optimum-rbln 0.8.1rc0__py3-none-any.whl → 0.8.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of optimum-rbln might be problematic. Click here for more details.

Files changed (120) hide show
  1. optimum/rbln/__init__.py +58 -9
  2. optimum/rbln/__version__.py +2 -2
  3. optimum/rbln/configuration_utils.py +24 -5
  4. optimum/rbln/diffusers/configurations/models/__init__.py +1 -1
  5. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +2 -2
  6. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +5 -3
  7. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +2 -2
  8. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +2 -2
  9. optimum/rbln/diffusers/configurations/models/{configuration_cosmos_transformer.py → configuration_transformer_cosmos.py} +7 -2
  10. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +2 -2
  11. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +2 -2
  12. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +2 -2
  13. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +3 -3
  14. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +10 -6
  15. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +4 -4
  16. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +2 -2
  17. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +2 -2
  18. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +2 -2
  19. optimum/rbln/diffusers/modeling_diffusers.py +4 -5
  20. optimum/rbln/diffusers/models/__init__.py +3 -13
  21. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +1 -0
  22. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1 -0
  23. optimum/rbln/diffusers/models/autoencoders/vq_model.py +1 -0
  24. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +1 -1
  25. optimum/rbln/diffusers/pipelines/__init__.py +1 -5
  26. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +12 -4
  27. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +4 -26
  28. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +2 -2
  29. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +2 -2
  30. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
  31. optimum/rbln/modeling.py +4 -5
  32. optimum/rbln/modeling_base.py +18 -14
  33. optimum/rbln/ops/kv_cache_update.py +5 -0
  34. optimum/rbln/ops/linear.py +7 -0
  35. optimum/rbln/transformers/__init__.py +60 -0
  36. optimum/rbln/transformers/configuration_generic.py +4 -4
  37. optimum/rbln/transformers/modeling_attention_utils.py +252 -0
  38. optimum/rbln/transformers/modeling_generic.py +1 -4
  39. optimum/rbln/transformers/models/__init__.py +45 -30
  40. optimum/rbln/transformers/models/bart/bart_architecture.py +2 -7
  41. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +2 -2
  42. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +1 -5
  43. optimum/rbln/transformers/models/clip/configuration_clip.py +14 -3
  44. optimum/rbln/transformers/models/clip/modeling_clip.py +123 -28
  45. optimum/rbln/transformers/models/colpali/colpali_architecture.py +1 -4
  46. optimum/rbln/transformers/models/colpali/configuration_colpali.py +2 -2
  47. optimum/rbln/transformers/models/colpali/modeling_colpali.py +2 -10
  48. optimum/rbln/transformers/models/decoderonly/__init__.py +2 -2
  49. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +214 -45
  50. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +323 -454
  51. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +579 -362
  52. optimum/rbln/transformers/models/exaone/exaone_architecture.py +17 -42
  53. optimum/rbln/transformers/models/gemma/__init__.py +2 -2
  54. optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
  55. optimum/rbln/transformers/models/gemma/gemma_architecture.py +3 -44
  56. optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
  57. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +21 -9
  58. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +9 -63
  59. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +200 -292
  60. optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
  61. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
  62. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +19 -24
  63. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
  64. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +2 -2
  65. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +3 -9
  66. optimum/rbln/transformers/models/llama/__init__.py +2 -2
  67. optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
  68. optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
  69. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  70. optimum/rbln/transformers/models/llava/configuration_llava.py +54 -0
