optimum-rbln 0.8.2a7__py3-none-any.whl → 0.8.3a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (90) hide show
  1. optimum/rbln/__init__.py +8 -9
  2. optimum/rbln/__version__.py +16 -3
  3. optimum/rbln/configuration_utils.py +4 -4
  4. optimum/rbln/diffusers/__init__.py +1 -0
  5. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +2 -2
  6. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +2 -2
  7. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +2 -2
  8. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +2 -2
  9. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +2 -2
  10. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +2 -2
  11. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +2 -2
  12. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +2 -2
  13. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +3 -3
  14. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +2 -2
  15. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +4 -4
  16. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +2 -2
  17. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +2 -2
  18. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +2 -2
  19. optimum/rbln/diffusers/modeling_diffusers.py +1 -1
  20. optimum/rbln/diffusers/models/__init__.py +3 -13
  21. optimum/rbln/diffusers/pipelines/__init__.py +1 -5
  22. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +11 -6
  23. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
  24. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +1 -1
  25. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +1 -1
  26. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
  27. optimum/rbln/modeling.py +2 -2
  28. optimum/rbln/modeling_base.py +12 -4
  29. optimum/rbln/ops/attn.py +158 -0
  30. optimum/rbln/ops/flash_attn.py +166 -0
  31. optimum/rbln/transformers/__init__.py +6 -0
  32. optimum/rbln/transformers/configuration_generic.py +4 -4
  33. optimum/rbln/transformers/modeling_generic.py +1 -4
  34. optimum/rbln/transformers/modeling_outputs.py +37 -0
  35. optimum/rbln/transformers/models/__init__.py +10 -16
  36. optimum/rbln/transformers/models/auto/__init__.py +1 -0
  37. optimum/rbln/transformers/models/auto/modeling_auto.py +7 -0
  38. optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
  39. optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
  40. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +2 -2
  41. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +1 -5
  42. optimum/rbln/transformers/models/clip/configuration_clip.py +3 -3
  43. optimum/rbln/transformers/models/colpali/colpali_architecture.py +1 -4
  44. optimum/rbln/transformers/models/colpali/configuration_colpali.py +2 -2
  45. optimum/rbln/transformers/models/colpali/modeling_colpali.py +2 -10
  46. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +43 -174
  47. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +102 -93
  48. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +450 -0
  49. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +88 -0
  50. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +297 -987
  51. optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
  52. optimum/rbln/transformers/models/gemma/modeling_gemma.py +9 -0
  53. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +14 -3
  54. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +217 -0
  55. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +58 -257
  56. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +2 -0
  57. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +2 -2
  58. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +3 -9
  59. optimum/rbln/transformers/models/llama/modeling_llama.py +12 -3
  60. optimum/rbln/transformers/models/llava/configuration_llava.py +2 -2
  61. optimum/rbln/transformers/models/llava/modeling_llava.py +53 -14
  62. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +2 -2
  63. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +6 -16
  64. optimum/rbln/transformers/models/opt/modeling_opt.py +2 -30
  65. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +4 -0
  66. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +2 -0
  67. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +1 -3
  68. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +2 -2
  69. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +1 -4
  70. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +3 -3
  71. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +6 -15
  72. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +4 -7
  73. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +77 -3
  74. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -4
  75. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +19 -2
  76. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +20 -1
  77. optimum/rbln/transformers/models/siglip/__init__.py +2 -6
  78. optimum/rbln/transformers/models/siglip/modeling_siglip.py +2 -2
  79. optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
  80. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +2 -2
  81. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -14
  82. optimum/rbln/transformers/models/whisper/configuration_whisper.py +10 -2
  83. optimum/rbln/transformers/models/whisper/modeling_whisper.py +20 -1
  84. optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
  85. optimum/rbln/transformers/utils/rbln_quantization.py +249 -46
  86. optimum/rbln/utils/runtime_utils.py +3 -3
  87. {optimum_rbln-0.8.2a7.dist-info → optimum_rbln-0.8.3a0.dist-info}/METADATA +1 -1
  88. {optimum_rbln-0.8.2a7.dist-info → optimum_rbln-0.8.3a0.dist-info}/RECORD +90 -86
  89. {optimum_rbln-0.8.2a7.dist-info → optimum_rbln-0.8.3a0.dist-info}/WHEEL +0 -0
  90. {optimum_rbln-0.8.2a7.dist-info → optimum_rbln-0.8.3a0.dist-info}/licenses/LICENSE +0 -0
@@ -13,10 +13,7 @@
13
13
  # limitations under the License.
14
14
 
