optimum-rbln 0.8.2a7__py3-none-any.whl → 0.8.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +36 -9
- optimum/rbln/__version__.py +16 -3
- optimum/rbln/configuration_utils.py +20 -4
- optimum/rbln/diffusers/__init__.py +7 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +3 -3
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +4 -4
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +2 -2
- optimum/rbln/diffusers/modeling_diffusers.py +1 -1
- optimum/rbln/diffusers/models/__init__.py +3 -13
- optimum/rbln/diffusers/pipelines/__init__.py +11 -5
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +237 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +11 -6
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +1 -1
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +1 -1
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
- optimum/rbln/modeling.py +3 -2
- optimum/rbln/modeling_base.py +29 -4
- optimum/rbln/ops/attn.py +158 -0
- optimum/rbln/ops/flash_attn.py +166 -0
- optimum/rbln/transformers/__init__.py +28 -0
- optimum/rbln/transformers/configuration_generic.py +6 -4
- optimum/rbln/transformers/modeling_generic.py +13 -8
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/models/__init__.py +35 -16
- optimum/rbln/transformers/models/auto/__init__.py +2 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +14 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
- optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +8 -4
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +2 -2
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +7 -6
- optimum/rbln/transformers/models/clip/configuration_clip.py +3 -3
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +1 -4
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +2 -2
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +2 -10
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +43 -174
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +102 -93
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +450 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +88 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +297 -987
- optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
- optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +25 -0
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +9 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +14 -3
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +217 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +64 -258
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +2 -0
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +86 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +507 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1032 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +2 -2
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +3 -9
- optimum/rbln/transformers/models/llama/modeling_llama.py +12 -3
- optimum/rbln/transformers/models/llava/configuration_llava.py +2 -2
- optimum/rbln/transformers/models/llava/modeling_llava.py +53 -14
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +2 -2
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +6 -16
- optimum/rbln/transformers/models/opt/modeling_opt.py +2 -30
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +4 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +2 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +1 -3
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +2 -2
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +1 -4
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +3 -3
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +6 -15
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +4 -7
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +77 -3
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -4
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +19 -2
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +20 -1