  71. optimum/rbln/transformers/models/llava/modeling_llava.py +419 -0
  72. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +20 -3
  73. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +6 -16
  74. optimum/rbln/transformers/models/midm/midm_architecture.py +14 -22
  75. optimum/rbln/transformers/models/mistral/__init__.py +2 -2
  76. optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
  77. optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
  78. optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
  79. optimum/rbln/transformers/models/opt/__init__.py +2 -2
  80. optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
  81. optimum/rbln/transformers/models/opt/modeling_opt.py +41 -1
  82. optimum/rbln/transformers/models/opt/opt_architecture.py +16 -25
  83. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  84. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +34 -0
  85. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +69 -0
  86. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  87. optimum/rbln/transformers/models/phi/__init__.py +2 -2
  88. optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
  89. optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
  90. optimum/rbln/transformers/models/phi/phi_architecture.py +16 -22
  91. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  92. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  93. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +315 -0
  94. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  95. optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
  96. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
  97. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
  98. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +3 -3
  99. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +5 -15
  100. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +1 -4
  101. optimum/rbln/transformers/models/qwen3/__init__.py +16 -0
  102. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +71 -0
  103. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +133 -0
  104. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +31 -0
  105. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +2 -12
  106. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +3 -1
  107. optimum/rbln/transformers/models/siglip/__init__.py +2 -6
  108. optimum/rbln/transformers/models/siglip/modeling_siglip.py +2 -2
  109. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +2 -2
  110. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +3 -5
  111. optimum/rbln/transformers/models/whisper/configuration_whisper.py +3 -12
  112. optimum/rbln/transformers/models/whisper/modeling_whisper.py +8 -2
  113. optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
  114. optimum/rbln/utils/depreacate_utils.py +16 -0
  115. optimum/rbln/utils/hub.py +8 -47
  116. optimum/rbln/utils/runtime_utils.py +31 -5
  117. {optimum_rbln-0.8.1rc0.dist-info → optimum_rbln-0.8.2.dist-info}/METADATA +1 -1
  118. {optimum_rbln-0.8.1rc0.dist-info → optimum_rbln-0.8.2.dist-info}/RECORD +120 -103
  119. {optimum_rbln-0.8.1rc0.dist-info → optimum_rbln-0.8.2.dist-info}/WHEEL +0 -0
  120. {optimum_rbln-0.8.1rc0.dist-info → optimum_rbln-0.8.2.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,419 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ from transformers import AutoModelForImageTextToText, LlavaForConditionalGeneration, PretrainedConfig, PreTrainedModel
20
+ from transformers.modeling_outputs import BaseModelOutputWithPooling
21
+ from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
22
+
23
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
24
+ from ....modeling import RBLNModel
25
+ from ....utils.logging import get_logger
26
+ from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyForCausalLMOutput
27
+
28
+
29
+ logger = get_logger(__name__)
30
+
31
+ if TYPE_CHECKING:
32
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig
33
+
34
+
35
+ class LoopVisionTower:
36
+ def __init__(self, vision_tower: RBLNModel) -> None:
37
+ self.vision_tower = vision_tower
38
+
39
+ def forward(self, pixel_values, image_sizes: Optional[torch.Tensor] = None, **kwargs):
40
+ outputs = []
41
+ for i in range(pixel_values.shape[0]):
42
+ outputs.append(
43
+ self.vision_tower(
44
+ pixel_values[i : i + 1], image_sizes[i : i + 1] if image_sizes is not None else None, **kwargs
45
+ )
46
+ )
47
+
48
+ if hasattr(self.vision_tower.rbln_config, "max_image_size"):
49
+ last_hidden_states = [output.last_hidden_state for output in outputs]
