optimum-rbln 0.8.2a5__py3-none-any.whl → 0.8.2a7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +8 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/transformers/__init__.py +8 -0
- optimum/rbln/transformers/models/__init__.py +4 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +10 -1
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +3 -2
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +7 -3
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +8 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +72 -53
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +54 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +380 -0
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +318 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- {optimum_rbln-0.8.2a5.dist-info → optimum_rbln-0.8.2a7.dist-info}/METADATA +1 -1
- {optimum_rbln-0.8.2a5.dist-info → optimum_rbln-0.8.2a7.dist-info}/RECORD +20 -13
- {optimum_rbln-0.8.2a5.dist-info → optimum_rbln-0.8.2a7.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.2a5.dist-info → optimum_rbln-0.8.2a7.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,318 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from pathlib import Path
|
|
16
|
+
from typing import TYPE_CHECKING, Any, Optional, Tuple, Union
|
|
17
|
+
|
|
18
|
+
import rebel
|
|
19
|
+
import torch
|
|
20
|
+
import torch.nn as nn
|
|
21
|
+
from transformers import PixtralVisionConfig, PixtralVisionModel
|
|
22
|
+
from transformers.modeling_outputs import BaseModelOutput
|
|
23
|
+
from transformers.modeling_utils import no_init_weights
|
|
24
|
+
from transformers.models.pixtral.modeling_pixtral import (
|
|
25
|
+
PixtralRMSNorm,
|
|
26
|
+
PixtralRotaryEmbedding,
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
30
|
+
from ....modeling import RBLNModel
|
|
31
|
+
from ....utils.logging import get_logger
|
|
32
|
+
from ....utils.runtime_utils import RBLNPytorchRuntime
|
|
33
|
+
from .configuration_pixtral import RBLNPixtralVisionModelConfig
|
|
34
|
+
from .pixtral_architecture import PixtralAttention
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
logger = get_logger(__name__)
|
|
38
|
+
|
|
39
|
+
if TYPE_CHECKING:
|
|
40
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
|
|
41
|
+
|
|
42
|
+
from ....diffusers.modeling_diffusers import RBLNDiffusionMixin, RBLNDiffusionMixinConfig
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class RBLNRuntimePixtralVisionModel(RBLNPytorchRuntime):
|
|
46
|
+
mandatory_members = ["main_input_name"]
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
runtime: rebel.Runtime,
|
|
51
|
+
config: PixtralVisionConfig,
|
|
52
|
+
rbln_config: RBLNPixtralVisionModelConfig,
|
|
53
|
+
**kwargs: Any,
|
|
54
|
+
) -> None:
|
|
55
|
+
super().__init__(runtime, **kwargs)
|
|
56
|
+
self.patch_positional_embedding = PixtralRotaryEmbedding(config)
|
|
57
|
+
self.patch_size = config.patch_size
|
|
58
|
+
self.image_size = config.image_size
|
|
59
|
+
self.hidden_size = config.hidden_size
|
|
60
|
+
self.max_image_size = rbln_config.max_image_size
|
|
61
|
+
|
|
62
|
+
def forward(
|
|
63
|
+
self,
|
|
64
|
+
pixel_values: torch.Tensor,
|
|
65
|
+
image_sizes: torch.Tensor,
|
|
66
|
+
output_hidden_states: Optional[bool] = None,
|
|
67
|
+
return_dict: Optional[bool] = None,
|
|
68
|
+
**kwargs,
|
|
69
|
+
):
|
|
70
|
+
if pixel_values.shape[2] > self.max_image_size[0] or pixel_values.shape[3] > self.max_image_size[1]:
|
|
71
|
+
raise ValueError("The height() and width of pixel_values can't be larger than max_image_size.")