- optimum/rbln/transformers/models/siglip/__init__.py +2 -6
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +2 -2
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +341 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +2 -2
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -14
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +10 -2
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +20 -1
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
- optimum/rbln/transformers/utils/rbln_quantization.py +365 -65
- optimum/rbln/utils/runtime_utils.py +3 -3
- optimum/rbln/utils/submodule.py +10 -4
- {optimum_rbln-0.8.2a7.dist-info → optimum_rbln-0.8.3.dist-info}/METADATA +1 -1
- {optimum_rbln-0.8.2a7.dist-info → optimum_rbln-0.8.3.dist-info}/RECORD +105 -89
- {optimum_rbln-0.8.2a7.dist-info → optimum_rbln-0.8.3.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.2a7.dist-info → optimum_rbln-0.8.3.dist-info}/licenses/LICENSE +0 -0
|
@@ -12,43 +12,32 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
import inspect
|
|
15
|
-
from collections import deque
|
|
16
|
-
from dataclasses import dataclass
|
|
17
15
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
|
18
16
|
|
|
19
17
|
import rebel
|
|
20
18
|
import torch
|
|
21
19
|
from rebel.compile_context import CompileContext
|
|
22
|
-
from transformers import
|
|
23
|
-
AutoModelForImageTextToText,
|
|
24
|
-
Gemma3ForConditionalGeneration,
|
|
25
|
-
PretrainedConfig,
|
|
26
|
-
PreTrainedModel,
|
|
27
|
-
)
|
|
20
|
+
from transformers import AutoModelForImageTextToText, Gemma3ForConditionalGeneration, PretrainedConfig, PreTrainedModel
|
|
28
21
|
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
|
29
22
|
from transformers.modeling_utils import no_init_weights
|
|
30
23
|
from transformers.models.gemma3.modeling_gemma3 import Gemma3TextScaledWordEmbedding
|
|
31
24
|
|
|
32
25
|
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
33
26
|
from ....modeling import RBLNModel
|
|
27
|
+
from ...modeling_outputs import RBLNDecoderOnlyOutput
|
|
28
|
+
from ..decoderonly.decoderonly_runtime_utils import RBLNPageTableManager
|
|
34
29
|
from ..decoderonly.modeling_decoderonly import (
|
|
35
|
-
RBLNDecoderOnlyForCausalLMOutput,
|
|
36
30
|
RBLNDecoderOnlyModelForCausalLM,
|
|
37
|
-
RBLNRuntimeModel,
|
|
38
31
|
)
|
|
39
32
|
from .configuration_gemma3 import RBLNGemma3ForCausalLMConfig
|
|
40
33
|
from .gemma3_architecture import Gemma3ForCausalLMWrapper
|
|
34
|
+
from .gemma3_runtime_utils import RBLNGemma3RuntimeModel
|
|
41
35
|
|
|
42
36
|
|
|
43
37
|
if TYPE_CHECKING:
|
|
44
38
|
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, Gemma3ForConditionalGeneration
|
|
45
39
|
|
|
46
40
|
|
|
47
|
-
@dataclass
|
|
48
|
-
class RBLNGemma3ForCausalLMOutput(RBLNDecoderOnlyForCausalLMOutput):
|
|
49
|
-
attention_mask: Optional[torch.Tensor] = None
|
|
50
|
-
|
|
51
|
-
|
|
52
41
|
class LoopVisionTower:
|
|
53
42
|
def __init__(self, vision_tower: RBLNModel) -> None:
|
|
54
43
|
self.vision_tower = vision_tower
|
|
@@ -201,7 +190,7 @@ class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
|
|
201
190
|
|
|
202
191
|
def _update_model_kwargs_for_generation(
|
|
203
192
|
self,
|
|
204
|
-
outputs:
|
|
193
|
+
outputs: RBLNDecoderOnlyOutput,
|
|
205
194
|
model_kwargs: Dict[str, Any],
|
|
206
195
|
**kwargs,
|
|
207
196
|
) -> Dict[str, Any]:
|
|
@@ -258,19 +247,47 @@ class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
|
|
258
247
|
|
|
259
248
|
return inputs_embeds
|
|
260
249
|
|
|
250
|
+
def get_padded_cache_position(
|
|
251
|
+
self,
|
|
252
|
+
cache_position: torch.Tensor, # shape: [1, seq_len]
|
|
253
|
+
token_type_ids: torch.Tensor, # shape: [1, seq_len]
|
|
254
|
+
) -> torch.Tensor:
|
|
255
|
+
seq_len = cache_position[0][-1].item() + 1
|
|
256
|
+
|
|
257
|
+
# Find image start positions
|
|
258
|
+
image_starts = [
|
|
259
|
+
s
|
|
260
|
+
for s in torch.where(token_type_ids == 1)[1]
|
|
261
|
+
