optimum-rbln 0.8.2a0__py3-none-any.whl → 0.9.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (197) hide show
  1. optimum/rbln/__init__.py +116 -9
  2. optimum/rbln/__version__.py +16 -3
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +171 -43
  5. optimum/rbln/diffusers/__init__.py +19 -0
  6. optimum/rbln/diffusers/configurations/__init__.py +3 -0
  7. optimum/rbln/diffusers/configurations/models/__init__.py +2 -0
  8. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
  9. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
  10. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_temporal_decoder.py +67 -0
  11. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
  12. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
  13. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +12 -4
  14. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
  15. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
  16. optimum/rbln/diffusers/configurations/models/configuration_unet_spatio_temporal_condition.py +59 -0
  17. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
  18. optimum/rbln/diffusers/configurations/pipelines/__init__.py +3 -0
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
  20. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
  21. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
  22. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
  23. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
  24. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
  25. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_video_diffusion.py +114 -0
  26. optimum/rbln/diffusers/modeling_diffusers.py +33 -18
  27. optimum/rbln/diffusers/models/__init__.py +4 -0
  28. optimum/rbln/diffusers/models/autoencoders/__init__.py +1 -0
  29. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +32 -3
  30. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +32 -6
  31. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +275 -0
  32. optimum/rbln/diffusers/models/autoencoders/vae.py +27 -8
  33. optimum/rbln/diffusers/models/autoencoders/vq_model.py +32 -3
  34. optimum/rbln/diffusers/models/controlnet.py +16 -1
  35. optimum/rbln/diffusers/models/transformers/prior_transformer.py +17 -3
  36. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +26 -3
  37. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +23 -2
  38. optimum/rbln/diffusers/models/unets/__init__.py +1 -0
  39. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +23 -4
  40. optimum/rbln/diffusers/models/unets/unet_spatio_temporal_condition.py +201 -0
  41. optimum/rbln/diffusers/pipelines/__init__.py +15 -5
  42. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  43. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +20 -0
  44. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +23 -12
  45. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +16 -46
  46. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
  47. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
  48. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
  49. optimum/rbln/diffusers/pipelines/stable_video_diffusion/__init__.py +15 -0
  50. optimum/rbln/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +46 -0
  51. optimum/rbln/modeling.py +50 -24
  52. optimum/rbln/modeling_base.py +116 -35
  53. optimum/rbln/ops/attn.py +158 -0
  54. optimum/rbln/ops/flash_attn.py +166 -0
  55. optimum/rbln/ops/kv_cache_update.py +5 -0
  56. optimum/rbln/ops/linear.py +7 -0
  57. optimum/rbln/transformers/__init__.py +100 -0
  58. optimum/rbln/transformers/configuration_generic.py +7 -32
  59. optimum/rbln/transformers/modeling_attention_utils.py +385 -0
  60. optimum/rbln/transformers/modeling_generic.py +48 -65
  61. optimum/rbln/transformers/modeling_outputs.py +37 -0
  62. optimum/rbln/transformers/models/__init__.py +93 -30
  63. optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +28 -2
  64. optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +68 -5
  65. optimum/rbln/transformers/models/auto/__init__.py +2 -0
  66. optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
  67. optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
  68. optimum/rbln/transformers/models/bart/bart_architecture.py +2 -7
  69. optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
  70. optimum/rbln/transformers/models/bart/modeling_bart.py +23 -2
  71. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  72. optimum/rbln/transformers/models/bert/modeling_bert.py +93 -4
  73. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
  74. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +135 -44
  75. optimum/rbln/transformers/models/clip/configuration_clip.py +21 -7
  76. optimum/rbln/transformers/models/clip/modeling_clip.py +183 -27
  77. optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
  78. optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
  79. optimum/rbln/transformers/models/colpali/modeling_colpali.py +82 -104
  80. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  81. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  82. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  83. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  84. optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
  85. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +114 -37
  86. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  87. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +323 -316
  88. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +508 -0
  89. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +119 -0
  90. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  91. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +486 -892
  92. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  93. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  94. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +42 -0
  95. optimum/rbln/transformers/models/distilbert/modeling_distilbert.py +24 -0
  96. optimum/rbln/transformers/models/dpt/modeling_dpt.py +17 -0
  97. optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
  98. optimum/rbln/transformers/models/gemma/__init__.py +2 -2
  99. optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
