optimum-rbln 0.8.1rc1__py3-none-any.whl → 0.8.2a0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +2 -2
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +2 -2
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +2 -2
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +2 -0
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +2 -2
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +2 -2
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +212 -257
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +17 -42
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +2 -40
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +9 -63
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +18 -22
- optimum/rbln/transformers/models/midm/midm_architecture.py +14 -22
- optimum/rbln/transformers/models/opt/opt_architecture.py +16 -25
- optimum/rbln/transformers/models/phi/phi_architecture.py +14 -20
- {optimum_rbln-0.8.1rc1.dist-info → optimum_rbln-0.8.2a0.dist-info}/METADATA +1 -1
- {optimum_rbln-0.8.1rc1.dist-info → optimum_rbln-0.8.2a0.dist-info}/RECORD +19 -19
- {optimum_rbln-0.8.1rc1.dist-info → optimum_rbln-0.8.2a0.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.1rc1.dist-info → optimum_rbln-0.8.2a0.dist-info}/licenses/LICENSE +0 -0
|
@@ -12,54 +12,16 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import TYPE_CHECKING
|
|
16
15
|
|
|
17
16
|
from ...models.decoderonly.decoderonly_architecture import (
|
|
18
|
-
DecoderOnlyAttention,
|
|
19
|
-
DecoderOnlyFlashAttention,
|
|
20
|
-
DecoderOnlyForCausalLM,
|
|
21
|
-
DecoderOnlyLayer,
|
|
22
17
|
DecoderOnlyModel,
|
|
23
18
|
DecoderOnlyWrapper,
|
|
24
19
|
)
|
|
25
20
|
|
|
26
21
|
|
|
27
|
-
if TYPE_CHECKING:
|
|
28
|
-
from transformers import GemmaForCausalLM
|
|
29
|
-
|
|
30
|
-
|
|
31
22
|
class GemmaWrapper(DecoderOnlyWrapper):
|
|
32
|
-
def
|
|
33
|
-
|
|
34
|
-
for layer in causal_lm.model.layers:
|
|
35
|
-
if self.attn_impl == "eager":
|
|
36
|
-
new_self_attn = DecoderOnlyAttention(
|
|
37
|
-
layer.self_attn,
|
|
38
|
-
self.use_attention_mask,
|
|
39
|
-
kvcache_block_size=self.kvcache_block_size,
|
|
40
|
-
use_position_ids=self.use_position_ids,
|
|
41
|
-
)
|
|
42
|
-
elif self.attn_impl == "flash_attn":
|
|
43
|
-
new_self_attn = DecoderOnlyFlashAttention(
|
|
44
|
-
layer.self_attn,
|
|
45
|
-
kvcache_partition_len=self.kvcache_partition_len,
|
|
46
|
-
use_attention_mask=self.use_attention_mask,
|
|
47
|
-
kvcache_block_size=self.kvcache_block_size,
|
|
48
|
-
use_position_ids=self.use_position_ids,
|
|
49
|
-
)
|
|
50
|
-
else:
|
|
51
|
-
raise NotImplementedError(f"Unknwon attn : {self.attn_impl}")
|
|
52
|
-
new_layer = DecoderOnlyLayer(layer, new_self_attn)
|
|
53
|
-
new_layers.append(new_layer)
|
|
54
|
-
new_model = GemmaModel(
|
|
55
|
-
causal_lm.model,
|
|
56
|
-
new_layers,
|
|
57
|
-
partition_len=self.kvcache_partition_len,
|
|
58
|
-
max_seq_len=max_seq_len,
|
|
59
|
-
sliding_window_layers=self.sliding_window_layers,
|
|
60
|
-
)
|
|
61
|
-
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
|
62
|
-
return new_causal_lm
|
|
23
|
+
def get_rbln_model_class(self):