if torch.all(token_type_ids[:, s : s + self.rbln_config.image_prefill_chunk_size] == 1)
|
|
262
|
+
]
|
|
263
|
+
|
|
264
|
+
# Initialize padded tensors
|
|
265
|
+
padded_input_len = seq_len
|
|
266
|
+
for image_start in image_starts:
|
|
267
|
+
pad_needed = (
|
|
268
|
+
self.rbln_config.image_prefill_chunk_size
|
|
269
|
+
- (image_start + padded_input_len - seq_len) % self.rbln_config.image_prefill_chunk_size
|
|
270
|
+
) % self.rbln_config.image_prefill_chunk_size
|
|
271
|
+
padded_input_len += pad_needed
|
|
272
|
+
|
|
273
|
+
return torch.cat(
|
|
274
|
+
[cache_position, torch.arange(seq_len, padded_input_len, dtype=torch.int32).unsqueeze(0)],
|
|
275
|
+
dim=1,
|
|
276
|
+
)
|
|
277
|
+
|
|
261
278
|
def forward(
|
|
262
279
|
self,
|
|
263
280
|
input_ids: torch.LongTensor = None,
|
|
281
|
+
attention_mask: torch.Tensor = None,
|
|
282
|
+
token_type_ids: torch.Tensor = None,
|
|
264
283
|
pixel_values: torch.FloatTensor = None,
|
|
265
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
266
284
|
cache_position: Optional[torch.LongTensor] = None,
|
|
267
285
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
268
286
|
generate_idx: Optional[torch.Tensor] = None,
|
|
269
287
|
padded_cache_lengths: Optional[torch.Tensor] = None,
|
|
270
288
|
position_ids: Optional[torch.Tensor] = None,
|
|
271
|
-
token_type_ids: Optional[torch.Tensor] = None,
|
|
272
289
|
**lm_kwargs: Dict[str, Any],
|
|
273
|
-
) -> Union[Tuple,
|
|
290
|
+
) -> Union[Tuple, RBLNDecoderOnlyOutput]:
|
|
274
291
|
# prefill
|
|
275
292
|
if cache_position is None:
|
|
276
293
|
logits = []
|
|
@@ -279,12 +296,15 @@ class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
|
|
279
296
|
|
|
280
297
|
for b_idx in range(batch_size):
|
|
281
298
|
cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
|
|
299
|
+
token_type_id = token_type_ids[b_idx : b_idx + 1, attention_mask[b_idx].bool()]
|
|
300
|
+
cache_position = self.get_padded_cache_position(cache_position, token_type_id)
|
|
301
|
+
|
|
282
302
|
output = self.language_model.prefill_decoder(
|
|
283
303
|
inputs_embeds=inputs_embeds[b_idx : b_idx + 1],
|
|
284
304
|
attention_mask=attention_mask[b_idx],
|
|
285
305
|
cache_position=cache_position,
|
|
286
306
|
batch_idx=b_idx,
|
|
287
|
-
token_type_ids=token_type_ids[b_idx : b_idx + 1]
|
|
307
|
+
token_type_ids=token_type_ids[b_idx : b_idx + 1], # do not pass token_type_id
|
|
288
308
|
)
|
|
289
309
|
padded_cache_lengths[b_idx] += output.padded_cache_lengths
|
|
290
310
|
logits.append(output.logits)
|
|
@@ -308,217 +328,11 @@ class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
|
|
308
328
|
position_ids=position_ids if self.rbln_config.language_model.use_position_ids else None,
|
|
309
329
|
).logits
|
|
310
330
|
|
|
311
|
-
return
|
|
331
|
+
return RBLNDecoderOnlyOutput(
|
|
312
332
|
logits=logits, generate_idx=generate_idx, padded_cache_lengths=padded_cache_lengths
|
|
313
333
|
)
|
|
314
334
|
|
|
315
335
|
|
|
316
|
-
class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
|
317
|
-
def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
|
|
318
|
-
super().__init__(*args, **kwargs)
|
|
319
|
-
self.image_prefill = image_prefill # FIXME(taehoon)
|
|
320
|
-
self.prefill = self.runtime if self.phase == "prefill" else None # FIXME
|
|
321
|
-
self.decode = self.runtime if self.phase == "decode" else None
|
|
322
|
-
|
|
323
|
-
def _prepare_prefill_inputs(self, *args, **kwargs):
|
|
324
|
-
(
|
|
325
|
-
inputs,
|
|
326
|
-
cache_position,
|
|
327
|
-
chunked_attention_mask,
|
|
328
|
-
out_buffers,
|
|
329
|
-
position_ids,
|
|
330
|
-
position_embed,
|
|
331
|
-
padded_cache_lengths,
|
|
332
|
-
query_length,
|
|
333
|
-
token_type_ids,
|
|
334
|
-
) = super()._prepare_prefill_inputs(*args, **kwargs)
|
|
335
|
-
|
|
336
|
-
# chunked_attention_mask shape
|
|
337
|
-
chunked_attention_mask = torch.zeros(1, chunked_attention_mask.shape[-1], dtype=torch.float32)