  100. optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
  101. optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
  102. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -14
  103. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
  104. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  105. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +212 -504
  106. optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
  107. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
  108. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
  109. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
  110. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  111. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  112. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  113. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1048 -0
  114. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
  115. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +29 -32
  116. optimum/rbln/transformers/models/llama/__init__.py +2 -2
  117. optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
  118. optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
  119. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  120. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  121. optimum/rbln/transformers/models/llava/modeling_llava.py +490 -0
  122. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +21 -6
  123. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +234 -376
  124. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
  125. optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
  126. optimum/rbln/transformers/models/mistral/__init__.py +2 -2
  127. optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
  128. optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
  129. optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
  130. optimum/rbln/transformers/models/opt/__init__.py +2 -2
  131. optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
  132. optimum/rbln/transformers/models/opt/modeling_opt.py +29 -17
  133. optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
  134. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  135. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  136. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  137. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  138. optimum/rbln/transformers/models/phi/__init__.py +2 -2
  139. optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
  140. optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
  141. optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
  142. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  143. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  144. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +322 -0
  145. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  146. optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
  147. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
  148. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
  149. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
  150. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -22
  151. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
  152. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  153. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  154. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +513 -0
  155. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  156. optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
  157. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
  158. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
  159. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
  160. optimum/rbln/transformers/models/resnet/configuration_resnet.py +17 -0
  161. optimum/rbln/transformers/models/resnet/modeling_resnet.py +73 -0
  162. optimum/rbln/transformers/models/roberta/modeling_roberta.py +33 -0
  163. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +21 -16
  164. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +60 -13
  165. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
  166. optimum/rbln/transformers/models/siglip/__init__.py +2 -6
  167. optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
  168. optimum/rbln/transformers/models/siglip/modeling_siglip.py +21 -16
  169. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  170. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  171. optimum/rbln/transformers/models/swin/modeling_swin.py +354 -0
  172. optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
  173. optimum/rbln/transformers/models/t5/modeling_t5.py +2 -2
  174. optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
  175. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
  176. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +22 -16
  177. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
  178. optimum/rbln/transformers/models/vit/modeling_vit.py +19 -0
  179. optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec2.py +15 -3
  180. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +61 -8
  181. optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
  182. optimum/rbln/transformers/models/whisper/generation_whisper.py +62 -6
  183. optimum/rbln/transformers/models/whisper/modeling_whisper.py +32 -5
  184. optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
  185. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +43 -0
  186. optimum/rbln/transformers/utils/rbln_quantization.py +400 -75
  187. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  188. optimum/rbln/utils/deprecation.py +213 -0
  189. optimum/rbln/utils/hub.py +22 -50
  190. optimum/rbln/utils/runtime_utils.py +85 -17
  191. optimum/rbln/utils/submodule.py +31 -9
  192. {optimum_rbln-0.8.2a0.dist-info → optimum_rbln-0.9.3.dist-info}/METADATA +8 -7
  193. optimum_rbln-0.9.3.dist-info/RECORD +264 -0
  194. {optimum_rbln-0.8.2a0.dist-info → optimum_rbln-0.9.3.dist-info}/WHEEL +1 -1
  195. optimum_rbln-0.9.3.dist-info/entry_points.txt +2 -0
  196. optimum_rbln-0.8.2a0.dist-info/RECORD +0 -211
  197. {optimum_rbln-0.8.2a0.dist-info → optimum_rbln-0.9.3.dist-info}/licenses/LICENSE +0 -0
@@ -13,13 +13,21 @@
13
13
  # limitations under the License.
14
14
 