|
|
72
|
+
|
|
73
|
+
if pixel_values.shape[2] != self.max_image_size[0] or pixel_values.shape[3] != self.max_image_size[1]:
|
|
74
|
+
padded_pixel_values = [
|
|
75
|
+
torch.nn.functional.pad(
|
|
76
|
+
image,
|
|
77
|
+
pad=(
|
|
78
|
+
0,
|
|
79
|
+
self.max_image_size[1] - pixel_values.shape[3],
|
|
80
|
+
0,
|
|
81
|
+
self.max_image_size[0] - pixel_values.shape[2],
|
|
82
|
+
),
|
|
83
|
+
)
|
|
84
|
+
for image in pixel_values
|
|
85
|
+
]
|
|
86
|
+
pixel_values = torch.stack(padded_pixel_values)
|
|
87
|
+
|
|
88
|
+
batch_size, _, H_max, W_max = pixel_values.shape
|
|
89
|
+
H_max_p = H_max // self.patch_size
|
|
90
|
+
W_max_p = W_max // self.patch_size
|
|
91
|
+
|
|
92
|
+
final_hidden_states = None
|
|
93
|
+
|
|
94
|
+
last_hidden_state_list = []
|
|
95
|
+
if output_hidden_states:
|
|
96
|
+
batch_hidden_states_list = []
|
|
97
|
+
|
|
98
|
+
for i in range(batch_size):
|
|
99
|
+
h_patched_original = image_sizes[i, 0] // self.patch_size
|
|
100
|
+
w_patched_original = image_sizes[i, 1] // self.patch_size
|
|
101
|
+
|
|
102
|
+
single_pixel_values = pixel_values[i : i + 1]
|
|
103
|
+
patch_embed = self.patch_conv(single_pixel_values)
|
|
104
|
+
patch_embed_seq = patch_embed[:, :, :h_patched_original, :w_patched_original].flatten(2).transpose(1, 2)
|
|
105
|
+
patch_embed_seq = self.ln_pre(patch_embed_seq)
|
|
106
|
+
patch_embed_seq = nn.functional.pad(
|
|
107
|
+
patch_embed_seq, (0, 0, 0, H_max_p * W_max_p - patch_embed_seq.shape[1]), "constant", value=0
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
max_w_from_config = self.image_size // self.patch_size
|
|
111
|
+
mesh = torch.meshgrid(torch.arange(h_patched_original), torch.arange(w_patched_original), indexing="ij")
|
|
112
|
+
h_grid, v_grid = torch.stack(mesh, dim=-1).reshape(-1, 2).chunk(2, -1)
|
|
113
|
+
ids = h_grid * max_w_from_config + v_grid
|
|
114
|
+
position_ids = ids[:, 0]
|
|
115
|
+
|
|
116
|
+
position_embeddings = self.patch_positional_embedding(patch_embed_seq, position_ids)
|
|
117
|
+
cos = nn.functional.pad(
|
|
118
|
+
position_embeddings[0],
|
|
119
|
+
(0, 0, 0, H_max_p * W_max_p - position_embeddings[0].shape[0]),
|
|
120
|
+
"constant",
|
|
121
|
+
value=0,
|
|
122
|
+
)
|
|
123
|
+
sin = nn.functional.pad(
|
|
124
|
+
position_embeddings[1],
|
|
125
|
+
(0, 0, 0, H_max_p * W_max_p - position_embeddings[1].shape[0]),
|
|
126
|
+
"constant",
|
|
127
|
+
value=0,
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
attention_mask = torch.full(
|
|
131
|
+
(1, patch_embed_seq.shape[-2]), fill_value=torch.finfo(patch_embed_seq.dtype).min
|
|
132
|
+
)
|
|
133
|
+
attention_mask[:, : h_patched_original * w_patched_original] = 0
|
|
134
|
+
|
|
135
|
+
transformer_output = super().forward(patch_embed_seq, attention_mask, cos, sin)
|
|
136
|
+
|
|
137
|
+
last_hidden_state_list.append(transformer_output[0][:, : h_patched_original * w_patched_original, :])
|
|
138
|
+
hidden_states = transformer_output[1:]
|
|
139
|
+
|
|
140
|
+
if output_hidden_states:
|
|
141
|
+
batch_hidden_states_list.append(
|
|
142
|
+
[hidden_state[:, : h_patched_original * w_patched_original, :] for hidden_state in hidden_states]
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
final_last_hidden_state = torch.cat(last_hidden_state_list, dim=1)
|
|
146
|
+
|
|
147
|
+
if output_hidden_states:
