optimum-rbln 0.8.2a5__py3-none-any.whl → 0.8.2a6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of optimum-rbln might be problematic. Click here for more details.
- optimum/rbln/__init__.py +8 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/transformers/__init__.py +8 -0
- optimum/rbln/transformers/models/__init__.py +4 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +10 -1
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +3 -2
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +7 -3
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +8 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +72 -53
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +54 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +379 -0
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +318 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- {optimum_rbln-0.8.2a5.dist-info → optimum_rbln-0.8.2a6.dist-info}/METADATA +1 -1
- {optimum_rbln-0.8.2a5.dist-info → optimum_rbln-0.8.2a6.dist-info}/RECORD +20 -13
- {optimum_rbln-0.8.2a5.dist-info → optimum_rbln-0.8.2a6.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.2a5.dist-info → optimum_rbln-0.8.2a6.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,379 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import inspect
|
|
16
|
+
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
from transformers import (
|
|
20
|
+
AutoModelForImageTextToText,
|
|
21
|
+
LlavaForConditionalGeneration,
|
|
22
|
+
PretrainedConfig,
|
|
23
|
+
PreTrainedModel,
|
|
24
|
+
)
|
|
25
|
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
|
26
|
+
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
|
|
27
|
+
|
|
28
|
+
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
|
29
|
+
from ....modeling import RBLNModel
|
|
30
|
+
from ....utils.logging import get_logger
|
|
31
|
+
from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyForCausalLMOutput
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
logger = get_logger(__name__)
|
|
35
|
+
|
|
36
|
+
if TYPE_CHECKING:
|
|
37
|
+
from transformers import (
|
|
38
|
+
AutoFeatureExtractor,
|
|
39
|
+
AutoProcessor,
|
|
40
|
+
AutoTokenizer,
|
|
41
|
+
PretrainedConfig,
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class LoopVisionTower:
|
|
46
|
+
def __init__(self, vision_tower: RBLNModel) -> None:
|
|
47
|
+
self.vision_tower = vision_tower
|
|
48
|
+
|
|
49
|
+
def forward(self, *args, **kwargs):
|
|
50
|
+
pixel_values = args[0]
|
|
51
|
+
image_sizes = kwargs.pop("image_sizes", None)
|
|
52
|
+
|
|
53
|
+
outputs = []
|
|
54
|
+
for i in range(pixel_values.shape[0]):
|
|
55
|
+
outputs.append(
|
|
56
|
+
self.vision_tower(
|
|
57
|
+
pixel_values[i : i + 1], image_sizes[i : i + 1] if image_sizes is not None else None, **kwargs
|
|
58
|
+
)
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
if hasattr(self.vision_tower.rbln_config, "max_image_size"):
|
|
62
|
+
last_hidden_states = [output.last_hidden_state for output in outputs]
|
|
63
|
+
last_hidden_states = torch.cat(last_hidden_states, dim=1)
|
|
64
|
+
hidden_states = tuple(
|
|
65
|
+
torch.cat(
|
|
66
|
+
[output.hidden_states[layer_idx] for output in outputs],
|
|
67
|
+
dim=1,
|
|
68
|
+
)
|
|
69
|
+
for layer_idx in range(len(outputs[0].hidden_states))
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
else:
|
|
73
|
+
last_hidden_states = [output.last_hidden_state for output in outputs]
|
|
74
|
+
last_hidden_states = torch.cat(last_hidden_states, dim=0)
|
|
75
|
+
hidden_states = [output.hidden_states for output in outputs]
|
|
76
|
+
hidden_states = tuple(
|
|
77
|
+
torch.cat(tuple((hidden_states[n][i] for n in range(pixel_values.shape[0]))), dim=0)
|
|
78
|
+
for i in range(len(hidden_states[0]))
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
return BaseModelOutputWithPooling(
|
|
82
|
+
last_hidden_state=last_hidden_states,
|
|
83
|
+
hidden_states=hidden_states,
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
|
87
|
+
return self.forward(*args, **kwds)
|
|
88
|
+
|
|
89
|
+
def __repr__(self) -> str:
|
|
90
|
+
return repr(self.vision_tower)
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
class LoopProjector:
|
|
94
|
+
def __init__(self, multi_modal_projector) -> None:
|
|
95
|
+
self.multi_modal_projector = multi_modal_projector
|
|
96
|
+
|
|
97
|
+
def forward(self, *args, **kwargs):
|
|
98
|
+
# Loop instead of batch
|
|
99
|
+
image_feature = args[0]
|
|
100
|
+
|
|
101
|
+
outputs = []
|
|
102
|
+
for i in range(image_feature.shape[0]):
|
|
103
|
+
outputs.append(self.multi_modal_projector(image_feature[i : i + 1]))