15
15
 
16
+ from typing import TYPE_CHECKING, Optional, Union
17
+
16
18
  import torch
17
- from transformers import AutoModelForMaskedLM, Wav2Vec2ForCTC
19
+ from transformers import AutoModelForCTC, Wav2Vec2Config, Wav2Vec2ForCTC
20
+ from transformers.modeling_outputs import CausalLMOutput
18
21
 
19
- from ...modeling_generic import RBLNModelForMaskedLM
22
+ from ....configuration_utils import RBLNCompileConfig
23
+ from ....modeling import RBLNModel
20
24
  from .configuration_wav2vec2 import RBLNWav2Vec2ForCTCConfig
21
25
 
22
26
 
27
+ if TYPE_CHECKING:
28
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
29
+
30
+
23
31
  class _Wav2Vec2(torch.nn.Module):
24
32
  def __init__(self, model: "Wav2Vec2ForCTC"):
25
33
  super().__init__()
@@ -30,22 +38,67 @@ class _Wav2Vec2(torch.nn.Module):
30
38
  return self.model.lm_head(output[0])
31
39
 
32
40
 
33
- class RBLNWav2Vec2ForCTC(RBLNModelForMaskedLM):
41
+ class RBLNWav2Vec2ForCTC(RBLNModel):
34
42
  """
35
43
  Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).
36
44
 
37
- This model inherits from [`RBLNModelForMaskedLM`]. Check the superclass documentation for the generic methods the
38
- library implements for all its model.
39
-
40
45
  It implements the methods to convert a pre-trained Wav2Vec2 model into a RBLN Wav2Vec2 model by:
46
+
41
47
  - transferring the checkpoint weights of the original into an optimized RBLN graph,
42
48
  - compiling the resulting graph using the RBLN compiler.
43
49
  """
44
50
 
45
51
  main_input_name = "input_values"
46
- auto_model_class = AutoModelForMaskedLM
52
+ auto_model_class = AutoModelForCTC
47
53
  rbln_dtype = "float32"
48
54
 
49
55
  @classmethod
50
- def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNWav2Vec2ForCTCConfig) -> torch.nn.Module:
56
+ def _wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNWav2Vec2ForCTCConfig) -> torch.nn.Module:
51
57
  return _Wav2Vec2(model).eval()
58
+
59
+ @classmethod
60
+ def _update_rbln_config(
61
+ cls,
62
+ preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
63
+ model: Optional["PreTrainedModel"] = None,
64
+ model_config: "Wav2Vec2Config" = None,
65
+ rbln_config: Optional[RBLNWav2Vec2ForCTCConfig] = None,
66
+ ) -> RBLNWav2Vec2ForCTCConfig:
67
+ if rbln_config.max_seq_len is None:
68
+ for tokenizer in preprocessors:
69
+ if hasattr(tokenizer, "model_max_length"):
70
+ rbln_config.max_seq_len = tokenizer.model_max_length
71
+ break
72
+ if rbln_config.max_seq_len is None:
73
+ raise ValueError("`rbln_max_seq_len` should be specified!")
74
+
75
+ rbln_compile_config = RBLNCompileConfig(
76
+ input_info=[
77
+ (
78
+ "input_values",
79
+ [
80
+ rbln_config.batch_size,
81
+ rbln_config.max_seq_len,
82
+ ],
83
+ "float32",
84
+ )
85
+ ]
86
+ )
87
+
88
+ rbln_config.set_compile_cfgs([rbln_compile_config])
89
+ return rbln_config
90
+
91
+ def forward(
92
+ self, input_values: torch.Tensor, return_dict: Optional[bool] = None, **kwargs
93
+ ) -> Union[CausalLMOutput, tuple]:
94
+ """
95
+ Forward pass for the RBLN-optimized Wav2Vec2 model for Connectionist Temporal Classification (CTC).
96
+
97
+ Args:
98
+ input_values (torch.FloatTensor of shape (batch_size, sequence_length)): Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the AutoProcessor should be used for padding and conversion into a tensor of type torch.FloatTensor.
99
+ return_dict (bool, optional): Whether or not to return a ModelOutput instead of a plain tuple.
100
+
101
+ Returns:
102
+ The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a CausalLMOutput object.
103
+ """
104
+ return super().forward(input_values=input_values, return_dict=return_dict, **kwargs)
@@ -12,9 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from typing import Any, Dict
16
-
17
- import rebel
15
+ from typing import Any
18
16
 
