel
|
|
27
|
+
from ...modeling_outputs import RBLNDecoderOnlyOutput
|
|
28
|
+
from ..decoderonly.decoderonly_runtime_utils import RBLNPageTableManager
|
|
34
29
|
from ..decoderonly.modeling_decoderonly import (
|
|
35
|
-
RBLNDecoderOnlyForCausalLMOutput,
|
|
36
30
|
RBLNDecoderOnlyModelForCausalLM,
|
|
37
|
-
RBLNRuntimeModel,
|
|
38
31
|
)
|
|
39
32
|
from .configuration_gemma3 import RBLNGemma3ForCausalLMConfig
|
|
40
33
|
from .gemma3_architecture import Gemma3ForCausalLMWrapper
|
|
34
|
+
from .gemma3_runtime_utils import RBLNGemma3RuntimeModel
|
|
41
35
|
|
|
42
36
|
|
|
43
37
|
if TYPE_CHECKING:
|
|
44
38
|
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, Gemma3ForConditionalGeneration
|
|
45
39
|
|
|
46
40
|
|
|
47
|
-
@dataclass
|
|
48
|
-
class RBLNGemma3ForCausalLMOutput(RBLNDecoderOnlyForCausalLMOutput):
|
|
49
|
-
attention_mask: Optional[torch.Tensor] = None
|
|
50
|
-
|
|
51
|
-
|
|
52
41
|
class LoopVisionTower:
|
|
53
42
|
def __init__(self, vision_tower: RBLNModel) -> None:
|
|
54
43
|
self.vision_tower = vision_tower
|
|
@@ -201,7 +190,7 @@ class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
|
|
201
190
|
|
|
202
191
|
def _update_model_kwargs_for_generation(
|
|
203
192
|
self,
|
|
204
|
-
outputs:
|
|
193
|
+
outputs: RBLNDecoderOnlyOutput,
|
|
205
194
|
model_kwargs: Dict[str, Any],
|
|
206
195
|
**kwargs,
|
|
207
196
|
) -> Dict[str, Any]:
|
|
@@ -298,7 +287,7 @@ class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
|
|
298
287
|
padded_cache_lengths: Optional[torch.Tensor] = None,
|
|
299
288
|
position_ids: Optional[torch.Tensor] = None,
|
|
300
289
|
**lm_kwargs: Dict[str, Any],
|
|
301
|
-
) -> Union[Tuple,
|
|
290
|
+
) -> Union[Tuple, RBLNDecoderOnlyOutput]:
|
|
302
291
|
# prefill
|
|
303
292
|
if cache_position is None:
|
|
304
293
|
logits = []
|
|
@@ -339,213 +328,11 @@ class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
|
|
339
328
|
position_ids=position_ids if self.rbln_config.language_model.use_position_ids else None,
|
|
340
329
|
).logits
|
|
341
330
|
|
|
342
|
-
return
|
|
331
|
+
return RBLNDecoderOnlyOutput(
|
|
343
332
|
logits=logits, generate_idx=generate_idx, padded_cache_lengths=padded_cache_lengths
|
|
344
333
|
)
|
|
345
334
|
|
|
346
335
|
|
|
347
|
-
class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
348
|
-
def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
|
|
349
|
-
super().__init__(*args, **kwargs)
|
|
350
|
-
self.image_prefill = image_prefill # FIXME(taehoon)
|
|
351
|
-
self.prefill = self.runtime if self.phase == "prefill" else None # FIXME
|
|
352
|
-
self.decode = self.runtime if self.phase == "decode" else None
|
|
353
|
-
|
|
354
|
-
def _prepare_prefill_inputs(self, *args, **kwargs):
|
|
355
|
-
(
|
|
356
|
-
inputs,
|
|
357
|
-
cache_position,
|
|
358
|
-
chunked_attention_mask,
|
|
359
|
-
out_buffers,
|
|
360
|
-
position_ids,
|
|
361
|
-
position_embed,
|
|
362
|
-
padded_cache_lengths,
|
|
363
|
-
query_length,
|
|
364
|
-
token_type_ids,
|
|
365
|
-
) = super()._prepare_prefill_inputs(*args, **kwargs)
|
|
366
|
-
|
|
367
|
-
# chunked_attention_mask shape
|
|
368
|
-
chunked_attention_mask = torch.zeros(1, chunked_attention_mask.shape[-1], dtype=torch.float32)
