optimum-rbln 0.8.2a4__py3-none-any.whl → 0.8.2a6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (64) hide show
  1. optimum/rbln/__init__.py +44 -0
  2. optimum/rbln/__version__.py +2 -2
  3. optimum/rbln/configuration_utils.py +4 -0
  4. optimum/rbln/ops/kv_cache_update.py +5 -0
  5. optimum/rbln/ops/linear.py +7 -0
  6. optimum/rbln/transformers/__init__.py +48 -0
  7. optimum/rbln/transformers/modeling_attention_utils.py +252 -0
  8. optimum/rbln/transformers/models/__init__.py +35 -14
  9. optimum/rbln/transformers/models/decoderonly/__init__.py +2 -2
  10. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +214 -45
  11. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +122 -205
  12. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +569 -366
  13. optimum/rbln/transformers/models/gemma/__init__.py +2 -2
  14. optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
  15. optimum/rbln/transformers/models/gemma/modeling_gemma.py +13 -1
  16. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +7 -5
  17. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +82 -59
  18. optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
  19. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
  20. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +6 -7
  21. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +16 -1
  22. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +2 -2
  23. optimum/rbln/transformers/models/llama/__init__.py +2 -2
  24. optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
  25. optimum/rbln/transformers/models/llama/modeling_llama.py +13 -1
  26. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  27. optimum/rbln/transformers/models/llava/configuration_llava.py +54 -0
  28. optimum/rbln/transformers/models/llava/modeling_llava.py +379 -0
  29. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +4 -4
  30. optimum/rbln/transformers/models/mistral/__init__.py +2 -2
  31. optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
  32. optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
  33. optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
  34. optimum/rbln/transformers/models/opt/__init__.py +2 -2
  35. optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
  36. optimum/rbln/transformers/models/opt/modeling_opt.py +41 -1
  37. optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
  38. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  39. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +34 -0
  40. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +69 -0
  41. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +163 -0
  42. optimum/rbln/transformers/models/phi/__init__.py +2 -2
  43. optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
  44. optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
  45. optimum/rbln/transformers/models/phi/phi_architecture.py +6 -6
  46. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  47. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  48. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +318 -0
  49. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  50. optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
  51. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
  52. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
  53. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +3 -3
  54. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
  55. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +10 -328
  56. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +0 -241
  57. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +0 -10
  58. optimum/rbln/transformers/models/whisper/configuration_whisper.py +1 -10
  59. optimum/rbln/transformers/models/whisper/modeling_whisper.py +5 -1
  60. optimum/rbln/utils/depreacate_utils.py +16 -0
  61. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.8.2a6.dist-info}/METADATA +1 -1
  62. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.8.2a6.dist-info}/RECORD +64 -51
  63. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.8.2a6.dist-info}/WHEEL +0 -0
  64. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.8.2a6.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,318 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from pathlib import Path
16
+ from typing import TYPE_CHECKING, Any, Optional, Tuple, Union
17
+
18
+ import rebel
19
+ import torch
20
+ import torch.nn as nn
21
+ from transformers import PixtralVisionConfig, PixtralVisionModel
22
+ from transformers.modeling_outputs import BaseModelOutput
23
+ from transformers.modeling_utils import no_init_weights
24
+ from transformers.models.pixtral.modeling_pixtral import (
25
+ PixtralRMSNorm,
26
+ PixtralRotaryEmbedding,
27
+ )
28
+
29
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
30
+ from ....modeling import RBLNModel
31
+ from ....utils.logging import get_logger
32
+ from ....utils.runtime_utils import RBLNPytorchRuntime
33
+ from .configuration_pixtral import RBLNPixtralVisionModelConfig
34
+ from .pixtral_architecture import PixtralAttention
35
+
36
+
37
+ logger = get_logger(__name__)
38
+
39
+ if TYPE_CHECKING:
40
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
41
+
42
+ from ....diffusers.modeling_diffusers import RBLNDiffusionMixin, RBLNDiffusionMixinConfig
43
+
44
+
45
+ class RBLNRuntimePixtralVisionModel(RBLNPytorchRuntime):
46
+ mandatory_members = ["main_input_name"]
47
+
48
+ def __init__(
49
+ self,
50
+ runtime: rebel.Runtime,
51
+ config: PixtralVisionConfig,
52
+ rbln_config: RBLNPixtralVisionModelConfig,
53
+ **kwargs: Any,
54
+ ) -> None:
55
+ super().__init__(runtime, **kwargs)
56
+ self.patch_positional_embedding = PixtralRotaryEmbedding(config)
57
+ self.patch_size = config.patch_size
58
+ self.image_size = config.image_size
59
+ self.hidden_size = config.hidden_size
60
+ self.max_image_size = rbln_config.max_image_size
61
+
62
+ def forward(
63
+ self,
64
+ pixel_values: torch.Tensor,
65
+ image_sizes: torch.Tensor,
66
+ output_hidden_states: Optional[bool] = None,
67
+ return_dict: Optional[bool] = None,
68
+ **kwargs,
69
+ ):
70
+ if pixel_values.shape[2] > self.max_image_size[0] or pixel_values.shape[3] > self.max_image_size[1]:
71
+ raise ValueError("The height() and width of pixel_values can't be larger than max_image_size.")