|
|
338
|
-
|
|
339
|
-
# as gemma3 has different prefill chunk size for image and text, we need to pad the inputs to the max of the two.
|
|
340
|
-
if self.rbln_config.use_image_prefill:
|
|
341
|
-
padding_size = max(self.rbln_config.prefill_chunk_size, self.rbln_config.image_prefill_chunk_size)
|
|
342
|
-
inputs = torch.nn.functional.pad(inputs, (0, 0, 0, padding_size))
|
|
343
|
-
cache_position = torch.nn.functional.pad(cache_position, (0, padding_size))
|
|
344
|
-
position_ids = torch.nn.functional.pad(position_ids, (0, padding_size))
|
|
345
|
-
token_type_ids = torch.nn.functional.pad(token_type_ids, (0, padding_size), value=-1)
|
|
346
|
-
|
|
347
|
-
return (
|
|
348
|
-
inputs,
|
|
349
|
-
cache_position,
|
|
350
|
-
chunked_attention_mask,
|
|
351
|
-
out_buffers,
|
|
352
|
-
position_ids,
|
|
353
|
-
position_embed,
|
|
354
|
-
padded_cache_lengths,
|
|
355
|
-
query_length,
|
|
356
|
-
token_type_ids,
|
|
357
|
-
)
|
|
358
|
-
|
|
359
|
-
def prefill_forward(
|
|
360
|
-
self,
|
|
361
|
-
inputs: torch.Tensor,
|
|
362
|
-
cache_position: torch.Tensor = None,
|
|
363
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
364
|
-
batch_idx: int = None,
|
|
365
|
-
block_tables: torch.Tensor = None,
|
|
366
|
-
is_external_block_tables: bool = None,
|
|
367
|
-
position_embed: Optional[torch.Tensor] = None,
|
|
368
|
-
token_type_ids: Optional[torch.Tensor] = None,
|
|
369
|
-
local_block_tables: Optional[torch.Tensor] = None,
|
|
370
|
-
) -> torch.FloatTensor:
|
|
371
|
-
"""
|
|
372
|
-
Performs chunked prefill for efficient KV-cache updates and memory optimization.
|
|
373
|
-
Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
|
|
374
|
-
and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
|
|
375
|
-
"""
|
|
376
|
-
(
|
|
377
|
-
inputs,
|
|
378
|
-
cache_position,
|
|
379
|
-
chunked_attention_mask,
|
|
380
|
-
out_buffers,
|
|
381
|
-
position_ids,
|
|
382
|
-
position_embed,
|
|
383
|
-
padded_cache_lengths,
|
|
384
|
-
query_length,
|
|
385
|
-
token_type_ids,
|
|
386
|
-
) = self._prepare_prefill_inputs(
|
|
387
|
-
inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
|
|
388
|
-
)
|
|
389
|
-
|
|
390
|
-
step = 0
|
|
391
|
-
while step < query_length:
|
|
392
|
-
# Check if the prefill chunk is an image prefill
|
|
393
|
-
is_image_prefill = self.rbln_config.use_image_prefill and torch.all(
|
|
394
|
-
token_type_ids[:, step : step + self.rbln_config.image_prefill_chunk_size] == 1
|
|
395
|
-
)
|
|
396
|
-
prefill_chunk_size = (
|
|
397
|
-
self.rbln_config.image_prefill_chunk_size if is_image_prefill else self.rbln_config.prefill_chunk_size
|
|
398
|
-
)
|
|
399
|
-
|
|
400
|
-
# Check if the prefill chunk is a text prefill which have image_tokens in it.
|
|
401
|
-
is_text_prefill_with_image_tokens = (
|
|
402
|
-
self.rbln_config.use_image_prefill
|
|
403
|
-
and not is_image_prefill
|
|
404
|
-
and torch.any(token_type_ids[:, step : step + prefill_chunk_size] == 1)
|
|
405
|
-
)
|
|
406
|
-
|
|
407
|
-
# Check if the prefill chunk crosses a block boundary, requiring padding to align with block boundaries
|
|
408
|
-
is_cross_block_boundary = (
|
|
409
|
-
step // self.rbln_config.kvcache_block_size
|
|
410
|
-
!= (step + prefill_chunk_size) // self.rbln_config.kvcache_block_size
|
|
411
|
-
)
|
|
412
|
-
|
|
413
|
-
# Check if the prefill chunk is the last chunk
|
|
414
|
-
is_last_chunk = step + prefill_chunk_size >= query_length
|
|
415
|
-
|
|
416
|
-
if is_cross_block_boundary:
|
|
417
|
-
padding_size = prefill_chunk_size - (step + prefill_chunk_size) % self.rbln_config.kvcache_block_size