|
|
104
|
+
|
|
105
|
+
# FIXME:: This can be optimized using out= API of rbln runtime.
|
|
106
|
+
outputs = torch.cat(outputs, dim=0)
|
|
107
|
+
return outputs
|
|
108
|
+
|
|
109
|
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
|
110
|
+
return self.forward(*args, **kwds)
|
|
111
|
+
|
|
112
|
+
def __repr__(self) -> str:
|
|
113
|
+
return repr(self.multi_modal_projector)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
class RBLNLlavaForConditionalGeneration(RBLNModel):
|
|
117
|
+
auto_model_class = AutoModelForImageTextToText
|
|
118
|
+
_rbln_submodules = [
|
|
119
|
+
{"name": "vision_tower"},
|
|
120
|
+
{"name": "language_model"},
|
|
121
|
+
]
|
|
122
|
+
|
|
123
|
+
def __getattr__(self, __name: str) -> Any:
|
|
124
|
+
def redirect(func):
|
|
125
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
|
126
|
+
|
|
127
|
+
val = getattr(LlavaForConditionalGeneration, __name)
|
|
128
|
+
|
|
129
|
+
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
|
130
|
+
return redirect(val)
|
|
131
|
+
return val
|
|
132
|
+
|
|
133
|
+
def can_generate(self):
|
|
134
|
+
return True
|
|
135
|
+
|
|
136
|
+
def __post_init__(self, **kwargs):
|
|
137
|
+
self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
|
|
138
|
+
self.language_model = self.rbln_submodules[1]
|
|
139
|
+
self.multi_modal_projector = LoopProjector(self.model[0])
|
|
140
|
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
|
141
|
+
return super().__post_init__(**kwargs)
|
|
142
|
+
|
|
143
|
+
def get_attn_impl(self) -> str:
|
|
144
|
+
return self.rbln_config.language_model.attn_impl
|
|
145
|
+
|
|
146
|
+
def get_kvcache_num_blocks(self) -> int:
|
|
147
|
+
return self.rbln_config.language_model.kvcache_num_blocks
|
|
148
|
+
|
|
149
|
+
def get_input_embeddings(self):
|
|
150
|
+
return self.language_model.get_input_embeddings()
|
|
151
|
+
|
|
152
|
+
@classmethod
|
|
153
|
+
def wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
|
|
154
|
+
return model.multi_modal_projector
|
|
155
|
+
|
|
156
|
+
@classmethod
|
|
157
|
+
def _update_rbln_config(
|
|
158
|
+
cls,
|
|
159
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
|
160
|
+
model: Optional["PreTrainedModel"] = None,
|
|
161
|
+
model_config: Optional["PretrainedConfig"] = None,
|
|
162
|
+
rbln_config: Optional[RBLNModelConfig] = None,
|
|
163
|
+
) -> RBLNModelConfig:
|
|
164
|
+
if hasattr(rbln_config.vision_tower, "max_image_size"):
|
|
165
|
+
num_positions = (
|
|
166
|
+
rbln_config.vision_tower.batch_size
|
|
167
|
+
* (rbln_config.vision_tower.max_image_size[0] // model_config.vision_config.patch_size)
|
|
168
|
+
* (rbln_config.vision_tower.max_image_size[1] // model_config.vision_config.patch_size)
|
|
169
|
+
)
|
|
170
|
+
selected_image_feature_dim = num_positions
|
|
171
|
+
|
|
172
|
+
else:
|
|
173
|
+
num_positions = (model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2 + 1
|
|
174
|
+
selected_image_feature_dim = num_positions - 1
|
|
175
|
+
|
|
176
|
+
input_info = [
|
|
177
|
+
(
|
|
178
|
+
"image_features",
|
|
179
|
+
[rbln_config.batch_size, selected_image_feature_dim, model_config.vision_config.hidden_size],
|
|
180
|
+
"float32",
|
|
181
|
+
)
|
|
182
|
+
]
|
|
183
|
+
|
|
184
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
|
185
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
|
186
|
+
return rbln_config
|
|
187
|
+
|
|
188
|
+
def prepare_inputs_for_generation(
|
|
189
|
+
self,
|
|
190
|
+
input_ids,
|
|
191
|
+
inputs_embeds=None,
|
|
192
|
+
pixel_values=None,
|
|
193
|
+
attention_mask=None,
|
|
194
|
+
cache_position=None,
|
|
195
|
+
image_sizes=None,
|
|
196
|
+
generate_idx=None,
|
|
197
|
+
**kwargs,
|
|
198
|
+
):
|
|
199
|
+
is_prefill_phase = generate_idx is None
|
|
200
|
+
model_inputs = {}
|
|
201
|
+
|
|
202
|
+
if is_prefill_phase:
|
|
203
|
+
generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
|
|
204
|
+
cache_position = None
|
|
205
|
+
pixel_values = pixel_values
|
|
206
|
+
model_inputs.update({"image_sizes": image_sizes})
|
|
207
|
+
else:
|
|
208
|
+
if inputs_embeds is not None:
|
|
209
|
+
raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
|
|
210
|
+
|
|
211
|
+
pixel_values = None
|
|
212
|
+
input_ids = input_ids[:, -1:]
|
|
213
|
+
cache_position = generate_idx
|
|
214
|
+
generate_idx = generate_idx + 1
|
|
215
|
+
model_inputs.update({"input_ids": input_ids})
|
|
216
|
+
|
|
217
|
+
if inputs_embeds is not None:
|
|
218
|
+
if self.rbln_config.use_inputs_embeds:
|
|
219
|
+
model_inputs.update({"inputs_embeds": inputs_embeds})
|
|
220
|
+
else:
|
|
221
|
+
raise ValueError(
|
|
222
|
+
"The specifying inputs_embeds is only supported when using a compiled RBLN model with 'rbln_use_inputs_embeds' set to True."