|
|
369
|
-
|
|
370
|
-
# In case of Gemma3ForConditionalGeneration, the loop counter may not be a prefill_chunk_size,
|
|
371
|
-
# so we cannot guarantee that the last chunk starts at a position that is a multiple of prefill_chunk_size.
|
|
372
|
-
if self.rbln_config.use_image_prefill:
|
|
373
|
-
padding_size = self.rbln_config.image_prefill_chunk_size
|
|
374
|
-
inputs = torch.nn.functional.pad(inputs, (0, 0, 0, padding_size))
|
|
375
|
-
cache_position = torch.nn.functional.pad(cache_position, (0, padding_size))
|
|
376
|
-
position_ids = torch.nn.functional.pad(position_ids, (0, padding_size))
|
|
377
|
-
token_type_ids = torch.nn.functional.pad(token_type_ids, (0, padding_size), value=-1)
|
|
378
|
-
|
|
379
|
-
return (
|
|
380
|
-
inputs,
|
|
381
|
-
cache_position,
|
|
382
|
-
chunked_attention_mask,
|
|
383
|
-
out_buffers,
|
|
384
|
-
position_ids,
|
|
385
|
-
position_embed,
|
|
386
|
-
padded_cache_lengths,
|
|
387
|
-
query_length,
|
|
388
|
-
token_type_ids,
|
|
389
|
-
)
|
|
390
|
-
|
|
391
|
-
def prefill_forward(
|
|
392
|
-
self,
|
|
393
|
-
inputs: torch.Tensor,
|
|
394
|
-
cache_position: torch.Tensor = None,
|
|
395
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
396
|
-
batch_idx: int = None,
|
|
397
|
-
block_tables: torch.Tensor = None,
|
|
398
|
-
is_external_block_tables: bool = None,
|
|
399
|
-
position_embed: Optional[torch.Tensor] = None,
|
|
400
|
-
token_type_ids: Optional[torch.Tensor] = None,
|
|
401
|
-
local_block_tables: Optional[torch.Tensor] = None,
|
|
402
|
-
) -> torch.FloatTensor:
|
|
403
|
-
"""
|
|
404
|
-
Performs chunked prefill for efficient KV-cache updates and memory optimization.
|
|
405
|
-
Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
|
|
406
|
-
and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
|
|
407
|
-
"""
|
|
408
|
-
(
|
|
409
|
-
inputs,
|
|
410
|
-
cache_position,
|
|
411
|
-
chunked_attention_mask,
|
|
412
|
-
out_buffers,
|
|
413
|
-
position_ids,
|
|
414
|
-
position_embed,
|
|
415
|
-
padded_cache_lengths,
|
|
416
|
-
query_length,
|
|
417
|
-
token_type_ids,
|
|
418
|
-
) = self._prepare_prefill_inputs(
|
|
419
|
-
inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
|
|
420
|
-
)
|
|
421
|
-
|
|
422
|
-
step = 0
|
|
423
|
-
while step < query_length:
|
|
424
|
-
if self.rbln_config.use_image_prefill:
|
|
425
|
-
# Check if the prefill chunk is an image prefill
|
|
426
|
-
is_image_prefill = torch.all(
|
|
427
|
-
token_type_ids[:, step : step + self.rbln_config.image_prefill_chunk_size] == 1
|
|
428
|
-
)
|
|
429
|
-
# Check if the prefill chunk is a text prefill which have image_tokens in it.
|
|
430
|
-
is_text_prefill_with_image_tokens = not is_image_prefill and torch.any(
|
|
431
|
-
token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
|
|
432
|
-
)
|
|
433
|
-
else:
|
|
434
|
-
is_image_prefill, is_text_prefill_with_image_tokens = False, False
|
|
435
|
-
|
|
436
|
-
# Check if the prefill chunk is the last chunk
|
|
437
|
-
is_last_chunk = step + self.rbln_config.prefill_chunk_size >= query_length
|
|
438
|
-
|
|
439
|
-
input_chunk = inputs[:, step : step + self.rbln_config.prefill_chunk_size]
|
|
440
|
-
cache_pos_chunk = (
|
|
441
|
-
cache_position[:, step : step + self.rbln_config.prefill_chunk_size] + padded_cache_lengths
|
|
442
|
-
)
|
|
443
|
-
position_ids_chunk = position_ids[:, step : step + self.rbln_config.prefill_chunk_size]