|
|
148
|
+
hidden_states = [
|
|
149
|
+
torch.cat(
|
|
150
|
+
[batch_hidden_states[layer_idx] for batch_hidden_states in batch_hidden_states_list],
|
|
151
|
+
dim=1,
|
|
152
|
+
)
|
|
153
|
+
for layer_idx in range(len(batch_hidden_states_list[0]))
|
|
154
|
+
]
|
|
155
|
+
|
|
156
|
+
final_hidden_states = tuple(hidden_states)
|
|
157
|
+
|
|
158
|
+
if not return_dict:
|
|
159
|
+
return tuple(v for v in (final_last_hidden_state, final_hidden_states) if v is not None)
|
|
160
|
+
|
|
161
|
+
# TODO: output_attentions
|
|
162
|
+
return BaseModelOutput(
|
|
163
|
+
last_hidden_state=final_last_hidden_state,
|
|
164
|
+
hidden_states=final_hidden_states,
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
class _PixtralVisionModel(torch.nn.Module):
|
|
169
|
+
def __init__(self, model: PixtralVisionModel, output_hidden_states: bool):
|
|
170
|
+
super().__init__()
|
|
171
|
+
self.transformer = self.convert_to_rbln_pixtral_vision_model(model)
|
|
172
|
+
self.output_hidden_states = output_hidden_states
|
|
173
|
+
|
|
174
|
+
def convert_to_rbln_pixtral_vision_model(self, model: nn.Module):
|
|
175
|
+
for layer in model.transformer.layers:
|
|
176
|
+
layer.attention = PixtralAttention(layer.attention)
|
|
177
|
+
return model.transformer
|
|
178
|
+
|
|
179
|
+
def forward(self, patch_embeds, attention_mask, position_embeddings_1, position_embeddings_2):
|
|
180
|
+
output = self.transformer(
|
|
181
|
+
inputs_embeds=patch_embeds,
|
|
182
|
+
attention_mask=attention_mask,
|
|
183
|
+
position_embeddings=(position_embeddings_1, position_embeddings_2),
|
|
184
|
+
output_hidden_states=self.output_hidden_states,
|
|
185
|
+
return_dict=False,
|
|
186
|
+
)
|
|
187
|
+
return output
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
class RBLNPixtralVisionModel(RBLNModel):
|
|
191
|
+
"""
|
|
192
|
+
RBLN optimized Pixtral vision encoder model.
|
|
193
|
+
|
|
194
|
+
This class provides hardware-accelerated inference for Pixtral vision encoders
|
|
195
|
+
on RBLN devices, supporting image encoding for multimodal tasks.
|
|
196
|
+
"""
|
|
197
|
+
|
|
198
|
+
def __post_init__(self, **kwargs):
|
|
199
|
+
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
|
200
|
+
with no_init_weights():
|
|
201
|
+
self.patch_conv = nn.Conv2d(
|
|
202
|
+
in_channels=self.config.num_channels,
|
|
203
|
+
out_channels=self.config.hidden_size,
|
|
204
|
+
kernel_size=self.config.patch_size,
|
|
205
|
+
stride=self.config.patch_size,
|
|
206
|
+
bias=False,
|
|
207
|
+
)
|
|
208
|
+
self.ln_pre = PixtralRMSNorm(self.config.hidden_size, eps=1e-5)
|
|
209
|
+
self.patch_conv.load_state_dict(artifacts["patch_conv"])
|
|
210
|
+
self.ln_pre.load_state_dict(artifacts["ln_pre"])
|
|
211
|
+
self.model = RBLNRuntimePixtralVisionModel(
|
|
212
|
+
self.model[0],
|
|
213
|
+
main_input_name="pixel_values",
|
|
214
|
+
config=self.config,
|
|
215
|
+
rbln_config=self.rbln_config,
|
|
216
|
+
patch_conv=self.patch_conv,
|
|
217
|
+
ln_pre=self.ln_pre,
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
@classmethod
|
|
221
|
+
def save_torch_artifacts(
|
|
222
|
+
cls,
|
|
223
|
+
model: "PreTrainedModel",
|
|
224
|
+
save_dir_path: Path,
|
|
225
|
+
subfolder: str,
|
|
226
|
+
rbln_config: RBLNModelConfig,
|
|
227
|
+
):
|
|
228
|
+
save_dict = {}
|
|
229
|
+