|
|
24
|
+
return GemmaModel
|
|
63
25
|
|
|
64
26
|
|
|
65
27
|
class GemmaModel(DecoderOnlyModel):
|
|
@@ -13,15 +13,13 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
import copy
|
|
16
|
-
from typing import
|
|
16
|
+
from typing import Optional, Tuple, Union
|
|
17
17
|
|
|
18
18
|
import torch
|
|
19
19
|
from transformers.models.gemma3.modeling_gemma3 import Gemma3RMSNorm
|
|
20
20
|
|
|
21
21
|
from ..decoderonly.decoderonly_architecture import (
|
|
22
22
|
DecoderOnlyAttention,
|
|
23
|
-
DecoderOnlyFlashAttention,
|
|
24
|
-
DecoderOnlyForCausalLM,
|
|
25
23
|
DecoderOnlyLayer,
|
|
26
24
|
DecoderOnlyModel,
|
|
27
25
|
DecoderOnlyWrapper,
|
|
@@ -30,10 +28,6 @@ from ..decoderonly.decoderonly_architecture import (
|
|
|
30
28
|
)
|
|
31
29
|
|
|
32
30
|
|
|
33
|
-
if TYPE_CHECKING:
|
|
34
|
-
from transformers import Gemma3ForCausalLM
|
|
35
|
-
|
|
36
|
-
|
|
37
31
|
class Gemma3ForCausalLMWrapper(DecoderOnlyWrapper):
|
|
38
32
|
def get_rotary_emb(self, max_seq_len):
|
|
39
33
|
rotary_emb_global = RotaryEmbedding(config=self.config, max_seq_len_cached=max_seq_len)
|
|
@@ -45,49 +39,14 @@ class Gemma3ForCausalLMWrapper(DecoderOnlyWrapper):
|
|
|
45
39
|
|
|
46
40
|
return (rotary_emb_global, rotary_emb_local)
|
|
47
41
|
|
|
48
|
-
def
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
kvcache_block_size=self.config.sliding_window,
|
|
57
|
-
is_sliding=True,
|
|
58
|
-
)
|
|
59
|
-
else:
|
|
60
|
-
if self.attn_impl == "eager":
|
|
61
|
-
new_self_attn = Gemma3Attention(
|
|
62
|
-
layer.self_attn,
|
|
63
|
-
use_attention_mask=self.use_attention_mask,
|
|
64
|
-
use_position_ids=self.use_position_ids,
|
|
65
|
-
kvcache_block_size=self.kvcache_block_size,
|
|
66
|
-
is_sliding=False,
|
|
67
|
-
)
|
|
68
|
-
elif self.attn_impl == "flash_attn":
|
|
69
|
-
new_self_attn = Gemma3FlashAttention(
|
|
70
|
-
layer.self_attn,
|
|
71
|
-
kvcache_partition_len=self.kvcache_partition_len,
|
|
72
|
-
use_attention_mask=self.use_attention_mask,
|
|
73
|
-
kvcache_block_size=self.kvcache_block_size,
|
|
74
|
-
use_position_ids=self.use_position_ids,
|
|
75
|
-
)
|
|
76
|
-
else:
|
|
77
|
-
raise NotImplementedError(f"Unknwon attn : {self.attn_impl}")
|
|
78
|
-
|
|
79
|
-
new_layer = Gemma3DecoderLayer(layer, new_self_attn)
|
|
80
|
-
new_layers.append(new_layer)
|
|
81
|
-
|
|
82
|
-
new_model = Gemma3TextModel(
|
|
83
|
-
causal_lm.model,
|
|
84
|
-
new_layers,
|
|
85
|
-
partition_len=self.kvcache_partition_len,
|
|
86
|
-
max_seq_len=max_seq_len,
|
|
87
|
-
sliding_window_layers=self.sliding_window_layers,
|
|
88
|
-
)
|
|
89
|
-
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
|
90
|
-
return new_causal_lm
|
|
42
|
+
def get_rbln_attn_class(self):
|
|
43
|
+
return Gemma3Attention
|
|
44
|
+
|
|
45
|
+
def get_rbln_layer_class(self):
|
|
46
|
+
return Gemma3DecoderLayer
|
|
47
|
+
|
|
48
|
+
def get_rbln_model_class(self):
|
|
49
|
+
return Gemma3TextModel
|
|
91
50
|
|
|
92
51
|
|
|
93
52
|
class Gemma3TextModel(DecoderOnlyModel):
|
|
@@ -199,16 +158,3 @@ class Gemma3Attention(DecoderOnlyAttention):
|
|
|
199
158
|
|
|
200