19
17
  from ....configuration_utils import RBLNModelConfig
20
18
  from ....utils.logging import get_logger
@@ -38,17 +36,22 @@ class RBLNWhisperForConditionalGenerationConfig(RBLNModelConfig):
38
36
  use_attention_mask: bool = None,
39
37
  enc_max_seq_len: int = None,
40
38
  dec_max_seq_len: int = None,
41
- **kwargs: Dict[str, Any],
39
+ kvcache_num_blocks: int = None,
40
+ kvcache_block_size: int = None,
41
+ **kwargs: Any,
42
42
  ):
43
43
  """
44
44
  Args:
45
45
  batch_size (int, optional): The batch size for inference. Defaults to 1.
46
46
  token_timestamps (bool, optional): Whether to output token timestamps during generation. Defaults to False.
47
47
  use_attention_mask (bool, optional): Whether to use attention masks during inference. This is automatically
48
- set to True for RBLN-CA02 devices.
49
48
  enc_max_seq_len (int, optional): Maximum sequence length for the encoder.
50
49
  dec_max_seq_len (int, optional): Maximum sequence length for the decoder.
51
- **kwargs: Additional arguments passed to the parent RBLNModelConfig.
50
+ kvcache_num_blocks (int, optional): The total number of blocks to allocate for the
51
+ PagedAttention KV cache for the SelfAttention. Defaults to batch_size.
52
+ kvcache_block_size (int, optional): Sets the size (in number of tokens) of each block
53
+ in the PagedAttention KV cache for the SelfAttention. Defaults to dec_max_seq_len.
54
+ kwargs: Additional arguments passed to the parent RBLNModelConfig.
52
55
 
53
56
  Raises:
54
57
  ValueError: If batch_size is not a positive integer.
@@ -64,10 +67,6 @@ class RBLNWhisperForConditionalGenerationConfig(RBLNModelConfig):
64
67
  self.dec_max_seq_len = dec_max_seq_len
65
68
 
66
69
  self.use_attention_mask = use_attention_mask
67
- npu = self.npu or rebel.get_npu_name()
68
- if npu == "RBLN-CA02":
69
- if self.use_attention_mask is False:
70
- logger.warning("Attention mask should be used with RBLN-CA02. Setting use_attention_mask to True.")
71
- self.use_attention_mask = True
72
- else:
73
- self.use_attention_mask = self.use_attention_mask or False
70
+ self.use_attention_mask = self.use_attention_mask or False
71
+ self.kvcache_num_blocks = kvcache_num_blocks
72
+ self.kvcache_block_size = kvcache_block_size
@@ -31,22 +31,73 @@ Generation utilities for Whisper.
31
31
  Modified from `transformers.models.whisper.generation_whisper.py`
32
32
  """
33
33
 
34
+ from typing import Any, Dict, Optional, Union
35
+
34
36
  import torch
35
37
  import transformers
36
38
  from packaging import version
37
39
  from transformers import GenerationMixin
40
+ from transformers.generation.configuration_utils import GenerationConfig
41
+ from transformers.modeling_outputs import ModelOutput
38
42
  from transformers.models.whisper.generation_whisper import WhisperGenerationMixin
39
43
 