15
15
 
16
- from ...models.decoderonly.decoderonly_architecture import (
17
- DecoderOnlyModel,
18
- DecoderOnlyWrapper,
19
- )
16
+ from ...models.decoderonly.decoderonly_architecture import DecoderOnlyModel, DecoderOnlyWrapper
20
17
 
21
18
 
22
19
  class GemmaWrapper(DecoderOnlyWrapper):
@@ -90,6 +90,15 @@ class RBLNGemmaModel(RBLNDecoderOnlyModel):
90
90
 
91
91
  A class to convert and run pre-trained transformers based GemmaModel model on RBLN devices.
92
92
  It implements the methods to convert a pre-trained transformers GemmaModel model into a RBLN transformer model by:
93
+
94
+ - transferring the checkpoint weights of the original into an optimized RBLN graph,
95
+ - compiling the resulting graph using the RBLN compiler.
96
+
97
+ **Configuration:**
98
+ This model uses [`RBLNGemmaModelConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
99
+ the `rbln_config` parameter should be an instance of [`RBLNGemmaModelConfig`] or a dictionary conforming to its structure.
100
+
101
+ See the [`RBLNGemmaModelConfig`] class for all available configuration options.
93
102
  """
94
103
 
95
104
  _decoder_wrapper_cls = GemmaWrapper
@@ -11,7 +11,7 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
- from typing import Any, Dict, Optional
14
+ from typing import Any, Optional
15
15
 
16
16
  from ....configuration_utils import RBLNModelConfig
17
17
  from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
@@ -23,14 +23,17 @@ class RBLNGemma3ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
23
23
  self,
24
24
  use_position_ids: Optional[bool] = None,
25
25
  use_attention_mask: Optional[bool] = None,
26
+ prefill_chunk_size: Optional[int] = None,
26
27
  image_prefill_chunk_size: Optional[int] = None,
27
- **kwargs: Dict[str, Any],
28
+ **kwargs: Any,
28
29
  ):
29
30
  # use_attention_mask and use_position_ids are always True for Gemma3
30
31
  use_attention_mask = use_attention_mask or True
31
32
  use_position_ids = use_position_ids or True
33
+ prefill_chunk_size = prefill_chunk_size or 256
32
34
 
33
35
  super().__init__(
36
+ prefill_chunk_size=prefill_chunk_size,
34
37
  use_attention_mask=use_attention_mask,
35
38
  use_position_ids=use_position_ids,
36
39
  **kwargs,
@@ -54,7 +57,7 @@ class RBLNGemma3ForConditionalGenerationConfig(RBLNModelConfig):
54
57
  batch_size: Optional[int] = None,
55
58
  vision_tower: Optional[RBLNModelConfig] = None,
56
59
  language_model: Optional[RBLNModelConfig] = None,
57
- **kwargs: Dict[str, Any],
60
+ **kwargs: Any,
58
61
  ):
59
62
  """
60
63
  Args:
@@ -73,3 +76,11 @@ class RBLNGemma3ForConditionalGenerationConfig(RBLNModelConfig):
73
76
 