|
|
223
|
+
)
|
|
224
|
+
else:
|
|
225
|
+
model_inputs.update({"input_ids": input_ids})
|
|
226
|
+
|
|
227
|
+
model_inputs.update(
|
|
228
|
+
{
|
|
229
|
+
"attention_mask": attention_mask,
|
|
230
|
+
"pixel_values": pixel_values,
|
|
231
|
+
"cache_position": cache_position,
|
|
232
|
+
"generate_idx": generate_idx,
|
|
233
|
+
}
|
|
234
|
+
)
|
|
235
|
+
return model_inputs
|
|
236
|
+
|
|
237
|
+
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
|
|
238
|
+
model_kwargs["generate_idx"] = outputs.generate_idx
|
|
239
|
+
return model_kwargs
|
|
240
|
+
|
|
241
|
+
def get_image_features(
|
|
242
|
+
self,
|
|
243
|
+
pixel_values: torch.FloatTensor,
|
|
244
|
+
vision_feature_layer: Union[int, List[int]],
|
|
245
|
+
vision_feature_select_strategy: str,
|
|
246
|
+
**kwargs,
|
|
247
|
+
):
|
|
248
|
+
if vision_feature_select_strategy not in ["default", "full"]:
|
|
249
|
+
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
|
|
250
|
+
|
|
251
|
+
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
|
252
|
+
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True, **kwargs)
|
|
253
|
+
|
|
254
|
+
if isinstance(vision_feature_layer, int):
|
|
255
|
+
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
|
256
|
+
if vision_feature_select_strategy == "default":
|
|
257
|
+
selected_image_feature = selected_image_feature[:, 1:]
|
|
258
|
+
else:
|
|
259
|
+
hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
|
|
260
|
+
if vision_feature_select_strategy == "default":
|
|
261
|
+
hs_pool = [hs[:, 1:] for hs in hs_pool]
|
|
262
|
+
selected_image_feature = torch.cat(hs_pool, dim=-1)
|
|
263
|
+
|
|
264
|
+
if hasattr(self.rbln_config.vision_tower, "max_image_size"):
|
|
265
|
+
num_real_patches = selected_image_feature.shape[1]
|
|
266
|
+
max_patches = (
|
|
267
|
+
(self.rbln_config.vision_tower.max_image_size[0] // self.config.vision_config.patch_size)
|
|
268
|
+
* (self.rbln_config.vision_tower.max_image_size[1] // self.config.vision_config.patch_size)
|
|
269
|
+
* pixel_values.shape[0]
|
|
270
|
+
)
|
|
271
|
+
num_padding_patches = max_patches - num_real_patches
|
|
272
|
+
|
|
273
|
+
padding_tensor = torch.zeros(
|
|
274
|
+
(selected_image_feature.shape[0], num_padding_patches, selected_image_feature.shape[2]),
|
|
275
|
+
dtype=selected_image_feature.dtype,
|
|
276
|
+
)
|
|
277
|
+
padded_feature = torch.cat([selected_image_feature, padding_tensor], dim=1)
|
|
278
|
+
padded_projected_feature = self.multi_modal_projector(padded_feature)
|
|
279
|
+
image_features = padded_projected_feature[:, :num_real_patches, :]
|
|
280
|
+
else:
|
|
281
|
+
image_features = self.multi_modal_projector(selected_image_feature)
|
|
282
|
+
|
|
283
|
+
return image_features
|
|
284
|
+
|
|
285
|
+
def _preprocess_prefill(
|
|
286
|
+
self,
|
|
287
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
288
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
289
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
290
|
+
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
|
291
|
+
vision_feature_select_strategy: Optional[str] = None,
|
|
292
|
+
return_dict: Optional[bool] = None,
|
|
293
|
+
image_sizes: Optional[torch.Tensor] = None,
|
|
294
|
+
**lm_kwargs,
|
|
295
|
+
):
|
|
296
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
297
|
+
vision_feature_layer = (
|
|
298
|
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
|
299
|
+
)
|
|
300
|
+
vision_feature_select_strategy = (
|
|
301
|
+
vision_feature_select_strategy
|
|
302
|
+
if vision_feature_select_strategy is not None
|
|
303
|
+
else self.config.vision_feature_select_strategy
|
|
304
|
+
)
|
|
305
|
+
|
|
306
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
307
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
308
|
+
|
|
309
|
+
if pixel_values is not None and inputs_embeds is not None:
|
|
310
|
+
raise ValueError(
|
|
311
|
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
if inputs_embeds is None:
|
|
315
|
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