159
|
def get_attn_scale(self):
|
|
201
160
|
return self._original_mod.config.query_pre_attn_scalar**-0.5
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
class Gemma3FlashAttention(DecoderOnlyFlashAttention):
|
|
205
|
-
def __post_init__(self):
|
|
206
|
-
self.q_proj = self._original_mod.q_proj
|
|
207
|
-
self.k_proj = self._original_mod.k_proj
|
|
208
|
-
self.v_proj = self._original_mod.v_proj
|
|
209
|
-
self.o_proj = self._original_mod.o_proj
|
|
210
|
-
self.q_norm = self._original_mod.q_norm
|
|
211
|
-
self.k_norm = self._original_mod.k_norm
|
|
212
|
-
|
|
213
|
-
def get_attn_scale(self):
|
|
214
|
-
return self._original_mod.config.query_pre_attn_scalar**-0.5
|
|
@@ -17,10 +17,10 @@ from typing import TYPE_CHECKING, Tuple
|
|
|
17
17
|
|
|
18
18
|
import torch
|
|
19
19
|
import torch.nn as nn
|
|
20
|
+
from transformers import PreTrainedModel
|
|
20
21
|
|
|
21
22
|
from ..decoderonly.decoderonly_architecture import (
|
|
22
23
|
DecoderOnlyAttention,
|
|
23
|
-
DecoderOnlyForCausalLM,
|
|
24
24
|
DecoderOnlyLayer,
|
|
25
25
|
DecoderOnlyModel,
|
|
26
26
|
DecoderOnlyWrapper,
|
|
@@ -32,27 +32,23 @@ if TYPE_CHECKING:
|
|
|
32
32
|
|
|
33
33
|
|
|
34
34
|
class GPT2Wrapper(DecoderOnlyWrapper):
|
|
35
|
-
def
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
sliding_window_layers=self.sliding_window_layers,
|
|
53
|
-
)
|
|
54
|
-
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
|
55
|
-
return new_causal_lm
|
|
35
|
+
def get_rbln_attn_class(self):
|
|
36
|
+
return GPT2Attention
|
|
37
|
+
|
|
38
|
+
def get_rbln_layer_class(self):
|
|
39
|
+
return GPT2Layer
|
|
40
|
+
|
|
41
|
+
def get_rbln_model_class(self):
|
|
42
|
+
return GPT2Model
|
|
43
|
+
|
|
44
|
+
def get_attn_layer(self, layer: nn.Module):
|
|
45
|
+
return layer.attn
|
|
46
|
+
|
|
47
|
+
def get_model_layer(self, causal_lm: "GPT2LMHeadModel"):
|
|
48
|
+
return causal_lm.transformer
|
|
49
|
+
|
|
50
|
+
def get_decoder_layers(self, causal_lm: PreTrainedModel):
|
|
51
|
+
return causal_lm.transformer.h
|
|
56
52
|
|
|
57
53
|
|
|
58
54
|
class GPT2Model(DecoderOnlyModel):
|
|
@@ -20,7 +20,6 @@ import torch.nn as nn
|
|
|
20
20
|
|
|
21
21
|
from ..decoderonly.decoderonly_architecture import (
|
|
22
22
|
DecoderOnlyAttention,
|
|
23
|
-
DecoderOnlyForCausalLM,
|
|
24
23
|
DecoderOnlyLayer,
|
|
25
24
|
DecoderOnlyModel,
|
|
26
25
|
DecoderOnlyWrapper,
|
|
@@ -55,27 +54,20 @@ class MidmLMHeadModelWrapper(DecoderOnlyWrapper):
|
|
|
55
54
|
self.config.partial_rotary_factor = self.config.rotary_percentage
|
|
56
55
|
return super().get_rotary_emb(max_seq_len=max_seq_len)
|
|
57
56
|
|
|
58
|
-
def
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
causal_lm.transformer,
|
|
73
|
-
new_layers,
|
|
74
|
-
max_seq_len=max_seq_len,
|
|
75
|
-
sliding_window_layers=self.sliding_window_layers,
|
|
76
|
-
)
|
|
77
|
-
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
|
78
|
-
return new_causal_lm
|
|
57
|
+
def get_rbln_attn_class(self):
|
|
58
|
+
return MidmAttention
|
|
59
|
+
|
|
60
|
+
def get_rbln_layer_class(self):
|
|
61
|
+
return MidmLayer
|
|
62
|
+