50
+ last_hidden_states = torch.cat(last_hidden_states, dim=1)
51
+ hidden_states = tuple(
52
+ torch.cat(
53
+ [output.hidden_states[layer_idx] for output in outputs],
54
+ dim=1,
55
+ )
56
+ for layer_idx in range(len(outputs[0].hidden_states))
57
+ )
58
+
59
+ else:
60
+ last_hidden_states = [output.last_hidden_state for output in outputs]
61
+ last_hidden_states = torch.cat(last_hidden_states, dim=0)
62
+ hidden_states = [output.hidden_states for output in outputs]
63
+ hidden_states = tuple(
64
+ torch.cat(tuple((hidden_states[n][i] for n in range(pixel_values.shape[0]))), dim=0)
65
+ for i in range(len(hidden_states[0]))
66
+ )
67
+
68
+ return BaseModelOutputWithPooling(
69
+ last_hidden_state=last_hidden_states,
70
+ hidden_states=hidden_states,
71
+ )
72
+
73
+ def __call__(self, *args: Any, **kwds: Any) -> Any:
74
+ return self.forward(*args, **kwds)
75
+
76
+ def __repr__(self) -> str:
77
+ return repr(self.vision_tower)
78
+
79
+
80
+ class LoopProjector:
81
+ def __init__(self, multi_modal_projector) -> None:
82
+ self.multi_modal_projector = multi_modal_projector
83
+
84
+ def forward(self, *args, **kwargs):
85
+ # Loop instead of batch
86
+ image_feature = args[0]
87
+
88
+ outputs = []
89
+ for i in range(image_feature.shape[0]):
90
+ outputs.append(self.multi_modal_projector(image_feature[i : i + 1]))
91
+
92
+ # FIXME:: This can be optimized using out= API of rbln runtime.
93
+ outputs = torch.cat(outputs, dim=0)
94
+ return outputs
95
+
96
+ def __call__(self, *args: Any, **kwds: Any) -> Any:
97
+ return self.forward(*args, **kwds)
98
+
99
+ def __repr__(self) -> str:
100
+ return repr(self.multi_modal_projector)
101
+
102
+
103
+ class RBLNLlavaForConditionalGeneration(RBLNModel):
104
+ """
105
+ RBLNLlavaForConditionalGeneration is a multi-modal model that combines vision and language processing capabilities,
106
+ optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
107
+ This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
108
+ Important Note:
109
+ This model includes a Large Language Model (LLM) as a submodule. For optimal performance, it is highly recommended to use
110
+ tensor parallelism for the language model. This can be achieved by using the `rbln_config` parameter in the
111
+ `from_pretrained` method. Refer to the `from_pretrained` documentation and the RBLNLlavaForConditionalGeneration class for details.
112
+ Examples:
113
+ ```python
114
+ from optimum.rbln import RBLNLlavaForConditionalGeneration
115
+ model = RBLNLlavaForConditionalGeneration.from_pretrained(
116
+ "llava-hf/llava-1.5-7b-hf",
117
+ export=True,
118
+ rbln_config={
119
+ "vision_tower": {"output_hidden_states": True},
120
+ "language_model": {
121
+ "tensor_parallel_size": 4,
122
+ "use_inputs_embeds": True, # In Llava, language model must use inputs_embeds as input.
123
+ },
124
+ },
125
+ )
126
+ model.save_pretrained("compiled-llava-1.5-7b-hf")
127
+
128
+ # Using a RBLNLlavaForConditionalGenerationConfig instance (recommended for type checking)
129
+ from optimum.rbln import RBLNLlavaForConditionalGenerationConfig
130
+ vision_config = RBLNCLIPVisionModelConfig(
131
+ batch_size=1,
132
+ output_hidden_states=True
133
+ )
134
+ language_model_config = RBLNLlamaForCausalLMConfig(
135
+ batch_size=1,
136
+ max_seq_len=4096,
137
+ use_inputs_embeds=True,
138
+ tensor_parallel_size=4
139
+ )
140
+ llava_config = RBLNLlavaForConditionalGenerationConfig(
141
+ batch_size=1,
142
+ vision_tower=vision_config,
143
+ language_model=language_model_config
144
+ )
145
+ model = RBLNLlavaForConditionalGeneration.from_pretrained(
146
+ "llava-hf/llava-1.5-7b-hf",
147
+ export=True,
148
+ rbln_config=llava_config
149
+ )
150
+ ```
151
+ """
152
+
153
+ auto_model_class = AutoModelForImageTextToText
154
+ _rbln_submodules = [
155
+ {"name": "vision_tower"},
156
+ {"name": "language_model"},
157
+ ]
158
+
159
+ def __getattr__(self, __name: str) -> Any:
160
+ def redirect(func):
161
+ return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
162
+
163
+ val = getattr(LlavaForConditionalGeneration, __name)
164
+
165
+ if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
166
+ return redirect(val)
167
+ return val
168
+
169
+ def can_generate(self):
170
+ return True
171
+
172
+ def __post_init__(self, **kwargs):
173
+ self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
174
+ self.language_model = self.rbln_submodules[1]
175
+ self.multi_modal_projector = LoopProjector(self.model[0])
176
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
177
+ return super().__post_init__(**kwargs)