72
+
73
+ if pixel_values.shape[2] != self.max_image_size[0] or pixel_values.shape[3] != self.max_image_size[1]:
74
+ padded_pixel_values = [
75
+ torch.nn.functional.pad(
76
+ image,
77
+ pad=(
78
+ 0,
79
+ self.max_image_size[1] - pixel_values.shape[3],
80
+ 0,
81
+ self.max_image_size[0] - pixel_values.shape[2],
82
+ ),
83
+ )
84
+ for image in pixel_values
85
+ ]
86
+ pixel_values = torch.stack(padded_pixel_values)
87
+
88
+ batch_size, _, H_max, W_max = pixel_values.shape
89
+ H_max_p = H_max // self.patch_size
90
+ W_max_p = W_max // self.patch_size
91
+
92
+ final_hidden_states = None
93
+
94
+ last_hidden_state_list = []
95
+ if output_hidden_states:
96
+ batch_hidden_states_list = []
97
+
98
+ for i in range(batch_size):
99
+ h_patched_original = image_sizes[i, 0] // self.patch_size
100
+ w_patched_original = image_sizes[i, 1] // self.patch_size
101
+
102
+ single_pixel_values = pixel_values[i : i + 1]
103
+ patch_embed = self.patch_conv(single_pixel_values)
104
+ patch_embed_seq = patch_embed[:, :, :h_patched_original, :w_patched_original].flatten(2).transpose(1, 2)
105
+ patch_embed_seq = self.ln_pre(patch_embed_seq)
106
+ patch_embed_seq = nn.functional.pad(
107
+ patch_embed_seq, (0, 0, 0, H_max_p * W_max_p - patch_embed_seq.shape[1]), "constant", value=0
108
+ )
109
+
110
+ max_w_from_config = self.image_size // self.patch_size
111
+ mesh = torch.meshgrid(torch.arange(h_patched_original), torch.arange(w_patched_original), indexing="ij")
112
+ h_grid, v_grid = torch.stack(mesh, dim=-1).reshape(-1, 2).chunk(2, -1)
113
+ ids = h_grid * max_w_from_config + v_grid
114
+ position_ids = ids[:, 0]
115
+
116
+ position_embeddings = self.patch_positional_embedding(patch_embed_seq, position_ids)
117
+ cos = nn.functional.pad(
118
+ position_embeddings[0],
119
+ (0, 0, 0, H_max_p * W_max_p - position_embeddings[0].shape[0]),
120
+ "constant",
121
+ value=0,
122
+ )
123
+ sin = nn.functional.pad(
124
+ position_embeddings[1],
125
+ (0, 0, 0, H_max_p * W_max_p - position_embeddings[1].shape[0]),
126
+ "constant",
127
+ value=0,
128
+ )
129
+
130
+ attention_mask = torch.full(
131
+ (1, patch_embed_seq.shape[-2]), fill_value=torch.finfo(patch_embed_seq.dtype).min
132
+ )
133
+ attention_mask[:, : h_patched_original * w_patched_original] = 0
134
+
135
+ transformer_output = super().forward(patch_embed_seq, attention_mask, cos, sin)
136
+
137
+ last_hidden_state_list.append(transformer_output[0][:, : h_patched_original * w_patched_original, :])
138
+ hidden_states = transformer_output[1:]
139
+
140
+ if output_hidden_states:
141
+ batch_hidden_states_list.append(
142
+ [hidden_state[:, : h_patched_original * w_patched_original, :] for hidden_state in hidden_states]
143
+ )
144
+
145
+ final_last_hidden_state = torch.cat(last_hidden_state_list, dim=1)
146
+
147
+ if output_hidden_states:
148
+ hidden_states = [
149
+ torch.cat(
150
+ [batch_hidden_states[layer_idx] for batch_hidden_states in batch_hidden_states_list],
151
+ dim=1,
152
+ )
153
+ for layer_idx in range(len(batch_hidden_states_list[0]))
154
+ ]
155
+
156
+ final_hidden_states = tuple(hidden_states)
157
+
158
+ if not return_dict:
159
+ return tuple(v for v in (final_last_hidden_state, final_hidden_states) if v is not None)
160
+
161
+ # TODO: output_attentions
162
+ return BaseModelOutput(
163
+ last_hidden_state=final_last_hidden_state,
164
+ hidden_states=final_hidden_states,
165
+ )
166
+
167
+
168
+ class _PixtralVisionModel(torch.nn.Module):
169
+ def __init__(self, model: PixtralVisionModel, output_hidden_states: bool):
170
+ super().__init__()
171
+ self.transformer = self.convert_to_rbln_pixtral_vision_model(model)
172
+ self.output_hidden_states = output_hidden_states
173
+
174
+ def convert_to_rbln_pixtral_vision_model(self, model: nn.Module):
175
+ for layer in model.transformer.layers:
176
+ layer.attention = PixtralAttention(layer.attention)
177