save_dict["patch_conv"] = model.get_input_embeddings().state_dict()
|
|
230
|
+
save_dict["ln_pre"] = model.ln_pre.state_dict()
|
|
231
|
+
torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
|
|
232
|
+
|
|
233
|
+
@classmethod
|
|
234
|
+
def wrap_model_if_needed(
|
|
235
|
+
cls, model: torch.nn.Module, rbln_config: RBLNPixtralVisionModelConfig
|
|
236
|
+
) -> torch.nn.Module:
|
|
237
|
+
wrapper_cfg = {
|
|
238
|
+
"output_hidden_states": rbln_config.output_hidden_states,
|
|
239
|
+
}
|
|
240
|
+
return _PixtralVisionModel(model, **wrapper_cfg).eval()
|
|
241
|
+
|
|
242
|
+
@classmethod
|
|
243
|
+
def update_rbln_config_using_pipe(
|
|
244
|
+
cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
|
|
245
|
+
) -> "RBLNDiffusionMixinConfig":
|
|
246
|
+
return rbln_config
|
|
247
|
+
|
|
248
|
+
@classmethod
|
|
249
|
+
def _update_rbln_config(
|
|
250
|
+
cls,
|
|
251
|
+
preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
|
|
252
|
+
model: Optional["PreTrainedModel"] = None,
|
|
253
|
+
model_config: "PixtralVisionConfig" = None,
|
|
254
|
+
rbln_config: Optional[RBLNPixtralVisionModelConfig] = None,
|
|
255
|
+
) -> RBLNPixtralVisionModelConfig:
|
|
256
|
+
if rbln_config.max_image_size is None:
|
|
257
|
+
rbln_config.max_image_size = (model_config.image_size, model_config.image_size)
|
|
258
|
+
|
|
259
|
+
if rbln_config.output_hidden_states is None:
|
|
260
|
+
rbln_config.output_hidden_states = getattr(model_config, "output_hidden_states", False)
|
|
261
|
+
|
|
262
|
+
num_total_patches = (rbln_config.max_image_size[0] // model_config.patch_size) * (
|
|
263
|
+
rbln_config.max_image_size[1] // model_config.patch_size
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
rbln_compile_config = RBLNCompileConfig(
|
|
267
|
+
input_info=[
|
|
268
|
+
(
|
|
269
|
+
"patch_embeds",
|
|
270
|
+
[1, num_total_patches, model_config.hidden_size],
|
|
271
|
+
"float32",
|
|
272
|
+
),
|
|
273
|
+
("attention_mask", [1, num_total_patches], "float32"),
|
|
274
|
+
(
|
|
275
|
+
"position_embeddings_1",
|
|
276
|
+
[
|
|
277
|
+
num_total_patches,
|
|
278
|
+
model_config.head_dim,
|
|
279
|
+
],
|
|
280
|
+
"float32",
|
|
281
|
+
),
|
|
282
|
+
(
|
|
283
|
+
"position_embeddings_2",
|
|
284
|
+
[
|
|
285
|
+
num_total_patches,
|
|
286
|
+
model_config.head_dim,
|
|
287
|
+
],
|
|
288
|
+
"float32",
|
|
289
|
+
),
|
|
290
|
+
]
|
|
291
|
+
)
|
|
292
|
+
|
|
293
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
|
294
|
+
return rbln_config
|
|
295
|
+
|
|
296
|
+
def forward(
|
|
297
|
+
self,
|
|
298
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
299
|
+
image_sizes: Optional[torch.FloatTensor] = None,
|
|
300
|
+
output_hidden_states: Optional[bool] = None,
|
|
301
|
+
return_dict: bool = True,
|
|
302
|
+
**kwargs,
|
|
303
|
+
) -> Union[Tuple, BaseModelOutput]:
|
|
304
|
+
output_hidden_states = (
|
|
305
|
+
output_hidden_states if output_hidden_states is not None else self.rbln_config.output_hidden_states
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
if output_hidden_states != self.rbln_config.output_hidden_states:
|
|
309
|
+
raise ValueError(
|
|
310
|
+
f"Variable output_hidden_states {output_hidden_states} is not equal to rbln_config.output_hidden_states {self.rbln_config.output_hidden_states} "
|
|
311
|
+
f"Please compile again with the correct argument."