178
+
179
+ def get_attn_impl(self) -> str:
180
+ return self.rbln_config.language_model.attn_impl
181
+
182
+ def get_kvcache_num_blocks(self) -> int:
183
+ return self.rbln_config.language_model.kvcache_num_blocks
184
+
185
+ def get_input_embeddings(self):
186
+ return self.language_model.get_input_embeddings()
187
+
188
+ @classmethod
189
+ def wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
190
+ return model.multi_modal_projector
191
+
192
+ @classmethod
193
+ def _update_rbln_config(
194
+ cls,
195
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
196
+ model: Optional["PreTrainedModel"] = None,
197
+ model_config: Optional["PretrainedConfig"] = None,
198
+ rbln_config: Optional[RBLNModelConfig] = None,
199
+ ) -> RBLNModelConfig:
200
+ # support for pixtral that needs padding
201
+ if hasattr(rbln_config.vision_tower, "max_image_size"):
202
+ num_positions = (
203
+ rbln_config.vision_tower.batch_size
204
+ * (rbln_config.vision_tower.max_image_size[0] // model_config.vision_config.patch_size)
205
+ * (rbln_config.vision_tower.max_image_size[1] // model_config.vision_config.patch_size)
206
+ )
207
+ selected_image_feature_dim = num_positions
208
+
209
+ else:
210
+ num_positions = (model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2 + 1
211
+ if model_config.vision_feature_select_strategy == "default":
212
+ selected_image_feature_dim = num_positions - 1
213
+ else:
214
+ selected_image_feature_dim = num_positions
215
+
216
+ input_info = [
217
+ (
218
+ "image_features",
219
+ [rbln_config.batch_size, selected_image_feature_dim, model_config.vision_config.hidden_size],
220
+ "float32",
221
+ )
222
+ ]
223
+
224
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
225
+ rbln_config.set_compile_cfgs([rbln_compile_config])
226
+ return rbln_config
227
+
228
+ def prepare_inputs_for_generation(
229
+ self,
230
+ input_ids,
231
+ inputs_embeds=None,
232
+ pixel_values=None,
233
+ attention_mask=None,
234
+ cache_position=None,
235
+ image_sizes=None,
236
+ generate_idx=None,
237
+ **kwargs,
238
+ ):
239
+ is_prefill_phase = generate_idx is None
240
+ model_inputs = {}
241
+
242
+ if is_prefill_phase:
243
+ generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
244
+ cache_position = None
245
+ pixel_values = pixel_values
246
+ model_inputs.update({"image_sizes": image_sizes})
247
+ else:
248
+ if inputs_embeds is not None:
249
+ raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
250
+
251
+ pixel_values = None
252
+ input_ids = input_ids[:, -1:]
253
+ cache_position = generate_idx
254
+ generate_idx = generate_idx + 1
255
+ model_inputs.update({"input_ids": input_ids})
256
+
257
+ if inputs_embeds is not None:
258
+ if self.rbln_config.use_inputs_embeds:
259
+ model_inputs.update({"inputs_embeds": inputs_embeds})
260
+ else:
261
+ raise ValueError(
262
+ "The specifying inputs_embeds is only supported when using a compiled RBLN model with 'rbln_use_inputs_embeds' set to True."
263
+ )
264
+ else:
265
+ model_inputs.update({"input_ids": input_ids})
266
+
267
+ model_inputs.update(
268
+ {
269
+ "attention_mask": attention_mask,
270
+ "pixel_values": pixel_values,
271
+ "cache_position": cache_position,
272
+ "generate_idx": generate_idx,
273
+ }
274
+ )
275
+ return model_inputs
276
+
277
+ def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
278
+ model_kwargs["generate_idx"] = outputs.generate_idx
279
+ return model_kwargs
280
+
281
+ def get_image_features(
282
+ self,
283
+ pixel_values: torch.FloatTensor,
284
+ vision_feature_layer: Union[int, List[int]],
285
+ vision_feature_select_strategy: str,
286
+ **kwargs,
287
+ ):
288
+ if vision_feature_select_strategy not in ["default", "full"]:
289
+ raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
290
+
291
+ kwargs = {k: v for k, v in kwargs.items() if v is not None}
292
+ image_outputs = self.vision_tower(pixel_values, output_hidden_states=True, **kwargs)
293
+
294
+ if isinstance(vision_feature_layer, int):
295
+ selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
296
+ if vision_feature_select_strategy == "default":
297
+ selected_image_feature = selected_image_feature[:, 1:]
298
+ else:
299
+ hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
300
+ if vision_feature_select_strategy == "default":
301
+ hs_pool = [hs[:, 1:] for hs in hs_pool]
302
+ selected_image_feature = torch.cat(hs_pool, dim=-1)
303
+
304
+ if hasattr(self.rbln_config.vision_tower, "max_image_size"):
305
+ num_real_patches = selected_image_feature.shape[1]
306
+ max_patches = (
307