+ return model.transformer
178
+
179
+ def forward(self, patch_embeds, attention_mask, position_embeddings_1, position_embeddings_2):
180
+ output = self.transformer(
181
+ inputs_embeds=patch_embeds,
182
+ attention_mask=attention_mask,
183
+ position_embeddings=(position_embeddings_1, position_embeddings_2),
184
+ output_hidden_states=self.output_hidden_states,
185
+ return_dict=False,
186
+ )
187
+ return output
188
+
189
+
190
+ class RBLNPixtralVisionModel(RBLNModel):
191
+ """
192
+ RBLN optimized Pixtral vision encoder model.
193
+
194
+ This class provides hardware-accelerated inference for Pixtral vision encoders
195
+ on RBLN devices, supporting image encoding for multimodal tasks.
196
+ """
197
+
198
+ def __post_init__(self, **kwargs):
199
+ artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
200
+ with no_init_weights():
201
+ self.patch_conv = nn.Conv2d(
202
+ in_channels=self.config.num_channels,
203
+ out_channels=self.config.hidden_size,
204
+ kernel_size=self.config.patch_size,
205
+ stride=self.config.patch_size,
206
+ bias=False,
207
+ )
208
+ self.ln_pre = PixtralRMSNorm(self.config.hidden_size, eps=1e-5)
209
+ self.patch_conv.load_state_dict(artifacts["patch_conv"])
210
+ self.ln_pre.load_state_dict(artifacts["ln_pre"])
211
+ self.model = RBLNRuntimePixtralVisionModel(
212
+ self.model[0],
213
+ main_input_name="pixel_values",
214
+ config=self.config,
215
+ rbln_config=self.rbln_config,
216
+ patch_conv=self.patch_conv,
217
+ ln_pre=self.ln_pre,
218
+ )
219
+
220
+ @classmethod
221
+ def save_torch_artifacts(
222
+ cls,
223
+ model: "PreTrainedModel",
224
+ save_dir_path: Path,
225
+ subfolder: str,
226
+ rbln_config: RBLNModelConfig,
227
+ ):
228
+ save_dict = {}
229
+ save_dict["patch_conv"] = model.get_input_embeddings().state_dict()
230
+ save_dict["ln_pre"] = model.ln_pre.state_dict()
231
+ torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
232
+
233
+ @classmethod
234
+ def wrap_model_if_needed(
235
+ cls, model: torch.nn.Module, rbln_config: RBLNPixtralVisionModelConfig
236
+ ) -> torch.nn.Module:
237
+ wrapper_cfg = {
238
+ "output_hidden_states": rbln_config.output_hidden_states,
239
+ }
240
+ return _PixtralVisionModel(model, **wrapper_cfg).eval()
241
+
242
+ @classmethod
243
+ def update_rbln_config_using_pipe(
244
+ cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
245
+ ) -> "RBLNDiffusionMixinConfig":
246
+ return rbln_config
247
+
248
+ @classmethod
249
+ def _update_rbln_config(
250
+ cls,
251
+ preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
252
+ model: Optional["PreTrainedModel"] = None,
253
+ model_config: "PixtralVisionConfig" = None,
254
+ rbln_config: Optional[RBLNPixtralVisionModelConfig] = None,
255
+ ) -> RBLNPixtralVisionModelConfig:
256
+ if rbln_config.max_image_size is None:
257
+ rbln_config.max_image_size = (model_config.image_size, model_config.image_size)
258
+
259
+ if rbln_config.output_hidden_states is None:
260
+ rbln_config.output_hidden_states = getattr(model_config, "output_hidden_states", False)
261
+
262
+ num_total_patches = (rbln_config.max_image_size[0] // model_config.patch_size) * (
263
+ rbln_config.max_image_size[1] // model_config.patch_size
264
+ )
265
+
266
+ rbln_compile_config = RBLNCompileConfig(
267
+ input_info=[
268
+ (
269
+ "patch_embeds",
270
+ [1, num_total_patches, model_config.hidden_size],
271
+ "float32",
272
+ ),
273
+ ("attention_mask", [1, num_total_patches], "float32"),
274
+ (
275
+ "position_embeddings_1",
276
+ [
277
+ num_total_patches,
278
+ model_config.head_dim,
279
+ ],
280
+ "float32",
281
+ ),
282
+ (
283
+ "position_embeddings_2",
284
+ [
285
+ num_total_patches,
286
+ model_config.head_dim,
287
+ ],
288
+ "float32",
289
+ ),
290
+ ]
291
+ )
292
+
293
+ rbln_config.set_compile_cfgs([rbln_compile_config])
294
+ return rbln_config
295
+
296
+ def forward(
297
+ self,
298
+ pixel_values: Optional[torch.FloatTensor] = None,