|
|
444
|
-
|
|
445
|
-
# if text_prefill end with image_tokens, we only treat the text part.
|
|
446
|
-
num_processed_tokens = self.rbln_config.prefill_chunk_size
|
|
447
|
-
current_padded_cache_lengths = 0
|
|
448
|
-
if is_text_prefill_with_image_tokens:
|
|
449
|
-
first_image_token_idx = torch.where(
|
|
450
|
-
token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
|
|
451
|
-
)[1][0]
|
|
452
|
-
num_processed_tokens = first_image_token_idx.item()
|
|
453
|
-
current_padded_cache_lengths = self.rbln_config.prefill_chunk_size - num_processed_tokens
|
|
454
|
-
if is_last_chunk:
|
|
455
|
-
num_processed_tokens = query_length - step
|
|
456
|
-
|
|
457
|
-
chunked_attention_mask[
|
|
458
|
-
:, step + padded_cache_lengths : step + num_processed_tokens + padded_cache_lengths
|
|
459
|
-
] = 1
|
|
460
|
-
query_position = torch.tensor(num_processed_tokens - 1, dtype=torch.int16)
|
|
461
|
-
|
|
462
|
-
if is_image_prefill:
|
|
463
|
-
logits = self.image_prefill(
|
|
464
|
-
input_chunk,
|
|
465
|
-
cache_pos_chunk,
|
|
466
|
-
block_tables,
|
|
467
|
-
local_block_tables,
|
|
468
|
-
query_position,
|
|
469
|
-
chunked_attention_mask,
|
|
470
|
-
position_ids_chunk,
|
|
471
|
-
out=out_buffers,
|
|
472
|
-
)
|
|
473
|
-
else:
|
|
474
|
-
logits = self.prefill(
|
|
475
|
-
input_chunk,
|
|
476
|
-
cache_pos_chunk,
|
|
477
|
-
block_tables,
|
|
478
|
-
local_block_tables,
|
|
479
|
-
query_position,
|
|
480
|
-
chunked_attention_mask,
|
|
481
|
-
position_ids_chunk,
|
|
482
|
-
out=out_buffers,
|
|
483
|
-
)
|
|
484
|
-
|
|
485
|
-
padded_cache_lengths += current_padded_cache_lengths
|
|
486
|
-
step += num_processed_tokens
|
|
487
|
-
|
|
488
|
-
if not is_external_block_tables:
|
|
489
|
-
self.dec_attn_mask[batch_idx : batch_idx + 1] = chunked_attention_mask
|
|
490
|
-
|
|
491
|
-
return RBLNGemma3ForCausalLMOutput(
|
|
492
|
-
logits=logits, padded_cache_lengths=padded_cache_lengths, attention_mask=chunked_attention_mask
|
|
493
|
-
)
|
|
494
|
-
|
|
495
|
-
def decode_forward(
|
|
496
|
-
self,
|
|
497
|
-
inputs: torch.Tensor,
|
|
498
|
-
cache_position: torch.Tensor = None,
|
|
499
|
-
block_tables: torch.Tensor = None,
|
|
500
|
-
is_external_block_tables: bool = None,
|
|
501
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
502
|
-
position_embed: Optional[torch.Tensor] = None,
|
|
503
|
-
position_ids: Optional[torch.Tensor] = None,
|
|
504
|
-
local_block_tables: Optional[torch.Tensor] = None,
|
|
505
|
-
) -> torch.FloatTensor:
|
|
506
|
-
batch_size = inputs.shape[0]
|
|
507
|
-
if batch_size != self.batch_size:
|
|
508
|
-
raise RuntimeError(
|
|
509
|
-
f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
|
|
510
|
-
)
|
|
511
|
-
|
|
512
|
-
if batch_size != cache_position.shape[0]:
|
|
513
|
-
raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
|
|
514
|
-
|
|
515
|
-
# FIXME(taehoon): how to handle pos_attn_mask with external block tables
|
|
516
|
-
if is_external_block_tables:
|
|
517
|
-
if attention_mask is None:
|
|
518
|
-
raise ValueError("attention_mask should be provided with external block tables.")