316
|
+
|
|
317
|
+
if pixel_values is not None:
|
|
318
|
+
image_features = self.get_image_features(
|
|
319
|
+
pixel_values=pixel_values,
|
|
320
|
+
vision_feature_layer=vision_feature_layer,
|
|
321
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
|
322
|
+
image_sizes=image_sizes,
|
|
323
|
+
)
|
|
324
|
+
|
|
325
|
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
|
326
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds)
|
|
327
|
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
|
328
|
+
|
|
329
|
+
return inputs_embeds
|
|
330
|
+
|
|
331
|
+
def forward(
|
|
332
|
+
self,
|
|
333
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
334
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
335
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
336
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
337
|
+
return_dict: Optional[bool] = None,
|
|
338
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
339
|
+
image_sizes: Optional[torch.Tensor] = None,
|
|
340
|
+
generate_idx: Optional[torch.Tensor] = None,
|
|
341
|
+
**kwargs,
|
|
342
|
+
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
|
343
|
+
# Prefill
|
|
344
|
+
if cache_position is None:
|
|
345
|
+
inputs_embeds = self._preprocess_prefill(
|
|
346
|
+
input_ids=input_ids, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_sizes=image_sizes
|
|
347
|
+
)
|
|
348
|
+
logits = []
|
|
349
|
+
inputs = inputs_embeds if inputs_embeds is not None else input_ids
|
|
350
|
+
batch_size = inputs.shape[0]
|
|
351
|
+
|
|
352
|
+
for b_idx in range(batch_size):
|
|
353
|
+
cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
|
|
354
|
+
output = self.language_model.prefill_decoder(
|
|
355
|
+
input_ids=inputs[b_idx : b_idx + 1] if inputs_embeds is None else None,
|
|
356
|
+
inputs_embeds=inputs[b_idx : b_idx + 1] if inputs_embeds is not None else None,
|
|
357
|
+
attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
|
|
358
|
+
cache_position=cache_position,
|
|
359
|
+
batch_idx=b_idx,
|
|
360
|
+
)
|
|
361
|
+
logits.append(output.logits)
|
|
362
|
+
|
|
363
|
+
logits = torch.cat(logits, dim=0)
|
|
364
|
+
|
|
365
|
+
# Decoder
|
|
366
|
+
else:
|
|
367
|
+
logits = self.language_model.decoder(
|
|
368
|
+
input_ids=input_ids,
|
|
369
|
+
inputs_embeds=inputs_embeds,
|
|
370
|
+
cache_position=cache_position,
|
|
371
|
+
).logits
|
|
372
|
+
|
|
373
|
+
if not return_dict:
|
|
374
|
+
return logits, generate_idx
|
|
375
|
+
else:
|
|
376
|
+
return RBLNDecoderOnlyForCausalLMOutput(
|
|
377
|
+
logits=logits,
|
|
378
|
+
generate_idx=generate_idx,
|
|
379
|
+
)
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .configuration_pixtral import RBLNPixtralVisionModelConfig
|
|
16
|
+
from .modeling_pixtral import RBLNPixtralVisionModel
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import Any, Dict, Optional, Tuple
|
|
16
|
+
|
|
17
|
+
from ....configuration_utils import RBLNModelConfig
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class RBLNPixtralVisionModelConfig(RBLNModelConfig):
|
|
21
|
+
def __init__(
|
|
22
|
+
self,
|
|
23
|
+
max_image_size: Tuple = None,
|
|
24
|
+
batch_size: Optional[int] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
**kwargs: Dict[str, Any],
|
|
27
|
+
):
|
|
28
|
+
"""
|
|
29
|
+
Args:
|
|
30
|
+
max_image_size (Tuple): The size of max input images. A tuple (max_height, max_width)
|
|
31
|
+
batch_size (Optional[int]): The batch size for image processing. Defaults to 1.
|
|
32
|
+
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
|
33
|
+
|
|
34
|
+
Raises:
|
|
35
|
+
ValueError: If batch_size is not a positive integer.
|
|
36
|
+
"""
|
|
37
|
+
super().__init__(**kwargs)
|
|
38
|
+
self.batch_size = batch_size or 1
|
|
39
|
+
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
|
40
|
+
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
|
41
|
+
|
|
42
|
+
self.max_image_size = max_image_size
|
|
43
|
+
self.output_hidden_states = output_hidden_states
|