299
+ image_sizes: Optional[torch.FloatTensor] = None,
300
+ output_hidden_states: Optional[bool] = None,
301
+ return_dict: bool = True,
302
+ **kwargs,
303
+ ) -> Union[Tuple, BaseModelOutput]:
304
+ output_hidden_states = (
305
+ output_hidden_states if output_hidden_states is not None else self.rbln_config.output_hidden_states
306
+ )
307
+
308
+ if output_hidden_states != self.rbln_config.output_hidden_states:
309
+ raise ValueError(
310
+ f"Variable output_hidden_states {output_hidden_states} is not equal to rbln_config.output_hidden_states {self.rbln_config.output_hidden_states} "
311
+ f"Please compile again with the correct argument."
312
+ )
313
+
314
+ output = self.model(
315
+ pixel_values, image_sizes, output_hidden_states=output_hidden_states, return_dict=return_dict
316
+ )
317
+
318
+ return output
@@ -0,0 +1,73 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Optional, Tuple
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from ..decoderonly.decoderonly_architecture import apply_rotary_pos_emb
21
+
22
+
23
+ class PixtralAttention(nn.Module):
24
+ def __init__(self, self_attention):
25
+ super().__init__()
26
+ self.original_model = self_attention
27
+ self.num_heads = getattr(self.original_model, "num_heads", None) or getattr(
28
+ self.original_model.config, "num_attention_heads"
29
+ )
30
+ self.head_dim = self.original_model.head_dim
31
+ self.scaling = self.head_dim**-0.5
32
+
33
+ self.__post_init__()
34
+
35
+ def __post_init__(self):
36
+ self.q_proj = self.original_model.q_proj
37
+ self.k_proj = self.original_model.k_proj
38
+ self.v_proj = self.original_model.v_proj
39
+ self.o_proj = self.original_model.o_proj
40
+
41
+ def forward(
42
+ self,
43
+ hidden_states: torch.Tensor,
44
+ attention_mask: Optional[torch.Tensor] = None,
45
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
46
+ output_attentions: Optional[bool] = False,
47
+ ):
48
+ batch_size, patches, _ = hidden_states.size()
49
+
50
+ query_states = self.q_proj(hidden_states)
51
+ key_states = self.k_proj(hidden_states)
52
+ value_states = self.v_proj(hidden_states)
53
+
54
+ # TODO: return output attention
55
+ query_states = query_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
56
+ key_states = key_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
57
+ value_states = value_states.view(batch_size, patches, 1, self.num_heads, self.head_dim).transpose(1, 3)
58
+
59
+ cos, sin = position_embeddings
60
+ cos = cos[None, None, None, :, :]
61
+ sin = sin[None, None, None, :, :]
62
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
63
+
64
+ attn_weights = torch.matmul(query_states, key_states.transpose(3, 4)) * self.scaling
65
+ attn_weights = attn_weights + attention_mask
66
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
67
+ attn_output = torch.matmul(attn_weights, value_states)
68
+ attn_output = attn_output.transpose(1, 3)
69
+
70
+ attn_output = attn_output.reshape(batch_size, patches, -1)
71
+ attn_output = self.o_proj(attn_output)
72
+
73
+ return attn_output, _
@@ -12,5 +12,5 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from .configuration_qwen2 import RBLNQwen2ForCausalLMConfig
16
- from .modeling_qwen2 import RBLNQwen2ForCausalLM
15
+ from .configuration_qwen2 import RBLNQwen2ForCausalLMConfig, RBLNQwen2ModelConfig
16
+ from .modeling_qwen2 import RBLNQwen2ForCausalLM, RBLNQwen2Model
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
15
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelConfig, RBLNDecoderOnlyModelForCausalLMConfig
16
16
 
17
17
 
18
18
  class RBLNQwen2ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
@@ -40,3 +40,11 @@ class RBLNQwen2ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
40
40
  )
41
41
  ```
42
42
  """
43
+
44
+
45
+ class RBLNQwen2ModelConfig(RBLNDecoderOnlyModelConfig):
46
+ """
47
+ Configuration class for RBLN Qwen2 models.