|
|
63
|
+
def get_rbln_model_class(self):
|
|
64
|
+
return MidmModel
|
|
65
|
+
|
|
66
|
+
def get_model_layer(self, causal_lm: "MidmLMHeadModel"):
|
|
67
|
+
return causal_lm.transformer
|
|
68
|
+
|
|
69
|
+
def get_decoder_layers(self, causal_lm: "MidmLMHeadModel"):
|
|
70
|
+
return causal_lm.transformer.h
|
|
79
71
|
|
|
80
72
|
|
|
81
73
|
class MidmModel(DecoderOnlyModel):
|
|
@@ -18,7 +18,6 @@ import torch.nn as nn
|
|
|
18
18
|
|
|
19
19
|
from ...models.decoderonly.decoderonly_architecture import (
|
|
20
20
|
DecoderOnlyAttention,
|
|
21
|
-
DecoderOnlyForCausalLM,
|
|
22
21
|
DecoderOnlyLayer,
|
|
23
22
|
DecoderOnlyModel,
|
|
24
23
|
DecoderOnlyWrapper,
|
|
@@ -30,30 +29,22 @@ if TYPE_CHECKING:
|
|
|
30
29
|
|
|
31
30
|
|
|
32
31
|
class OPTWrapper(DecoderOnlyWrapper):
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
causal_lm.model.decoder,
|
|
50
|
-
new_layers,
|
|
51
|
-
max_seq_len=max_seq_len,
|
|
52
|
-
use_learned_pos_emb=True,
|
|
53
|
-
sliding_window_layers=self.sliding_window_layers,
|
|
54
|
-
)
|
|
55
|
-
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
|
56
|
-
return new_causal_lm
|
|
32
|
+
_use_learned_pos_emb = True
|
|
33
|
+
|
|
34
|
+
def get_rbln_attn_class(self):
|
|
35
|
+
return OPTAttention
|
|
36
|
+
|
|
37
|
+
def get_rbln_layer_class(self):
|
|
38
|
+
return OPTDecoderLayer
|
|
39
|
+
|
|
40
|
+
def get_rbln_model_class(self):
|
|
41
|
+
return OPTModel
|
|
42
|
+
|
|
43
|
+
def get_model_layer(self, causal_lm: "OPTForCausalLM"):
|
|
44
|
+
return causal_lm.model.decoder
|
|
45
|
+
|
|
46
|
+
def get_decoder_layers(self, causal_lm: "OPTForCausalLM"):
|
|
47
|
+
return causal_lm.model.decoder.layers
|
|
57
48
|
|
|
58
49
|
|
|
59
50
|
class OPTAttention(DecoderOnlyAttention):
|
|
@@ -19,7 +19,6 @@ from transformers import PhiForCausalLM
|
|
|
19
19
|
|
|
20
20
|
from ..decoderonly.decoderonly_architecture import (
|
|
21
21
|
DecoderOnlyAttention,
|
|
22
|
-
DecoderOnlyForCausalLM,
|
|
23
22
|
DecoderOnlyLayer,
|
|
24
23
|
DecoderOnlyModel,
|
|
25
24
|
DecoderOnlyWrapper,
|
|
@@ -32,25 +31,20 @@ if TYPE_CHECKING:
|
|
|
32
31
|
|
|
33
32
|
|
|
34
33
|
class PhiWrapper(DecoderOnlyWrapper):
|
|
35
|
-
def
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
new_layer = PhiLayer(layer, new_self_attn)
|
|
50
|
-
new_layers.append(new_layer)
|
|
51
|
-
new_model = PhiModel(causal_lm.model, new_layers, sliding_window_layers=self.sliding_window_layers)
|
|
52
|
-
new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
|
|
53
|
-
return new_causal_lm
|
|
34
|
+
def get_rbln_attn_class(self):
|
|
35
|
+
return PhiAttention
|
|
36
|
+
|
|
37
|
+
def get_rbln_layer_class(self):
|
|
38
|
+
return PhiLayer
|
|
39
|
+
|
|
40
|
+
def get_rbln_model_class(self):
|
|
41
|
+
return PhiModel
|
|
42
|
+
|
|
43
|
+
def get_model_layer(self, causal_lm: "PhiForCausalLM"):
|
|
44
|
+
return causal_lm.model
|
|
45
|
+
|
|
46
|
+
def get_decoder_layers(self, causal_lm: "PhiForCausalLM"):
|
|
47
|
+
return causal_lm.model.layers
|
|
54
48
|
|
|
55
49
|
|
|
56
50
|
class PhiAttention(DecoderOnlyAttention):