+ (self.rbln_config.vision_tower.max_image_size[0] // self.config.vision_config.patch_size)
308
+ * (self.rbln_config.vision_tower.max_image_size[1] // self.config.vision_config.patch_size)
309
+ * pixel_values.shape[0]
310
+ )
311
+ num_padding_patches = max_patches - num_real_patches
312
+
313
+ padding_tensor = torch.zeros(
314
+ (selected_image_feature.shape[0], num_padding_patches, selected_image_feature.shape[2]),
315
+ dtype=selected_image_feature.dtype,
316
+ )
317
+ padded_feature = torch.cat([selected_image_feature, padding_tensor], dim=1)
318
+ padded_projected_feature = self.multi_modal_projector(padded_feature)
319
+ image_features = padded_projected_feature[:, :num_real_patches, :]
320
+ else:
321
+ image_features = self.multi_modal_projector(selected_image_feature)
322
+
323
+ return image_features
324
+
325
+ def _preprocess_prefill(
326
+ self,
327
+ input_ids: Optional[torch.LongTensor] = None,
328
+ pixel_values: Optional[torch.FloatTensor] = None,
329
+ inputs_embeds: Optional[torch.FloatTensor] = None,
330
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
331
+ vision_feature_select_strategy: Optional[str] = None,
332
+ return_dict: Optional[bool] = None,
333
+ image_sizes: Optional[torch.Tensor] = None,
334
+ **lm_kwargs,
335
+ ):
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+ vision_feature_layer = (
338
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
339
+ )
340
+ vision_feature_select_strategy = (
341
+ vision_feature_select_strategy
342
+ if vision_feature_select_strategy is not None
343
+ else self.config.vision_feature_select_strategy
344
+ )
345
+
346
+ if (input_ids is None) ^ (inputs_embeds is not None):
347
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
348
+
349
+ if pixel_values is not None and inputs_embeds is not None:
350
+ raise ValueError(
351
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
352
+ )
353
+
354
+ if inputs_embeds is None:
355
+ inputs_embeds = self.get_input_embeddings()(input_ids)
356
+
357
+ if pixel_values is not None:
358
+ image_features = self.get_image_features(
359
+ pixel_values=pixel_values,
360
+ vision_feature_layer=vision_feature_layer,
361
+ vision_feature_select_strategy=vision_feature_select_strategy,
362
+ image_sizes=image_sizes,
363
+ )
364
+
365
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
366
+ special_image_mask = special_image_mask.expand_as(inputs_embeds)
367
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
368
+
369
+ return inputs_embeds
370
+
371
+ def forward(
372
+ self,
373
+ input_ids: Optional[torch.LongTensor] = None,
374
+ pixel_values: Optional[torch.FloatTensor] = None,
375
+ attention_mask: Optional[torch.Tensor] = None,
376
+ inputs_embeds: Optional[torch.FloatTensor] = None,
377
+ return_dict: Optional[bool] = None,
378
+ cache_position: Optional[torch.LongTensor] = None,
379
+ image_sizes: Optional[torch.Tensor] = None,
380
+ generate_idx: Optional[torch.Tensor] = None,
381
+ **kwargs,
382
+ ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
383
+ # Prefill
384
+ if cache_position is None:
385
+ inputs_embeds = self._preprocess_prefill(
386
+ input_ids=input_ids, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_sizes=image_sizes
387
+ )
388
+ logits = []
389
+ inputs = inputs_embeds if inputs_embeds is not None else input_ids
390
+ batch_size = inputs.shape[0]
391
+
392
+ for b_idx in range(batch_size):
393
+ cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
394
+ output = self.language_model.prefill_decoder(
395
+ input_ids=inputs[b_idx : b_idx + 1] if inputs_embeds is None else None,
396
+ inputs_embeds=inputs[b_idx : b_idx + 1] if inputs_embeds is not None else None,
397
+ attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
398
+ cache_position=cache_position,
399
+ batch_idx=b_idx,
400
+ )
401
+ logits.append(output.logits)
402
+
403
+ logits = torch.cat(logits, dim=0)
404
+
405
+ # Decoder
406
+ else:
407
+ logits = self.language_model.decoder(
408
+ input_ids=input_ids,
409
+ inputs_embeds=inputs_embeds,
410
+ cache_position=cache_position,
411
+ ).logits
412
+
413
+ if not return_dict:
414
+ return logits, generate_idx
415
+ else:
416
+ return RBLNDecoderOnlyForCausalLMOutput(
417
+ logits=logits,
418
+ generate_idx=generate_idx,
419
+ )
@@ -12,9 +12,14 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from typing import Any, Dict, Optional
15
+ from typing import Any, Optional
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
+ from ....utils.logging import get_logger
19
+ from ...models.clip import RBLNCLIPVisionModelConfig
20
+
21
+
22
+ logger = get_logger(__name__)
18
23
 