40
44
 
41
45
  class RBLNWhisperGenerationMixin(WhisperGenerationMixin, GenerationMixin):
42
- """
43
- This class is based on transformers version 4.44.2.
44
- It uses the same generate() method, so it's crucial to maintain the inheritance order.
45
- Ensure WhisperGenerationMixin is listed before GenerationMixin.
46
- """
46
+ def generate(
47
+ self,
48
+ input_features: Optional[torch.Tensor] = None,
49
+ attention_mask: Optional[torch.Tensor] = None,
50
+ generation_config: Optional[GenerationConfig] = None,
51
+ return_segments: Optional[bool] = None,
52
+ return_timestamps: Optional[bool] = None,
53
+ return_token_timestamps: Optional[bool] = None,
54
+ **kwargs,
55
+ ) -> Union[ModelOutput, Dict[str, Any], torch.LongTensor]:
56
+ """
57
+ The generate function is utilized in its standard form as in the HuggingFace transformers library. User can use this function to generate text from the model.
58
+ Check the [HuggingFace transformers documentation](https://huggingface.co/docs/transformers/v4.57.1/en/model_doc/whisper#transformers.WhisperForConditionalGeneration.generate) for more details.
59
+
60
+ Args:
61
+ input_features(torch.Tensor, optional): The input features to the model.
62
+ attention_mask(torch.Tensor, optional): Attention mask needs to be passed when doing long-form transcription using a batch size > 1.
63
+ generation_config(GenerationConfig, optional): The generation configuration to be used as base parametrization for the generation call. **kwargs passed to generate matching the attributes of generation_config will override them.
64
+ If generation_config is not provided, the default will be used, which had the following loading priority: 1) from the generation_config.json model file, if it exists; 2) from the model configuration.
65
+ Please note that unspecified parameters will inherit [GenerationConfig](https://huggingface.co/docs/transformers/v4.57.1/en/main_classes/text_generation#transformers.GenerationConfig)’s default values.
66
+ return_segments(bool, optional): Whether to return segments.
67
+ return_timestamps(bool, optional): Whether to return the timestamps with the text. For audios longer than 30 seconds, it is necessary to set return_timestamps=True.
68
+ return_token_timestamps(bool, optional): Whether to return token timestamps.
69
+ kwargs(dict[str, Any], optional): Additional arguments passed to the generate function.
70
+
71
+ Returns:
72
+ Transcribes or translates log-mel input features to a sequence of auto-regressively generated token ids.
73
+ """
74
+ if kwargs.get("num_beams", None) is not None:
75
+ if kwargs.get("num_beams") != 1:
76
+ raise ValueError(
77
+ "Beam search is not supported in RBLNWhisperGenerationMixin. "
78
+ "Received num_beams={num_beams}, but only num_beams=1 is allowed. "
79
+ "Please set num_beams=1 for greedy search or adjust your configuration."
80
+ )
81
+
82
+ return super().generate(
83
+ input_features,
84
+ attention_mask=attention_mask,
85
+ generation_config=generation_config,
86
+ return_segments=return_segments,
87
+ return_timestamps=return_timestamps,
88
+ return_token_timestamps=return_token_timestamps,
89
+ **kwargs,
90
+ )
47
91
 
48
92
  def _postprocess_outputs(
49
- self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config, *args, **kwargs
93
+ self,
94
+ seek_outputs,
95
+ decoder_input_ids,
96
+ return_token_timestamps,
97
+ generation_config,
98
+ is_shortform,
99
+ seek,
100
+ batch_idx_map,
50
101
  ):
51
102
  # remove all previously passed decoder input ids
52
103
  # should happen only if it is the first generated segment
@@ -64,6 +115,11 @@ class RBLNWhisperGenerationMixin(WhisperGenerationMixin, GenerationMixin):
64
115
 
65
116
  if return_token_timestamps and hasattr(generation_config, "alignment_heads"):
66
117
  num_frames = getattr(generation_config, "num_frames", None)
118
+
119
+ if num_frames is not None:
120
+ num_frames = num_frames - seek
121
+ num_frames = num_frames[batch_idx_map]
122
+
67
123
  if version.parse(transformers.__version__) >= version.parse("4.46.0"):
68
124
  seek_outputs["token_timestamps"] = self._extract_token_timestamps(
69
125
  seek_outputs,
@@ -46,7 +46,7 @@ if TYPE_CHECKING:
46
46
  class RBLNRuntimeEncoder(RBLNPytorchRuntime):
47
47
  mandatory_members = ["main_input_name"]
48
48
 
49
- def forward(self, *args: List[torch.Tensor], **kwargs: Dict[str, torch.Tensor]):
49
+ def forward(self, *args: List[torch.Tensor], **kwargs: torch.Tensor):
50
50
  output = super().forward(*args, **kwargs)
51
51
  return BaseModelOutput(last_hidden_state=output)
52
52
 