|
|
418
|
-
padded_cache_lengths += padding_size
|
|
419
|
-
|
|
420
|
-
# if text_prefill end with image_tokens, we only treat the text part.
|
|
421
|
-
num_processed_tokens = prefill_chunk_size
|
|
422
|
-
if is_text_prefill_with_image_tokens:
|
|
423
|
-
first_image_token_idx = torch.where(token_type_ids[:, step : step + prefill_chunk_size] == 1)[1][0]
|
|
424
|
-
num_processed_tokens = first_image_token_idx.item()
|
|
425
|
-
if is_last_chunk:
|
|
426
|
-
num_processed_tokens = query_length - step
|
|
427
|
-
|
|
428
|
-
input_chunk = inputs[:, step : step + prefill_chunk_size]
|
|
429
|
-
cache_pos_chunk = cache_position[:, step : step + prefill_chunk_size].clone() + padded_cache_lengths
|
|
430
|
-
position_ids_chunk = position_ids[:, step : step + prefill_chunk_size].clone()
|
|
431
|
-
chunked_attention_mask[
|
|
432
|
-
:, step + padded_cache_lengths : step + num_processed_tokens + padded_cache_lengths
|
|
433
|
-
] = 1
|
|
434
|
-
query_position = torch.tensor(num_processed_tokens - 1, dtype=torch.int16)
|
|
435
|
-
|
|
436
|
-
if is_image_prefill:
|
|
437
|
-
logits = self.image_prefill(
|
|
438
|
-
input_chunk,
|
|
439
|
-
cache_pos_chunk,
|
|
440
|
-
block_tables,
|
|
441
|
-
local_block_tables,
|
|
442
|
-
query_position,
|
|
443
|
-
chunked_attention_mask,
|
|
444
|
-
position_ids_chunk,
|
|
445
|
-
out=out_buffers,
|
|
446
|
-
)
|
|
447
|
-
else:
|
|
448
|
-
logits = self.prefill(
|
|
449
|
-
input_chunk,
|
|
450
|
-
cache_pos_chunk,
|
|
451
|
-
block_tables,
|
|
452
|
-
local_block_tables,
|
|
453
|
-
query_position,
|
|
454
|
-
chunked_attention_mask,
|
|
455
|
-
position_ids_chunk,
|
|
456
|
-
out=out_buffers,
|
|
457
|
-
)
|
|
458
|
-
|
|
459
|
-
step += num_processed_tokens
|
|
460
|
-
|
|
461
|
-
if not is_external_block_tables:
|
|
462
|
-
self.dec_attn_mask[batch_idx : batch_idx + 1] = chunked_attention_mask
|
|
463
|
-
|
|
464
|
-
return RBLNGemma3ForCausalLMOutput(
|
|
465
|
-
logits=logits, padded_cache_lengths=padded_cache_lengths, attention_mask=chunked_attention_mask
|
|
466
|
-
)
|
|
467
|
-
|
|
468
|
-
def decode_forward(
|
|
469
|
-
self,
|
|
470
|
-
inputs: torch.Tensor,
|
|
471
|
-
cache_position: torch.Tensor = None,
|
|
472
|
-
block_tables: torch.Tensor = None,
|
|
473
|
-
is_external_block_tables: bool = None,
|
|
474
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
475
|
-
position_embed: Optional[torch.Tensor] = None,
|
|
476
|
-
position_ids: Optional[torch.Tensor] = None,
|
|
477
|
-
local_block_tables: Optional[torch.Tensor] = None,
|
|
478
|
-
) -> torch.FloatTensor:
|
|
479
|
-
batch_size = inputs.shape[0]
|
|
480
|
-
if batch_size != self.batch_size:
|
|
481
|
-
raise RuntimeError(
|
|
482
|
-
f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
|
|
483
|
-
)
|
|
484
|
-
|
|
485
|
-
if batch_size != cache_position.shape[0]:
|
|
486
|
-
raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
|
|
487
|
-
|
|
488
|
-
# FIXME(taehoon): how to handle pos_attn_mask with external block tables
|
|
489
|
-
if is_external_block_tables:
|
|
490
|
-
if attention_mask is None:
|
|
491
|
-
raise ValueError("attention_mask should be provided with external block tables.")