74
77
  self.vision_tower = self.init_submodule_config(RBLNSiglipVisionModelConfig, vision_tower)
75
78
  self.language_model = self.init_submodule_config(RBLNGemma3ForCausalLMConfig, language_model)
79
+
80
+ @property
81
+ def image_prefill_chunk_size(self):
82
+ return self.language_model.image_prefill_chunk_size
83
+
84
+ @property
85
+ def prefill_chunk_size(self):
86
+ return self.language_model.prefill_chunk_size
@@ -0,0 +1,217 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Optional
15
+
16
+ import rebel
17
+ import torch
18
+
19
+ from ...modeling_outputs import RBLNDecoderOnlyOutput, RBLNGemma3ForCausalLMOutput
20
+ from ..decoderonly.modeling_decoderonly import RBLNRuntimeModel
21
+
22
+
23
+ class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
24
+ def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
25
+ super().__init__(*args, **kwargs)
26
+ self.image_prefill = image_prefill # FIXME(taehoon)
27
+ self.prefill = self.runtime if self.phase == "prefill" else None # FIXME
28
+ self.decode = self.runtime if self.phase == "decode" else None
29
+
30
+ def _prepare_prefill_inputs(self, *args, **kwargs):
31
+ (
32
+ inputs,
33
+ cache_position,
34
+ chunked_attention_mask,
35
+ position_ids,
36
+ position_embed,
37
+ padded_cache_lengths,
38
+ query_length,
39
+ token_type_ids,
40
+ ) = super()._prepare_prefill_inputs(*args, **kwargs)
41
+
42
+ # chunked_attention_mask shape
43
+ chunked_attention_mask = torch.zeros(1, chunked_attention_mask.shape[-1], dtype=torch.float32)
44
+
45
+ # In case of Gemma3ForConditionalGeneration, the loop counter may not be a prefill_chunk_size,
46
+ # so we cannot guarantee that the last chunk starts at a position that is a multiple of prefill_chunk_size.
47
+ if self.rbln_config.use_image_prefill:
48
+ padding_size = self.rbln_config.image_prefill_chunk_size
49
+ inputs = torch.nn.functional.pad(inputs, (0, 0, 0, padding_size))
50
+ cache_position = torch.nn.functional.pad(cache_position, (0, padding_size))
51
+ position_ids = torch.nn.functional.pad(position_ids, (0, padding_size))
52
+ token_type_ids = torch.nn.functional.pad(token_type_ids, (0, padding_size), value=-1)
53
+
54
+ return (
55
+ inputs,
56
+ cache_position,
57
+ chunked_attention_mask,
58
+ position_ids,
59
+ position_embed,
60
+ padded_cache_lengths,
61
+ query_length,
62
+ token_type_ids,
63
+ )
64
+
65
+ def prefill_forward(
66
+ self,
67
+ inputs: torch.Tensor,
68
+ cache_position: torch.Tensor = None,
69
+ attention_mask: Optional[torch.Tensor] = None,
70
+ batch_idx: int = None,
71
+ block_tables: torch.Tensor = None,
72
+ is_external_block_tables: bool = None,
73
+ position_embed: Optional[torch.Tensor] = None,
74
+ token_type_ids: Optional[torch.Tensor] = None,
75
+ local_block_tables: Optional[torch.Tensor] = None,
76
+ ) -> torch.FloatTensor:
77
+ """
78
+ Performs chunked prefill for efficient KV-cache updates and memory optimization.
79
+ Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
80
+ and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
81
+ """
82
+ (
83
+ inputs,
84
+ cache_position,
85
+ chunked_attention_mask,
86
+ position_ids,
87
+ position_embed,
88
+ padded_cache_lengths,
89
+ query_length,
90
+ token_type_ids,
91
+ ) = self._prepare_prefill_inputs(
92
+ inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
93
+ )
94
+
95
+ step = 0
96
+ while step < query_length:
97
+ if self.rbln_config.use_image_prefill:
98
+ # Check if the prefill chunk is an image prefill
99
+ is_image_prefill = torch.all(
100
+ token_type_ids[:, step : step + self.rbln_config.image_prefill_chunk_size] == 1
101
+ )
102
+ # Check if the prefill chunk is a text prefill which have image_tokens in it.
103
+ is_text_prefill_with_image_tokens = not is_image_prefill and torch.any(
104
+ token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
105
+ )
106
+ else:
107
+ is_image_prefill, is_text_prefill_with_image_tokens = False, False
108
+
109
+ # Check if the prefill chunk is the last chunk
110
+ is_last_chunk = step + self.rbln_config.prefill_chunk_size >= query_length
111
+
112