19
24
 
20
25
  class RBLNLlavaNextForConditionalGenerationConfig(RBLNModelConfig):
@@ -33,7 +38,7 @@ class RBLNLlavaNextForConditionalGenerationConfig(RBLNModelConfig):
33
38
  batch_size: Optional[int] = None,
34
39
  vision_tower: Optional[RBLNModelConfig] = None,
35
40
  language_model: Optional[RBLNModelConfig] = None,
36
- **kwargs: Dict[str, Any],
41
+ **kwargs: Any,
37
42
  ):
38
43
  """
39
44
  Args:
@@ -50,5 +55,17 @@ class RBLNLlavaNextForConditionalGenerationConfig(RBLNModelConfig):
50
55
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
51
56
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
52
57
 
53
- self.vision_tower = vision_tower
58
+ self.vision_tower = self.init_submodule_config(
59
+ RBLNCLIPVisionModelConfig,
60
+ vision_tower,
61
+ )
62
+
63
+ if self.vision_tower.output_hidden_states is False:
64
+ raise ValueError(
65
+ f"LlavaNext requires output_hidden_states to be True, but found output_hidden_states={self.vision_tower.output_hidden_states}. "
66
+ f"Please compile again with the correct argument."
67
+ )
68
+ else:
69
+ self.vision_tower.output_hidden_states = True
70
+
54
71
  self.language_model = language_model
@@ -18,29 +18,19 @@ from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
18
18
 