|
|
492
|
-
if local_block_tables is None:
|
|
493
|
-
raise ValueError("local_block_tables should be provided with external block tables.")
|
|
494
|
-
else:
|
|
495
|
-
local_block_tables = (
|
|
496
|
-
local_block_tables
|
|
497
|
-
if local_block_tables is not None
|
|
498
|
-
else torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, -1)
|
|
499
|
-
)
|
|
500
|
-
if self.rbln_config.use_attention_mask and attention_mask is None:
|
|
501
|
-
for b_idx in range(batch_size):
|
|
502
|
-
decoding_step = cache_position[b_idx].item()
|
|
503
|
-
if not (0 <= decoding_step < self.dec_attn_mask.shape[-1]):
|
|
504
|
-
raise ValueError(
|
|
505
|
-
f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
|
|
506
|
-
)
|
|
507
|
-
self.dec_attn_mask[b_idx, decoding_step] = 1
|
|
508
|
-
|
|
509
|
-
attention_mask = self.dec_attn_mask
|
|
510
|
-
|
|
511
|
-
if self.batch_size < block_tables.shape[0]:
|
|
512
|
-
block_tables = block_tables[: self.batch_size]
|
|
513
|
-
|
|
514
|
-
if attention_mask is not None and self.batch_size < attention_mask.shape[0]:
|
|
515
|
-
attention_mask = attention_mask[: self.batch_size]
|
|
516
|
-
|
|
517
|
-
logits = self.decode(inputs, cache_position, block_tables, local_block_tables, attention_mask, position_ids)
|
|
518
|
-
|
|
519
|
-
return RBLNDecoderOnlyForCausalLMOutput(logits=logits)
|
|
520
|
-
|
|
521
|
-
|
|
522
336
|
class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
523
337
|
"""
|
|
524
338
|
The Gemma3 Model transformer with a language modeling head (linear layer) on top.
|
|
@@ -532,52 +346,34 @@ class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
|
532
346
|
|
|
533
347
|
_decoder_wrapper_cls = Gemma3ForCausalLMWrapper
|
|
534
348
|
|
|
535
|
-
def
|
|
536
|
-
main_input_name = self.main_input_name
|
|
537
|
-
|
|
538
|
-
if self.rbln_config.use_inputs_embeds:
|
|
539
|
-
main_input_name = "inputs_embeds"
|
|
540
|
-
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
|
541
|
-
self.embed_tokens = self._create_embedding_layer()
|
|
542
|
-
self.embed_tokens.load_state_dict(artifacts["embed_tokens"])
|
|
543
|
-
else:
|
|
544
|
-
self.embed_tokens = None
|
|
545
|
-
|
|
349
|
+
def setup_runtime(self):
|
|
546
350
|
# Initialize shared resources to be used across Runtime instances (prefill and decode phases)
|
|
547
351
|
dec_attn_mask = torch.zeros(self.rbln_config.batch_size, self.rbln_config.max_seq_len, dtype=torch.float32)
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
|
|
553
|
-
|
|
352
|
+
page_table_manager = RBLNPageTableManager(self.rbln_config)
|
|
353
|
+
|
|
354
|
+
common_kwargs = {
|
|
355
|
+
"main_input_name": "inputs_embeds" if self.rbln_config.use_inputs_embeds else "input_ids",
|
|
356
|
+
"embed_tokens": self.embed_tokens,
|
|
357
|
+
"dec_attn_mask": dec_attn_mask,
|
|
358
|
+
"page_table_manager": page_table_manager,
|
|
359
|
+
"rbln_config": self.rbln_config,
|
|
360
|
+
}
|
|
554
361
|
|
|
555
362
|
self.prefill_decoder = RBLNGemma3RuntimeModel(
|
|
556
363
|
runtime=self.model[0],
|
|
557
364
|
image_prefill=self.model[1] if self.rbln_config.use_image_prefill else None,
|
|
558
|
-
main_input_name=main_input_name,
|
|
559
|
-
embed_tokens=self.embed_tokens,