@@ -73,6 +73,7 @@ class RBLNRuntimeDecoder(RBLNPytorchRuntime):
73
73
  decoder_input_ids: torch.Tensor = None,
74
74
  decoder_attention_mask: torch.Tensor = None,
75
75
  cache_position: torch.Tensor = None,
76
+ block_tables: torch.Tensor = None,
76
77
  ):
77
78
  inputs_bsz = decoder_input_ids.shape[0]
78
79
  padded_bsz = self.batch_size - inputs_bsz
@@ -89,11 +90,14 @@ class RBLNRuntimeDecoder(RBLNPytorchRuntime):
89
90
  )
90
91
  decoder_attention_mask[b_idx, : decoding_step + 1] = 1
91
92
 
93
+ if block_tables is None:
94
+ block_tables = self.default_block_tables
95
+
92
96
  outputs = super().forward(
93
97
  decoder_input_ids,
94
98
  decoder_attention_mask if self.use_attention_mask else None,
95
99
  cache_position,
96
- block_tables=self.default_block_tables,
100
+ block_tables=block_tables,
97
101
  )
98
102
 
99
103
  if isinstance(outputs, torch.Tensor):
@@ -108,6 +112,7 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
108
112
 
109
113
  This model inherits from [`RBLNModel`]. It implements the methods to convert and run
110
114
  pre-trained transformers based Whisper model on RBLN devices by:
115
+
111
116
  - transferring the checkpoint weights of the original into an optimized RBLN graph,
112
117
  - compiling the resulting graph using the RBLN compiler.
113
118
 
@@ -145,7 +150,8 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
145
150
  """
146
151
 
147
152
  auto_model_class = AutoModelForSpeechSeq2Seq
148
- main_input_name = "input_ids"
153
+ main_input_name = "input_features"
154
+ _is_stateful = False
149
155
 
150
156
  def __post_init__(self, **kwargs):
151
157
  super().__post_init__(**kwargs)
@@ -197,7 +203,7 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
197
203
  raise NotImplementedError
198
204
 
199
205
  @classmethod
200
- def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: RBLNWhisperForConditionalGenerationConfig):
206
+ def _wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: RBLNWhisperForConditionalGenerationConfig):
201
207
  return WhisperWrapper(
202
208
  model,
203
209
  use_attention_mask=rbln_config.use_attention_mask,
@@ -207,7 +213,7 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
207
213
  @classmethod
208
214
  @torch.inference_mode()
209
215
  def get_compiled_model(cls, model, rbln_config: RBLNWhisperForConditionalGenerationConfig):
210
- wrapped_model = cls.wrap_model_if_needed(model, rbln_config)
216
+ wrapped_model = cls._wrap_model_if_needed(model, rbln_config)
211
217
 
212
218
  enc_compile_config = rbln_config.compile_cfgs[0]
213
219
  dec_compile_config = rbln_config.compile_cfgs[1]
@@ -249,6 +255,23 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
249
255
 
250
256
  return {"encoder": compiled_encoder, "decoder": compiled_decoder}
251
257
 
258
+ @classmethod
259
+ def _update_paged_attention_config(
260
+ cls, model_config: "PretrainedConfig", rbln_config: RBLNWhisperForConditionalGenerationConfig
261
+ ):
262
+ rbln_config.kvcache_num_blocks = rbln_config.kvcache_num_blocks or rbln_config.batch_size
263
+ rbln_config.kvcache_block_size = rbln_config.kvcache_block_size or rbln_config.dec_max_seq_len
264
+
265
+ if rbln_config.kvcache_num_blocks != rbln_config.batch_size:
266
+ raise NotImplementedError(
267
+ f"kvcache_num_blocks ({rbln_config.kvcache_num_blocks}) must be equal to batch_size ({rbln_config.batch_size}) as flash attention is not supported yet."
268
+ )
269
+
270
+ if rbln_config.kvcache_block_size != rbln_config.dec_max_seq_len:
271
+ raise NotImplementedError(
272
+ f"kvcache_block_size ({rbln_config.kvcache_block_size}) must be equal to dec_max_seq_len ({rbln_config.dec_max_seq_len}) as flash attention is not supported yet."
273
+ )
274
+
252
275
  @classmethod
253
276
  def _update_rbln_config(
254
277
  cls,
@@ -266,6 +289,8 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
266
289
  if rbln_config.dec_max_seq_len is None:
267
290
  rbln_config.dec_max_seq_len = model_config.max_length
268
291
 