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
output = self.model(
|
|
315
|
+
pixel_values, image_sizes, output_hidden_states=output_hidden_states, return_dict=return_dict
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
return output
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import Optional, Tuple
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
import torch.nn as nn
|
|
19
|
+
|
|
20
|
+
from ..decoderonly.decoderonly_architecture import apply_rotary_pos_emb
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class PixtralAttention(nn.Module):
|
|
24
|
+
def __init__(self, self_attention):
|
|
25
|
+
super().__init__()
|
|
26
|
+
self.original_model = self_attention
|
|
27
|
+
self.num_heads = getattr(self.original_model, "num_heads", None) or getattr(
|
|
28
|
+
self.original_model.config, "num_attention_heads"
|
|
29
|
+
)
|
|
30
|
+
self.head_dim = self.original_model.head_dim
|
|
31
|
+
self.scaling = self.head_dim**-0.5
|
|
32
|
+
|
|
33
|
+
self.__post_init__()
|
|
34
|
+
|
|
35
|
+
def __post_init__(self):
|
|
36
|
+
self.q_proj = self.original_model.q_proj
|
|
37
|
+
self.k_proj = self.original_model.k_proj
|
|
38
|
+
self.v_proj = self.original_model.v_proj
|
|
39
|
+
self.o_proj = self.original_model.o_proj
|
|
40
|
+
|
|
41
|
+
def forward(
|
|
42
|
+
self,
|
|
43
|
+
hidden_states: torch.Tensor,
|
|
44
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
45
|
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
46
|
+
output_attentions: Optional[bool] = False,
|
|
47
|
+
):
|
|
48
|
+
batch_size, patches, _ = hidden_states.size()
|
|
49
|
+
|
|
50
|
+
query_states = self.q_proj(hidden_states)
|
|
51
|
+
key_states = self.k_proj(hidden_states)
|
|
52
|
+
value_states = self.v_proj(hidden_states)
|
|
53
|
+
|
|
54
|
+
# TODO: return output attention
|
|
55
|
+
query_states = query_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
|
|
56
|
+
key_states = key_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
|
|
57
|
+
value_states = value_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
|
|
58
|
+
|
|
59
|
+
cos, sin = position_embeddings
|
|
60
|
+
cos = cos[None, None, None, :, :]
|
|
61
|
+
sin = sin[None, None, None, :, :]
|
|
62
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
63
|
+
|
|
64
|
+
attn_weights = torch.matmul(query_states, key_states.transpose(3, 4)) * self.scaling
|
|
65
|
+
attn_weights = attn_weights + attention_mask
|
|
66
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
|
67
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
|
68
|
+
attn_output = attn_output.transpose(1, 3)
|
|
69
|
+
|
|
70
|
+
attn_output = attn_output.reshape(batch_size, patches, -1)
|
|
71
|
+
attn_output = self.o_proj(attn_output)
|
|
72
|
+
|
|
73
|
+
return attn_output, _
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.2a7
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
optimum/rbln/__init__.py,sha256=
|
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
|
1
|
+
optimum/rbln/__init__.py,sha256=10giCZmQrRZpbO_gOC5HCTyLxZmezwtM3KpjEk8vYg8,16984
|
|
2
|
+
optimum/rbln/__version__.py,sha256=5wNjDf6ebAXNOKXq2q2velYFX1bRX9PJq61LJdDliJw,519
|
|
3
3
|
optimum/rbln/configuration_utils.py,sha256=FluYXTBB3C93-_35Z_XSdVnN6ScIj4AuKt-4QFt0m8g,33116
|
|
4
4
|
optimum/rbln/modeling.py,sha256=gww-H-q16_mGw2qGnFwOjEj3J9yMjBKnRTKlnCkVlx8,14315
|
|
5
5
|
optimum/rbln/modeling_base.py,sha256=AShxAt3KIOcCqfyF4U83dIrKwoj4p2Kxtc1ns_9-ltU,24154
|
|
@@ -71,12 +71,12 @@ optimum/rbln/ops/flash_attn.py,sha256=z39DJZSk94630ueoOCkiybxR5gzvNR-SRADHs0F6pz
|
|
|
71
71
|