|
|
560
365
|
phase="prefill",
|
|
561
366
|
batch_size=self.rbln_config.batch_size,
|
|
562
|
-
|
|
563
|
-
block_tables=block_tables,
|
|
564
|
-
vocab_size=self.config.vocab_size,
|
|
565
|
-
free_block_pool=free_block_pool,
|
|
566
|
-
rbln_config=self.rbln_config,
|
|
367
|
+
**common_kwargs,
|
|
567
368
|
)
|
|
568
369
|
|
|
569
370
|
self.decoders = {}
|
|
570
371
|
for i, batch_size in enumerate(self.rbln_config.decoder_batch_sizes):
|
|
571
372
|
self.decoders[batch_size] = RBLNGemma3RuntimeModel(
|
|
572
373
|
runtime=self.model[i + self.rbln_config.decoder_runtime_idx],
|
|
573
|
-
main_input_name=main_input_name,
|
|
574
|
-
embed_tokens=self.embed_tokens,
|
|
575
374
|
phase="decode",
|
|
576
375
|
batch_size=batch_size,
|
|
577
|
-
|
|
578
|
-
block_tables=block_tables,
|
|
579
|
-
free_block_pool=free_block_pool,
|
|
580
|
-
rbln_config=self.rbln_config,
|
|
376
|
+
**common_kwargs,
|
|
581
377
|
)
|
|
582
378
|
|
|
583
379
|
# NOTE(eunji): Use a decoder whose batch size matches the model's main batch size for compatibility.
|
|
@@ -607,7 +403,12 @@ class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
|
607
403
|
return rbln_config
|
|
608
404
|
|
|
609
405
|
@classmethod
|
|
610
|
-
def _update_submodule_config(
|
|
406
|
+
def _update_submodule_config(
|
|
407
|
+
cls,
|
|
408
|
+
model: "PreTrainedModel",
|
|
409
|
+
rbln_config: RBLNModelConfig,
|
|
410
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
411
|
+
):
|
|
611
412
|
if rbln_config.image_prefill_chunk_size is None:
|
|
612
413
|
rbln_config.image_prefill_chunk_size = model.config.mm_tokens_per_image
|
|
613
414
|
|
|
@@ -633,6 +434,11 @@ class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
|
633
434
|
raise ValueError("use_attention_mask and use_position_ids must be True for RBLNGemma3ForCausalLM")
|
|
634
435
|
|
|
635
436
|
if rbln_config.use_image_prefill:
|
|
437
|
+
if rbln_config.prefill_chunk_size != rbln_config.image_prefill_chunk_size:
|
|
438
|
+
raise NotImplementedError(
|
|
439
|
+
"Not implemented for different prefill chunk sizes between text and image prefill."
|
|
440
|
+
)
|
|
441
|
+
|
|
636
442
|
# Update image prefill compile config
|
|
637
443
|
img_prefill_input_info = cls.get_input_info(
|
|
638
444
|
batch_size=1,
|
|
@@ -47,6 +47,8 @@ class RBLNGPT2Model(RBLNDecoderOnlyModel):
|
|
|
47
47
|
|
|
48
48
|
A class to convert and run pre-trained transformers based GPT2Model model on RBLN devices.
|
|
49
49
|
It implements the methods to convert a pre-trained transformers GPT2Model model into a RBLN transformer model by:
|
|
50
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
|
51
|
+
- compiling the resulting graph using the RBLN compiler.
|
|
50
52
|
"""
|
|
51
53
|
|
|
52
54
|
_decoder_wrapper_cls = GPT2Wrapper
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
from .configuration_grounding_dino import (
|
|
2
|
+
RBLNGroundingDinoDecoderConfig,
|
|
3
|
+
RBLNGroundingDinoEncoderConfig,
|
|
4
|
+
RBLNGroundingDinoForObjectDetectionConfig,
|
|
5
|
+
)
|
|
6
|
+
from .modeling_grounding_dino import (
|
|
7
|
+
RBLNGroundingDinoDecoder,
|
|
8
|
+
RBLNGroundingDinoEncoder,
|
|
9
|
+
RBLNGroundingDinoForObjectDetection,
|
|
10
|
+
)