|
|
519
|
-
if local_block_tables is None:
|
|
520
|
-
raise ValueError("local_block_tables should be provided with external block tables.")
|
|
521
|
-
else:
|
|
522
|
-
local_block_tables = (
|
|
523
|
-
local_block_tables
|
|
524
|
-
if local_block_tables is not None
|
|
525
|
-
else torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, -1)
|
|
526
|
-
)
|
|
527
|
-
if self.rbln_config.use_attention_mask and attention_mask is None:
|
|
528
|
-
for b_idx in range(batch_size):
|
|
529
|
-
decoding_step = cache_position[b_idx].item()
|
|
530
|
-
if not (0 <= decoding_step < self.dec_attn_mask.shape[-1]):
|
|
531
|
-
raise ValueError(
|
|
532
|
-
f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
|
|
533
|
-
)
|
|
534
|
-
self.dec_attn_mask[b_idx, decoding_step] = 1
|
|
535
|
-
|
|
536
|
-
attention_mask = self.dec_attn_mask
|
|
537
|
-
|
|
538
|
-
if self.batch_size < block_tables.shape[0]:
|
|
539
|
-
block_tables = block_tables[: self.batch_size]
|
|
540
|
-
|
|
541
|
-
if attention_mask is not None and self.batch_size < attention_mask.shape[0]:
|
|
542
|
-
attention_mask = attention_mask[: self.batch_size]
|
|
543
|
-
|
|
544
|
-
logits = self.decode(inputs, cache_position, block_tables, local_block_tables, attention_mask, position_ids)
|
|
545
|
-
|
|
546
|
-
return RBLNDecoderOnlyForCausalLMOutput(logits=logits)
|
|
547
|
-
|
|
548
|
-
|
|
549
336
|
class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
550
337
|
"""
|
|
551
338
|
The Gemma3 Model transformer with a language modeling head (linear layer) on top.
|
|
@@ -559,52 +346,34 @@ class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
|
559
346
|
|
|
560
347
|
_decoder_wrapper_cls = Gemma3ForCausalLMWrapper
|
|
561
348
|
|
|
562
|
-
def
|
|
563
|
-
main_input_name = self.main_input_name
|
|
564
|
-
|
|
565
|
-
if self.rbln_config.use_inputs_embeds:
|
|
566
|
-
main_input_name = "inputs_embeds"
|
|
567
|
-
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
|
568
|
-
self.embed_tokens = self._create_embedding_layer()
|
|
569
|
-
self.embed_tokens.load_state_dict(artifacts["embed_tokens"])
|
|
570
|
-
else:
|
|
571
|
-
self.embed_tokens = None
|
|
572
|
-
|
|
349
|
+
def setup_runtime(self):
|
|
573
350
|
# Initialize shared resources to be used across Runtime instances (prefill and decode phases)
|
|
574
351
|
dec_attn_mask = torch.zeros(self.rbln_config.batch_size, self.rbln_config.max_seq_len, dtype=torch.float32)
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
|
|
580
|
-
|
|
352
|
+
page_table_manager = RBLNPageTableManager(self.rbln_config)
|
|
353
|
+
|
|
354
|
+
common_kwargs = {
|
|
355
|
+
"main_input_name": "inputs_embeds" if self.rbln_config.use_inputs_embeds else "input_ids",
|
|
356
|
+
"embed_tokens": self.embed_tokens,
|
|
357
|
+
"dec_attn_mask": dec_attn_mask,
|
|
358
|
+
"page_table_manager": page_table_manager,
|
|
359
|
+
"rbln_config": self.rbln_config,
|
|
360
|
+
}
|
|
581
361
|
|
|
582
362
|
self.prefill_decoder = RBLNGemma3RuntimeModel(
|
|
583
363
|
runtime=self.model[0],
|
|
584
364
|
image_prefill=self.model[1] if self.rbln_config.use_image_prefill else None,
|
|
585
|
-
main_input_name=main_input_name,
|
|
586
|
-
embed_tokens=self.embed_tokens,