292
+ cls._update_paged_attention_config(model_config, rbln_config)
293
+
269
294
  enc_input_info = [
270
295
  ("input_features", [1, num_mel_bins, expected_seq_len], "float32"),
271
296
  ("block_tables", [1], "int16"),
@@ -345,12 +370,14 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
345
370
  tensor_type="pt",
346
371
  device=rbln_config.device_map["encoder"],
347
372
  activate_profiler=rbln_config.activate_profiler,
373
+ timeout=rbln_config.timeout,
348
374
  ),
349
375
  rebel.Runtime(
350
376
  compiled_models[1],
351
377
  tensor_type="pt",
352
378
  device=rbln_config.device_map["decoder"],
353
379
  activate_profiler=rbln_config.activate_profiler,
380
+ timeout=rbln_config.timeout,
354
381
  ),
355
382
  ]
356
383
 
@@ -12,14 +12,8 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from .configuration_xlm_roberta import (
16
- RBLNXLMRobertaForSequenceClassificationConfig,
17
- RBLNXLMRobertaModelConfig,
18
- )
19
- from .modeling_xlm_roberta import (
20
- RBLNXLMRobertaForSequenceClassification,
21
- RBLNXLMRobertaModel,
22
- )
15
+ from .configuration_xlm_roberta import RBLNXLMRobertaForSequenceClassificationConfig, RBLNXLMRobertaModelConfig
16
+ from .modeling_xlm_roberta import RBLNXLMRobertaForSequenceClassification, RBLNXLMRobertaModel
23
17
 
24
18
 
25
19
  __all__ = [
@@ -12,6 +12,11 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
+ from typing import Optional, Union
16
+
17
+ import torch
18
+ from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions, SequenceClassifierOutput
19
+
15
20
  from ...modeling_generic import RBLNModelForSequenceClassification, RBLNTransformerEncoderForFeatureExtraction
16
21
 
17
22
 
@@ -20,6 +25,25 @@ class RBLNXLMRobertaModel(RBLNTransformerEncoderForFeatureExtraction):
20
25
  XLM-RoBERTa base model optimized for RBLN NPU.
21
26
  """
22
27
 
28
+ def forward(
29
+ self,
30
+ input_ids: Optional[torch.Tensor] = None,
31
+ attention_mask: Optional[torch.Tensor] = None,
32
+ **kwargs,
33
+ ) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, tuple]:
34
+ """
35
+ Forward pass for the RBLN-optimized XLM-RoBERTa base model.
36
+
37
+ Args:
38
+ input_ids (torch.Tensor of shape (batch_size, sequence_length), optional): Indices of input sequence tokens in the vocabulary.
39
+ attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices.
40
+
41
+ Returns:
42
+ The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a BaseModelOutputWithPoolingAndCrossAttentions object.
43
+ """
44
+
45
+ return super().forward(input_ids, attention_mask, **kwargs)
46
+
23
47
 
24
48
  class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification):
25
49
  """
@@ -27,3 +51,22 @@ class RBLNXLMRobertaForSequenceClassification(RBLNModelForSequenceClassification
27
51
  """
28
52
 
29
53
  rbln_model_input_names = ["input_ids", "attention_mask"]
54
+
55
+ def forward(
56
+ self,
57
+ input_ids: Optional[torch.LongTensor] = None,
58
+ attention_mask: Optional[torch.FloatTensor] = None,
59
+ **kwargs,
60
+ ) -> Union[SequenceClassifierOutput, tuple]:
61
+ """
62
+ Forward pass for the RBLN-optimized XLM-RoBERTa model for sequence classification.
63
+
64
+ Args:
65
+ input_ids (torch.LongTensor of shape (batch_size, sequence_length), optional): Indices of input sequence tokens in the vocabulary.
66
+ attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices.
67
+
68
+ Returns:
69
+ The model outputs. If return_dict=False is passed, returns a tuple of tensors. Otherwise, returns a SequenceClassifierOutput object.
70
+ """
71
+
72
+ return super().forward(input_ids, attention_mask, **kwargs)