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: optimum-rbln
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.2a0
|
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
optimum/rbln/__init__.py,sha256=MZCYmY4Y_Zfk0TGo3xK52osHDLZHz4cSdduXZt6RfSI,15316
|
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
|
2
|
+
optimum/rbln/__version__.py,sha256=kKne35dFUj-l3bjR0tLZka8O-dDdB-rFDsjhN13A2r4,519
|
|
3
3
|
optimum/rbln/configuration_utils.py,sha256=o5oer7fBdE-MHLGNXoP35FjmuQbMmjEIDv0QE_k3kpo,32336
|
|
4
4
|
optimum/rbln/modeling.py,sha256=bsvK6GQtoH9vx72Ea59kvv61jguOk9XDTzVjsY1ugkk,14248
|
|
5
5
|
optimum/rbln/modeling_base.py,sha256=QpNkU_Do__JKmnHjaPzv47OhQwgGfVohisip1jqXa7A,23871
|
|
@@ -8,16 +8,16 @@ optimum/rbln/diffusers/modeling_diffusers.py,sha256=RjZNcYMU5daUIj-PAxyAwVoo2a9h
|
|
|
8
8
|
optimum/rbln/diffusers/configurations/__init__.py,sha256=vMRnPY4s-Uju43xP038D2EA18X_mhy2YfsZVpSU-VoA,1322
|
|
9
9
|
optimum/rbln/diffusers/configurations/models/__init__.py,sha256=7q95gtgDzCeIBogGw8SLQoHT4Wch7vpLJVF2UQovuoo,567
|
|
10
10
|
optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=ySetuNq6koleFIZ542zZLTzEEyl_CTul9l12ufWlQ_Y,3218
|
|
11
|
-
optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py,sha256=
|
|
11
|
+
optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py,sha256=SJfgbUz1LlRVuKQ_sHwPS262oOHF2TliKqM2z13wjEw,4172
|
|
12
12
|
optimum/rbln/diffusers/configurations/models/configuration_controlnet.py,sha256=VDO_YFS_QhcHhuRIXQL53JZXEO27yoKHtecq5hd2la8,2637
|
|
13
13
|
optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py,sha256=vE8RsXc27Z4-9k0KEM_vP7AWd5UUYvDgfX1g6nUrPp4,2224
|
|
14
|
-
optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py,sha256=
|
|
14
|
+
optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py,sha256=tqzBWzkl5PX60v8REGHuUC1WdJuIQv_2BGUOne5UYL8,3127
|
|
15
15
|
optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py,sha256=TAwHUyVy_9HSEZdXIuFCtrBfNIuYIedklJaCut5wEys,2412
|
|
16
16
|
optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py,sha256=mxcbrOqLMnPpP-jnjSeRWPj2zwPMsgeQSq6LzhG2btA,3630
|
|
17
17
|
optimum/rbln/diffusers/configurations/models/configuration_vq_model.py,sha256=dslGcfCZL_hNeVyjV-4FnCT1POmXuiaLbr6NcQSKgHg,3259
|
|
18
18
|
optimum/rbln/diffusers/configurations/pipelines/__init__.py,sha256=RfJXQiYvgGc3Rp7JYk5s0AQd0XB5JCAb37_riGWQAYg,1268
|
|
19
19
|
optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=nTtr2vqyr3zNSJXI0kiTAhOnVNhA-cVyaSnKOwBBZIo,14215
|
|
20
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py,sha256=
|
|
20
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py,sha256=tncXVraSYfrezqL9cT4kg5nuoifzYVfP0qHbgg0QUjA,4615
|
|
21
21
|
optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=1ve6o4OEpjPzTXWHXy_T5MAI0V-F08PMv2W6nBFfeKU,16386
|
|
22
22
|
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=kR8dV_RsmoDxhK5bAfv3PbtS5LpN5g-O-snAX1sP6Fo,6591
|
|
23
23
|
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=f2VOwvCd-9kDnUpwhb0LaMWgfwdmBzUKMpmCdhUv2sc,7923
|
|
@@ -44,7 +44,7 @@ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=
|
|
|
44
44
|