|
|
587
365
|
phase="prefill",
|
|
588
366
|
batch_size=self.rbln_config.batch_size,
|
|
589
|
-
|
|
590
|
-
block_tables=block_tables,
|
|
591
|
-
vocab_size=self.config.vocab_size,
|
|
592
|
-
free_block_pool=free_block_pool,
|
|
593
|
-
rbln_config=self.rbln_config,
|
|
367
|
+
**common_kwargs,
|
|
594
368
|
)
|
|
595
369
|
|
|
596
370
|
self.decoders = {}
|
|
597
371
|
for i, batch_size in enumerate(self.rbln_config.decoder_batch_sizes):
|
|
598
372
|
self.decoders[batch_size] = RBLNGemma3RuntimeModel(
|
|
599
373
|
runtime=self.model[i + self.rbln_config.decoder_runtime_idx],
|
|
600
|
-
main_input_name=main_input_name,
|
|
601
|
-
embed_tokens=self.embed_tokens,
|
|
602
374
|
phase="decode",
|
|
603
375
|
batch_size=batch_size,
|
|
604
|
-
|
|
605
|
-
block_tables=block_tables,
|
|
606
|
-
free_block_pool=free_block_pool,
|
|
607
|
-
rbln_config=self.rbln_config,
|
|
376
|
+
**common_kwargs,
|
|
608
377
|
)
|
|
609
378
|
|
|
610
379
|
# NOTE(eunji): Use a decoder whose batch size matches the model's main batch size for compatibility.
|
|
@@ -47,6 +47,8 @@ class RBLNGPT2Model(RBLNDecoderOnlyModel):
|
|
|
47
47
|
|
|
48
48
|
A class to convert and run pre-trained transformers based GPT2Model model on RBLN devices.
|
|
49
49
|
It implements the methods to convert a pre-trained transformers GPT2Model model into a RBLN transformer model by:
|
|
50
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
|
51
|
+
- compiling the resulting graph using the RBLN compiler.
|
|
50
52
|
"""
|
|
51
53
|
|
|
52
54
|
_decoder_wrapper_cls = GPT2Wrapper
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import Any,
|
|
15
|
+
from typing import Any, Optional
|
|
16
16
|
|
|
17
17
|
from ....configuration_utils import RBLNModelConfig
|
|
18
18
|
|
|
@@ -39,7 +39,7 @@ class RBLNIdefics3ForConditionalGenerationConfig(RBLNModelConfig):
|
|
|
39
39
|
batch_size: Optional[int] = None,
|
|
40
40
|
vision_model: Optional[RBLNModelConfig] = None,
|
|
41
41
|
text_model: Optional[RBLNModelConfig] = None,
|
|
42
|
-
**kwargs:
|
|
42
|
+
**kwargs: Any,
|
|
43
43
|
):
|
|
44
44
|
"""
|
|
45
45
|
Args:
|
|
@@ -34,17 +34,11 @@ from transformers.models.idefics3.modeling_idefics3 import Idefics3CausalLMOutpu
|
|
|
34
34
|
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
35
35
|
from ....modeling import RBLNModel
|
|
36
36
|
from ....utils.runtime_utils import RBLNPytorchRuntime
|
|
37
|
-
from
|
|
38
|
-
RBLNDecoderOnlyForCausalLMOutput,
|
|
39
|
-
)
|
|
37
|
+
from ...modeling_outputs import RBLNDecoderOnlyOutput
|
|
40
38
|
|
|
41
39
|
|
|
42
40
|
if TYPE_CHECKING:
|
|
43
|
-
from transformers import
|
|
44
|
-
AutoFeatureExtractor,
|
|
45
|
-
AutoProcessor,
|
|
46
|
-
AutoTokenizer,
|
|
47
|
-
)
|
|
41
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer
|
|
48
42
|
|
|
49
43
|
|
|
50
44
|
class RBLNRuntimeVisionModel(RBLNPytorchRuntime):
|
|
@@ -494,7 +488,7 @@ class RBLNIdefics3ForConditionalGeneration(RBLNModel):
|
|
|
494
488
|
if not return_dict:
|
|
495
489
|
return logits, generate_idx
|
|
496
490
|
else:
|
|
497
|
-
return
|
|
491
|
+
return RBLNDecoderOnlyOutput(
|
|
498
492
|
logits=logits,
|
|
499
493
|
generate_idx=generate_idx,
|
|
500
494
|
)
|