optimum/rbln/ops/kv_cache_update.py,sha256=aIvK2Sp7M3EfJzJgNvIvAJv4emoN6QOhmgaWj-VboLs,1440
|
|
72
72
|
optimum/rbln/ops/linear.py,sha256=5K3pcrrUHu_p8LrMIU-jX2TnafksveFjjZSCsYSp_yw,1328
|
|
73
73
|
optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
|
|
74
|
-
optimum/rbln/transformers/__init__.py,sha256=
|
|
74
|
+
optimum/rbln/transformers/__init__.py,sha256=nKbPwORGP9uWd9p4uPfVinai8TxjV301_QgANbQtbpc,10913
|
|
75
75
|
optimum/rbln/transformers/configuration_generic.py,sha256=kNhPWtzF0IovUnrsXfxXdXITqgpfCAAedjfB6jSAhEg,5131
|
|
76
76
|
optimum/rbln/transformers/modeling_attention_utils.py,sha256=aLyOaq4me1m-JMmnKbuyNQageDxNU2jjEhGE_ew2P5o,11465
|
|
77
77
|
optimum/rbln/transformers/modeling_generic.py,sha256=SXsZghRDsPolNnG5FFPRtXzIEmPQDnz0iRy6PIZvFVI,12225
|
|
78
78
|
optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
|
|
79
|
-
optimum/rbln/transformers/models/__init__.py,sha256
|
|
79
|
+
optimum/rbln/transformers/models/__init__.py,sha256=1uy61IYS99gex9Y0nz3G40IXhYDfONncwMXELd4KHs4,11793
|
|
80
80
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
|
|
81
81
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
|
|
82
82
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
|
|
@@ -101,9 +101,9 @@ optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=bWG7TehW
|
|
|
101
101
|
optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=ieY-tuyDPObFUIJ5sfpcfuCsJ_HTAizN7ZGqirqeFRU,2636
|
|
102
102
|
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=jzvJCBrrCXSpjfmJ3O-VvPNFGWGaNbpOV09JwLPAZWs,15757
|
|
103
103
|
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=w3VZOIBYaHXVdnuhK4y0zWAj0IAv7_5LGTJYaz9oYmI,1056
|
|
104
|
-
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=
|
|
105
|
-
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=
|
|
106
|
-
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=
|
|
104
|
+
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=tZNT0kz90V4xVDJ9I_9WjPZjLHwhFZpKshija64vcMA,23868
|
|
105
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=uR6I_OtYHauNlnUEtg2CUb_am9EUrBtiitMU4r25rPE,42206
|
|
106
|
+
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=ZuOLXbFWGtghJgEu_VPYbtR36ndhy_f6q_EDY2MWemU,62426
|
|
107
107
|
optimum/rbln/transformers/models/distilbert/__init__.py,sha256=zXL78SOEORTnUN_wrdoaDaYpntG8lcFHvPobM6jC0CI,841
|
|
108
108
|
optimum/rbln/transformers/models/distilbert/configuration_distilbert.py,sha256=O3BW9JjyYk9PLyiofvOKEgTdMZ_jpIuPfot281pSsyg,984
|
|
109
109
|
optimum/rbln/transformers/models/distilbert/modeling_distilbert.py,sha256=LUh6zYGa8AR3Yxaj3gtyJRc-czBN3qnHTc-JTAhuqY0,1099
|
|
@@ -119,9 +119,9 @@ optimum/rbln/transformers/models/gemma/configuration_gemma.py,sha256=H1nVp8HBJxx
|
|
|
119
119
|
optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=2Ivay8NTSHmQAqXFh9JvG6Ja5rMThcRAjYPzyipcRI8,956
|
|
120
120
|
optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=p9mxRkxu8xAa3g-v62-A0mbcfiQrLIepw2R3BpZP3Cg,3659
|
|
121
121
|
optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
|
|
122
|
-
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=
|
|
122
|
+
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=QkDfE_TpjekwSUC0kUAZ_IX484qTsksALmNdoKTeej4,3052
|
|
123
123
|
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=fpLDAXCe5paWVsfc0tL59JkRQMRF-WNgIzOIb_QpSLU,6191
|
|
124
|
-
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=
|
|
124
|
+
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=PPGb1wgEfqSnoSgI6diNvQ2qQ5kOH-1NaG8Uf89tW8E,32793
|
|
125
125
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=SsawHMStE3wYRtqkH5EvdTFkCdX0LLmp-QSKFhEBrHo,740
|
|
126
126
|
optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=iGdHfzG7plekZcIz-Z5U8lRE4SB8gbJJNcFQJ9l8Myg,1533
|
|
127
127
|
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=MyAWReXmyuHnDpW5HI_TI7psyJZxLujZ9KT5XnNm7nA,2802
|
|
@@ -133,6 +133,9 @@ optimum/rbln/transformers/models/llama/__init__.py,sha256=6tgx9-qlM5r9ouoeZEouVR
|
|
|
133
133
|
optimum/rbln/transformers/models/llama/configuration_llama.py,sha256=_uxfH5kaGbeJTMJfESYn0Vg3OEkINS2ShGtVQTeOcs4,1578
|
|
134
134
|
optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=S7MCPfyjG5eUqgaS-QNBB0ApUD6wnb5fR0RHq7k7-pA,728
|
|
135
135
|
optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=1rk1kZhzsMumaRVPgTSMAYQfan1w-UaePDIhi0a2V1o,3705
|
|
136
|
+
optimum/rbln/transformers/models/llava/__init__.py,sha256=FaVLgBIqKGjT_nvwYO9k9BVqrzH_Ym3DfjGRCSUhG2s,734
|
|
137
|
+
optimum/rbln/transformers/models/llava/configuration_llava.py,sha256=pMA9Tepq89hIZCeOCW25DofB9ediYj-3G46_ufeEup4,2163
|
|
138
|
+
optimum/rbln/transformers/models/llava/modeling_llava.py,sha256=FIOarysPdSD81L6qQ-Rv8DxqjOBNYffZozQuV6UI2jo,15070
|
|
136
139
|
optimum/rbln/transformers/models/llava_next/__init__.py,sha256=kDXKr7wMkp1XqE__DER2B8kQF_NYMxhzsQS5ytGg56I,752
|
|
137
140
|
optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=U6_DQoaXugN2Bc4ntUb7WkelbNmw1L4VbgqsMRVuuE4,2776
|
|
138
141
|
optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=i8MuaVWH6sqZXEgx2-zcpVYbcL4-on5DuLBtHGDoS7I,27465
|
|
@@ -156,6 +159,10 @@ optimum/rbln/transformers/models/phi/__init__.py,sha256=M5Sh4AtIhJYegl-yAKPggAU3
|
|
|
156
159
|
optimum/rbln/transformers/models/phi/configuration_phi.py,sha256=CXHIG3xlBdr628oDu_u4OGsu_QZLx5EUSqu3zfmfEnk,1553
|
|
157
160
|
optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=r7B0NlqwIGjm-MmE-h5_xeRJPzs4O2OotgbjI-FYA2o,3403
|
|
158
161
|
optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=ygJIJvn20bnxE9nHKo4CBW9_1FJsz7MEVolB5asTmI0,3684
|
|
162
|
+
optimum/rbln/transformers/models/pixtral/__init__.py,sha256=fhclVAWnIDsfMfC-TW6mYrJXxgyehlLaadK64LOShH4,716
|
|
163
|
+
optimum/rbln/transformers/models/pixtral/configuration_pixtral.py,sha256=b7i1cIJESj7CtNy3w_Sqfr2d0zVfM9jChv-uOJfLsVU,1696
|
|
164
|
+
optimum/rbln/transformers/models/pixtral/modeling_pixtral.py,sha256=_4ooUqy_AAczAo9DiTNa2ZjvfdrtRL0cjVDmUVLlP5Q,12374
|
|
165
|
+
optimum/rbln/transformers/models/pixtral/pixtral_architecture.py,sha256=s-6C9DtHmSZEGJXo5b95RwZE2A5aR6ELMHlj7aK6CIg,2950
|
|
159
166
|
optimum/rbln/transformers/models/qwen2/__init__.py,sha256=h9dWJ3HX4xspMLt44g7r3UGU8QL03Ynmz_Mi3Vlu6UA,746
|
|
160
167
|
optimum/rbln/transformers/models/qwen2/configuration_qwen2.py,sha256=tTWcPOk_ycZvdSPlal9S5elTmWZAX2BbpZP5Ok2ySwI,1567
|
|
161
168
|
optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=VOboPJF1rvvSVWkHCnw3D5COWbfBwXJJ6JV0tCOgl5g,4938
|
|
@@ -215,7 +222,7 @@ optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsF
|
|
|
215
222
|
optimum/rbln/utils/runtime_utils.py,sha256=nIJioiN16nAyAzoArKjsy5ocLUsrr0UEy4f3LNT82SA,7961
|
|
216
223
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
|
217
224
|
optimum/rbln/utils/submodule.py,sha256=w5mgPgncI740gVKMu3S-69DGNdUSI0bTZxegQGcZ98Y,5011
|
|
218
|
-
optimum_rbln-0.8.
|
|
219
|
-
optimum_rbln-0.8.
|
|
220
|
-
optimum_rbln-0.8.
|
|
221
|
-
optimum_rbln-0.8.
|
|
225
|
+
optimum_rbln-0.8.2a7.dist-info/METADATA,sha256=65rKMblcQerbNfifD8lIAJ0RZZ3WAcCzBPdzhxef1FE,5299
|
|
226
|
+
optimum_rbln-0.8.2a7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
227
|
+
optimum_rbln-0.8.2a7.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
|
228
|
+
optimum_rbln-0.8.2a7.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|