+ input_chunk = inputs[:, step : step + self.rbln_config.prefill_chunk_size]
113
+ cache_pos_chunk = (
114
+ cache_position[:, step : step + self.rbln_config.prefill_chunk_size] + padded_cache_lengths
115
+ )
116
+ position_ids_chunk = position_ids[:, step : step + self.rbln_config.prefill_chunk_size]
117
+
118
+ # if text_prefill end with image_tokens, we only treat the text part.
119
+ num_processed_tokens = self.rbln_config.prefill_chunk_size
120
+ current_padded_cache_lengths = 0
121
+ if is_text_prefill_with_image_tokens:
122
+ first_image_token_idx = torch.where(
123
+ token_type_ids[:, step : step + self.rbln_config.prefill_chunk_size] == 1
124
+ )[1][0]
125
+ num_processed_tokens = first_image_token_idx.item()
126
+ current_padded_cache_lengths = self.rbln_config.prefill_chunk_size - num_processed_tokens
127
+ if is_last_chunk:
128
+ num_processed_tokens = query_length - step
129
+
130
+ chunked_attention_mask[
131
+ :, step + padded_cache_lengths : step + num_processed_tokens + padded_cache_lengths
132
+ ] = 1
133
+ query_position = torch.tensor(num_processed_tokens - 1, dtype=torch.int16)
134
+
135
+ if is_image_prefill:
136
+ logits = self.image_prefill(
137
+ input_chunk,
138
+ cache_pos_chunk,
139
+ block_tables,
140
+ local_block_tables,
141
+ query_position,
142
+ chunked_attention_mask,
143
+ position_ids_chunk,
144
+ )
145
+ else:
146
+ logits = self.prefill(
147
+ input_chunk,
148
+ cache_pos_chunk,
149
+ block_tables,
150
+ local_block_tables,
151
+ query_position,
152
+ chunked_attention_mask,
153
+ position_ids_chunk,
154
+ )
155
+
156
+ padded_cache_lengths += current_padded_cache_lengths
157
+ step += num_processed_tokens
158
+
159
+ if not is_external_block_tables:
160
+ self.dec_attn_mask[batch_idx : batch_idx + 1] = chunked_attention_mask
161
+
162
+ return RBLNGemma3ForCausalLMOutput(
163
+ logits=logits, padded_cache_lengths=padded_cache_lengths, attention_mask=chunked_attention_mask
164
+ )
165
+
166
+ def decode_forward(
167
+ self,
168
+ inputs: torch.Tensor,
169
+ cache_position: torch.Tensor = None,
170
+ block_tables: torch.Tensor = None,
171
+ is_external_block_tables: bool = None,
172
+ attention_mask: Optional[torch.Tensor] = None,
173
+ position_embed: Optional[torch.Tensor] = None,
174
+ position_ids: Optional[torch.Tensor] = None,
175
+ local_block_tables: Optional[torch.Tensor] = None,
176
+ ) -> torch.FloatTensor:
177
+ batch_size = inputs.shape[0]
178
+ if batch_size != self.batch_size:
179
+ raise RuntimeError(
180
+ f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
181
+ )
182
+
183
+ if batch_size != cache_position.shape[0]:
184
+ raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
185
+
186
+ # FIXME(taehoon): how to handle pos_attn_mask with external block tables
187
+ if is_external_block_tables:
188
+ if attention_mask is None:
189
+ raise ValueError("attention_mask should be provided with external block tables.")
190
+ if local_block_tables is None:
191
+ raise ValueError("local_block_tables should be provided with external block tables.")
192
+ else:
193
+ local_block_tables = (
194
+ local_block_tables
195
+ if local_block_tables is not None
196
+ else torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, -1)
197
+ )
198
+ if self.rbln_config.use_attention_mask and attention_mask is None:
199
+ for b_idx in range(batch_size):
200
+ decoding_step = cache_position[b_idx].item()
201
+ if not (0 <= decoding_step < self.dec_attn_mask.shape[-1]):
202
+ raise ValueError(
203
+ f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
204
+ )
205
+ self.dec_attn_mask[b_idx, decoding_step] = 1
206
+
207
+ attention_mask = self.dec_attn_mask
208
+
209
+ if self.batch_size < block_tables.shape[0]:
210
+ block_tables = block_tables[: self.batch_size]
211
+
212
+ if attention_mask is not None and self.batch_size < attention_mask.shape[0]:
213
+ attention_mask = attention_mask[: self.batch_size]
214
+
215
+ logits = self.decode(inputs, cache_position, block_tables, local_block_tables, attention_mask, position_ids)
216
+
217
+ return RBLNDecoderOnlyOutput(logits=logits)