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=HX56itORMqXLjZcwv25C-_z3JyZn3v6BpfIjsrDO3mE,46640
|
|
45
45
|
optimum/rbln/diffusers/pipelines/cosmos/__init__.py,sha256=h2j6S8IJPVHeNU8qmW9vyXMgHBw0d7kQcuMAA5YoHPU,795
|
|
46
46
|
optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py,sha256=kDVnUBBGdumpDj2DaOpo5MSsFvlFIGY6BU1LZaFVqao,3327
|
|
47
|
-
optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py,sha256=
|
|
47
|
+
optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py,sha256=EAt2UICPRTaUz4SNsQYOa9aoW0USj2qamqdhlf2ajrA,18261
|
|
48
48
|
optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py,sha256=TfhgAWVHUHvxsagBGLAVYKBoSMvuH7rg_xP5ZZ0rVU0,3910
|
|
49
49
|
optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py,sha256=-dl8AMwSuorIOxRNfyu1XhkJfmNVbSo3_Wkb2gAmUpo,3917
|
|
50
50
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py,sha256=I4YQq2HfA3xONbWsdJ870IEJPyLWeCDDG-UCJsu9YO8,1035
|
|
@@ -90,18 +90,18 @@ optimum/rbln/transformers/models/bert/__init__.py,sha256=86FuGRBLw315_Roa9D5OUx6
|
|
|
90
90
|
optimum/rbln/transformers/models/bert/configuration_bert.py,sha256=nEZnX6LXpLKWaoPEd4pWSysw9h-PLb2ld0ibC3dcJ7w,1611
|
|
91
91
|
optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=zR0US2laTT0yUkL6yyvrR5STQNJcYqtG98ez4SUYQAY,2040
|
|
92
92
|
optimum/rbln/transformers/models/blip_2/__init__.py,sha256=L01gPXcUCa8Vg-bcng20vZvBIN_jlqCzwUSFuq0QOag,855
|
|
93
|
-
optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=
|
|
93
|
+
optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=ke75GqPU139dNOY1nm6QE661LepbD_0V9Bx1QbtHhKA,3210
|
|
94
94
|
optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=2sIVGrIn1B2nUZ8hw1sgW3VbJ2vxrlBRN37GgDiw0GU,16191
|
|
95
95
|
optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
|
|
96
96
|
optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=D7CIWpbMhXUrGv-CnhxRtSS3vAYb427-w7zSkfuJHEU,3455
|
|
97
97
|
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=QbYrt7pUWNal-p93fxmuKrHa2CPlCaq8F16qOfMAst0,8090
|
|
98
98
|
optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic0YkVK24CW5hZBPa-0L8so6Y,119
|
|
99
99
|
optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=bWG7TehWRZkTh2y6mGkpd85_onWAyiyKdaQC9TFsy3E,8065
|
|
100
|
-
optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=
|
|
100
|
+
optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=ieY-tuyDPObFUIJ5sfpcfuCsJ_HTAizN7ZGqirqeFRU,2636
|
|
101
101
|
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=jzvJCBrrCXSpjfmJ3O-VvPNFGWGaNbpOV09JwLPAZWs,15757
|
|
102
102
|
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=vQYZDDdoddwA7yKc5zzrq2Zs9sax-0p8rNF_aYfF4bk,1006
|
|
103
103
|
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=cakn8RGo8gS3nmXdEqOfC2xUBOMGInROgLEbCOoLFR0,13398
|
|
104
|
-
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=
|
|
104
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=8ovJ5_q_asqVTuVnAuK1m6genW0OSJ30Cd7HS9JXJgc,46363
|
|
105
105
|
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=NmWdodIcXXChI61-Ej7StTe52iQvalMYRUDuNtcQVEI,53342
|
|
106
106
|
optimum/rbln/transformers/models/distilbert/__init__.py,sha256=zXL78SOEORTnUN_wrdoaDaYpntG8lcFHvPobM6jC0CI,841