48
+
49
+ This class is an alias of RBLNDecoderOnlyModelConfig.
50
+ """
@@ -15,7 +15,11 @@
15
15
  from transformers import PretrainedConfig
16
16
 
17
17
  from ....utils import logging
18
- from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyModelForCausalLMConfig
18
+ from ...models.decoderonly import (
19
+ RBLNDecoderOnlyModel,
20
+ RBLNDecoderOnlyModelForCausalLM,
21
+ RBLNDecoderOnlyModelForCausalLMConfig,
22
+ )
19
23
  from .qwen2_architecture import QWEN2Wrapper
20
24
 
21
25
 
@@ -95,3 +99,25 @@ class RBLNQwen2ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
95
99
  rbln_config.sliding_window = model_config.sliding_window
96
100
  rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
97
101
  return rbln_config
102
+
103
+
104
+ class RBLNQwen2Model(RBLNDecoderOnlyModel):
105
+ """
106
+ The Qwen2 Model transformer without a language modeling head.
107
+ This model inherits from [`RBLNDecoderOnlyModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
108
+ """
109
+
110
+ _decoder_wrapper_cls = QWEN2Wrapper
111
+
112
+ @classmethod
113
+ def _update_sliding_window_config(
114
+ cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
115
+ ):
116
+ # https://github.com/huggingface/transformers/issues/35896
117
+ # There seems to be a bug in transformers(v4.52.4). Therefore, similar to when attn_implementation is eager,
118
+ # we set all layers to use sliding window in this version. This should be updated once the bug is fixed.
119
+
120
+ rbln_config.cache_impl = "sliding_window"
121
+ rbln_config.sliding_window = model_config.sliding_window
122
+ rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
123
+ return rbln_config
@@ -34,7 +34,7 @@ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
34
34
  from ....configuration_utils import RBLNCompileConfig
35
35
  from ....modeling import RBLNModel
36
36
  from ....utils.logging import get_logger
37
- from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyOutput
37
+ from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyForCausalLMOutput, RBLNDecoderOnlyModelForCausalLM
38
38
  from .configuration_qwen2_5_vl import (
39
39
  RBLNQwen2_5_VisionTransformerPretrainedModelConfig,
40
40
  RBLNQwen2_5_VLForConditionalGenerationConfig,
@@ -595,7 +595,7 @@ class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
595
595
  generate_idx: Optional[torch.Tensor] = None,
596
596
  return_dict: Optional[bool] = None,
597
597
  **kwargs,
598
- ) -> RBLNDecoderOnlyOutput:
598
+ ) -> RBLNDecoderOnlyForCausalLMOutput:
599
599
  # Prefill
600
600
  if cache_position is None:
601
601
  inputs_embeds, position_embed, rope_deltas = self._preprocess_prefill(
@@ -637,7 +637,7 @@ class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
637
637
  if not return_dict:
638
638
  return logits, generate_idx
639
639
  else:
640
- return RBLNDecoderOnlyOutput(
640
+ return RBLNDecoderOnlyForCausalLMOutput(
641
641
  logits=logits,
642
642
  generate_idx=generate_idx,
643
643
  )
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
15
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelConfig, RBLNDecoderOnlyModelForCausalLMConfig
16
16
 
17
17
 
18
18
  class RBLNQwen3ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
@@ -43,7 +43,7 @@ class RBLNQwen3ForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
43
43
  """
44
44
 
45
45
 
46
- class RBLNQwen3ModelConfig(RBLNDecoderOnlyModelForCausalLMConfig):
46
+ class RBLNQwen3ModelConfig(RBLNDecoderOnlyModelConfig):
47
47
  """
48
48
  Configuration class for RBLN Qwen3 models.
49
49