|
|
@@ -0,0 +1,86 @@
|
|
|
1
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
2
|
+
# you may not use this file except in compliance with the License.
|
|
3
|
+
# You may obtain a copy of the License at:
|
|
4
|
+
|
|
5
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
6
|
+
|
|
7
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
8
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
9
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
10
|
+
# See the License for the specific language governing permissions and
|
|
11
|
+
# limitations under the License.
|
|
12
|
+
|
|
13
|
+
from typing import Any, List, Optional, Tuple, Union
|
|
14
|
+
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
from ...configuration_generic import RBLNImageModelConfig, RBLNModelConfig
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class RBLNGroundingDinoForObjectDetectionConfig(RBLNImageModelConfig):
|
|
21
|
+
submodules = [
|
|
22
|
+
"text_backbone",
|
|
23
|
+
"backbone",
|
|
24
|
+
"encoder",
|
|
25
|
+
"decoder",
|
|
26
|
+
]
|
|
27
|
+
|
|
28
|
+
def __init__(
|
|
29
|
+
self,
|
|
30
|
+
batch_size: Optional[int] = None,
|
|
31
|
+
encoder: Optional["RBLNGroundingDinoEncoderConfig"] = None,
|
|
32
|
+
decoder: Optional["RBLNGroundingDinoDecoderConfig"] = None,
|
|
33
|
+
text_backbone: Optional["RBLNModelConfig"] = None,
|
|
34
|
+
backbone: Optional["RBLNModelConfig"] = None,
|
|
35
|
+
output_attentions: Optional[bool] = False,
|
|
36
|
+
output_hidden_states: Optional[bool] = False,
|
|
37
|
+
**kwargs: Any,
|
|
38
|
+
):
|
|
39
|
+
"""
|
|
40
|
+
Args:
|
|
41
|
+
batch_size (Optional[int]): The batch size for text processing. Defaults to 1.
|
|
42
|
+
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
43
|
+
|
|
44
|
+
Raises:
|
|
45
|
+
ValueError: If batch_size is not a positive integer.
|
|
46
|
+
"""
|
|
47
|
+
super().__init__(**kwargs)
|
|
48
|
+
self.encoder = encoder
|
|
49
|
+
self.decoder = decoder
|
|
50
|
+
self.text_backbone = text_backbone
|
|
51
|
+
self.backbone = backbone
|
|
52
|
+
self.output_attentions = output_attentions
|
|
53
|
+
self.output_hidden_states = output_hidden_states
|
|
54
|
+
|
|
55
|
+
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
|
56
|
+
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
class RBLNGroundingDinoComponentConfig(RBLNImageModelConfig):
|
|
60
|
+
def __init__(
|
|
61
|
+
self,
|
|
62
|
+
image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
|
63
|
+
batch_size: Optional[int] = None,
|
|
64
|
+
spatial_shapes_list: Optional[List[Tuple[int, int]]] = None,
|
|
65
|
+
output_attentions: Optional[bool] = False,
|
|
66
|
+
output_hidden_states: Optional[bool] = False,
|
|
67
|
+
**kwargs: Any,
|
|
68
|
+
):
|
|
69
|
+
super().__init__(image_size=image_size, batch_size=batch_size, **kwargs)
|
|
70
|
+
self.spatial_shapes_list = spatial_shapes_list
|
|
71
|
+
self.output_attentions = output_attentions
|
|
72
|
+
self.output_hidden_states = output_hidden_states
|
|
73
|
+
|
|
74
|
+
@property
|
|
75
|
+
def spatial_shapes(self):
|
|
76
|
+
if self.spatial_shapes_list is None:
|
|
77
|
+
raise ValueError("Spatial shapes are not defined. Please set them before accessing.")
|
|
78
|
+
return torch.tensor(self.spatial_shapes_list)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class RBLNGroundingDinoEncoderConfig(RBLNGroundingDinoComponentConfig):
|
|
82
|
+
pass
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
class RBLNGroundingDinoDecoderConfig(RBLNGroundingDinoComponentConfig):
|
|
86
|
+
pass
|