|
|
107
107
|
optimum/rbln/transformers/models/distilbert/configuration_distilbert.py,sha256=O3BW9JjyYk9PLyiofvOKEgTdMZ_jpIuPfot281pSsyg,984
|
|
@@ -111,19 +111,19 @@ optimum/rbln/transformers/models/dpt/configuration_dpt.py,sha256=3Bb_K0sKI6TKeoH
|
|
|
111
111
|
optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=uIwdHAhGgSyj_ljwJsRv6i5nUr9lTzB2Ss0iz0HplfY,978
|
|
112
112
|
optimum/rbln/transformers/models/exaone/__init__.py,sha256=eUL0mq3yGVzCQfjLlOtVF2MecIN3DQWm07EmXubGSTs,921
|
|
113
113
|
optimum/rbln/transformers/models/exaone/configuration_exaone.py,sha256=S4s4kJemPbmn-otYv-XNHE40DJaEYY6cmzaWV6MTGsY,1388
|
|
114
|
-
optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256
|
|
114
|
+
optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256=lY4FwH2EZn_OY6sBIHlwxbfaEOEJ1eueUQJGB6Js62M,2306
|
|
115
115
|
optimum/rbln/transformers/models/exaone/modeling_exaone.py,sha256=sr_ICK-rw_fYmLY5r0IOc-vDtSZEcSwFIQp3Gn92zqE,3929
|
|
116
116
|
optimum/rbln/transformers/models/gemma/__init__.py,sha256=VqPIlokw3kjn_ZoLXINCLXw3vaysQFo5oPGGy6bnt4Q,708
|
|
117
117
|
optimum/rbln/transformers/models/gemma/configuration_gemma.py,sha256=3hAxl7LL9vFpCHrs-g3BwVDdVjnnJ-fzSO88wdfyGDQ,1361
|
|
118
|
-
optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=
|
|
118
|
+
optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=2Ivay8NTSHmQAqXFh9JvG6Ja5rMThcRAjYPzyipcRI8,956
|
|
119
119
|
optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=Ojvum34EhDHWfMB4D6S1BrwoTNwuBSZuBzwdnAgvq38,3095
|
|
120
120
|
optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
|
|
121
121
|
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=eupMGTHJGJNNrAZ3GE6M6GQBAQzBb7KFJvalyDmbM-A,3063
|
|
122
|
-
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=
|
|
122
|
+
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=fpLDAXCe5paWVsfc0tL59JkRQMRF-WNgIzOIb_QpSLU,6191
|
|
123
123
|
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=-cpU0ot46VFUZ6PtfwN9VJ-E44n6mP1E3dKwB99MtBM,38389
|
|
124
124
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=socBMIBZSiLbrVN12rQ4nL9gFeT0axMgz6SWaCaD4Ac,704
|
|
125
125
|
optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=9sS6-EGapmow3rG9ViejK9qwrqy_X86VBxQ7u9x0Yqk,923
|
|
126
|
-
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=
|
|
126
|
+
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=O7hBiaFJrpLSswGwW83cX9S9Q2wKRBDrpAqOgOS7zQg,2733
|
|
127
127
|
optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=qBDanUk_O-HtOIVCA4IE3FYyCsnL9xIDK00vft-0caw,1490
|
|
128
128
|
optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
|
|
129
129
|
optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=wKroy3m65zS41G80QXssbndHoHU8wtHTteGU2Q6qbws,2390
|
|
@@ -137,7 +137,7 @@ optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=b
|
|
|
137
137
|
optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=paYtCk58--FSZp8xjVrfZAxkJxO02X-jxaVPqL-l7ZU,27421
|
|
138
138
|
optimum/rbln/transformers/models/midm/__init__.py,sha256=IC3FETwgYinbp3wDj7tp4zIHJhbqM-c6GfTRdYcMNj8,913
|
|
139
139
|
optimum/rbln/transformers/models/midm/configuration_midm.py,sha256=DxhcSJlApxfi00XxYmSkKZ6bY9vfLXT0zh-oMKkZot0,1365
|
|
140
|
-
optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=
|
|
140
|
+
optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=RlkmNhaWE5h_awt9aTtR8VZfshNTah0IoUfD2Z9vfxI,5055
|
|
141
141
|
optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=zbziYZ3f_dX_MOLwORTfJn22psZ1g3FFeQffM_TIh7A,3876
|
|
142
142
|
optimum/rbln/transformers/models/mistral/__init__.py,sha256=9FE64bCYfSIyrBkRcwlqF8QyacSJFWvwEufHFi1ZIrM,716
|
|
143
143
|
optimum/rbln/transformers/models/mistral/configuration_mistral.py,sha256=pMYJSwqmtx0uD2uExHx4S-JXal9rqQ5A2ulT2IoglTg,1383
|
|
@@ -146,11 +146,11 @@ optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=SGzmn9EJeM27
|
|
|
146
146
|
optimum/rbln/transformers/models/opt/__init__.py,sha256=w0v8GzbzlR5_4yL851njGDSJgX89TrYxrHnpNfMHZEI,700
|
|
147
147
|
optimum/rbln/transformers/models/opt/configuration_opt.py,sha256=HgNCxnuoyZZwPoDMU41nvXG5DU9UHHSG8gvUSsm-r34,920
|
|
148
148
|
optimum/rbln/transformers/models/opt/modeling_opt.py,sha256=aDijHHFOWBAjCJ_YrI7dcmuVuY69S1QD0115MQO9YFU,3667
|
|
149
|
-
optimum/rbln/transformers/models/opt/opt_architecture.py,sha256=
|
|
149
|
+
optimum/rbln/transformers/models/opt/opt_architecture.py,sha256=El2l0n7YUWTakzZvqWyu58KNEbCc6zoHQhkqSLSsVm0,2202
|
|
150
150
|
optimum/rbln/transformers/models/phi/__init__.py,sha256=uqQb-sO1HXuaju2hfo7qJHk_IWhnptY-qFjNjK_uOc0,700
|
|
151
151
|
optimum/rbln/transformers/models/phi/configuration_phi.py,sha256=58jv3bIo_BcPcS9wU6NVgh67mGpHafdoQzStLKmfuU4,1349
|
|
152
152
|
optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=sd8XYKJkpZM7pWqN0DE7B-dJuTpF9b2_ebZgJK1AuJ8,3061
|
|
153
|
-
optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=
|
|
153
|
+
optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=yShRckC62i2nky3MvM_qGrhTXOo3FswwtNxd5fogduM,3574
|
|
154
154
|
optimum/rbln/transformers/models/qwen2/__init__.py,sha256=Tu4_AXy3ktTvxGwxED3kewiv62S75HgDWD6-TeC1DfA,708
|
|
155
155
|
optimum/rbln/transformers/models/qwen2/configuration_qwen2.py,sha256=Jc7qTFQgB9tbhJ-aPDN_lfyz9u0omNL84HWYBQ5fvcs,1359
|
|
156
156
|
optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=OKd7SXQLLtzPVolr26P1TvCV7Gf0XG7k6BjzjuvrL4s,3885
|
|
@@ -205,7 +205,7 @@ optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsF
|
|
|
205
205
|
optimum/rbln/utils/runtime_utils.py,sha256=D9PS8hfH1NBf8yH8cAu-XfdC9fxKzPbt4LFBVpADbbs,7180
|
|
206
206
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
|
207
207
|
optimum/rbln/utils/submodule.py,sha256=w5mgPgncI740gVKMu3S-69DGNdUSI0bTZxegQGcZ98Y,5011
|
|
208
|
-
optimum_rbln-0.8.
|
|
209
|
-
optimum_rbln-0.8.
|
|
210
|
-
optimum_rbln-0.8.
|
|
211
|
-
optimum_rbln-0.8.
|
|
208
|
+
optimum_rbln-0.8.2a0.dist-info/METADATA,sha256=dHMIEdFF_IuTWww99Iypz6HQKVDDk___EVJ8cK77eG0,5299
|
|
209
|
+
optimum_rbln-0.8.2a0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
210
|
+
optimum_rbln-0.8.2a0.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
|
211
|
+
optimum_rbln-0.8.2a0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|