19
19
  import numpy as np
20
20
  import torch
21
- from transformers import (
22
- AutoModelForVision2Seq,
23
- LlavaNextForConditionalGeneration,
24
- PretrainedConfig,
25
- PreTrainedModel,
26
- )
21
+ from transformers import AutoModelForVision2Seq, LlavaNextForConditionalGeneration, PretrainedConfig, PreTrainedModel
27
22
  from transformers.modeling_outputs import BaseModelOutputWithPooling
28
23
 
29
24
  from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
30
25
  from ....modeling import RBLNModel
31
26
  from ....utils.logging import get_logger
32
- from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyOutput
27
+ from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyForCausalLMOutput
33
28
 
34
29
 
35
30
  logger = get_logger(__name__)
36
31
 
37
32
  if TYPE_CHECKING:
38
- from transformers import (
39
- AutoFeatureExtractor,
40
- AutoProcessor,
41
- AutoTokenizer,
42
- PretrainedConfig,
43
- )
33
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig
44
34
 
45
35
 
46
36
  class LoopVisionTower:
@@ -258,7 +248,7 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
258
248
 
259
249
  def _update_model_kwargs_for_generation(
260
250
  self,
261
- outputs: RBLNDecoderOnlyOutput,
251
+ outputs: RBLNDecoderOnlyForCausalLMOutput,
262
252
  model_kwargs: Dict[str, Any],
263
253
  **kwargs,
264
254
  ) -> Dict[str, Any]:
@@ -359,7 +349,7 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
359
349
  generate_idx: Optional[torch.Tensor] = None,
360
350
  batch_idx: Optional[int] = None,
361
351
  **kwargs,
362
- ) -> Union[Tuple, RBLNDecoderOnlyOutput]:
352
+ ) -> Union[Tuple, RBLNDecoderOnlyForCausalLMOutput]:
363
353
  vision_feature_layer = (
364
354
  vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
365
355
  )
@@ -418,7 +408,7 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
418
408
  cache_position=cache_position,
419
409
  )
420
410
  logits = output.logits
421
- return RBLNDecoderOnlyOutput(logits=logits, generate_idx=generate_idx)
411
+ return RBLNDecoderOnlyForCausalLMOutput(logits=logits, generate_idx=generate_idx)
422
412
 
423
413
  # Almost copied from : https://github.com/huggingface/transformers/blob/6b550462139655d488d4c663086a63e98713c6b9/src/transformers/models/llava_next/modeling_llava_next.py
424
414
  def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
@@ -20,7 +20,6 @@ import torch.nn as nn
20
20
 
21
21
  from ..decoderonly.decoderonly_architecture import (
22
22
  DecoderOnlyAttention,
23
- DecoderOnlyForCausalLM,
24
23
  DecoderOnlyLayer,
25
24
  DecoderOnlyModel,
26
25
  DecoderOnlyWrapper,
@@ -55,27 +54,20 @@ class MidmLMHeadModelWrapper(DecoderOnlyWrapper):
55
54
  self.config.partial_rotary_factor = self.config.rotary_percentage
56
55
  return super().get_rotary_emb(max_seq_len=max_seq_len)
57
56
 
58
- def convert_to_rbln_causal_lm(self, causal_lm: "MidmLMHeadModel", max_seq_len: int):
59
- if self.attn_impl != "eager":
60
- raise NotImplementedError(f"flash attention ({self.attn_impl}) is not implemented for {self.__class__}")
61
- new_layers = []
62
- for layer in causal_lm.transformer.h:
63
- new_self_attn = MidmAttention(
64
- layer.attn,
65
- self.use_attention_mask,
66
- kvcache_block_size=self.kvcache_block_size,
67
- use_position_ids=self.use_position_ids,
68
- )
69
- new_layer = MidmLayer(layer, new_self_attn)
70
- new_layers.append(new_layer)
71
- new_model = MidmModel(
72
- causal_lm.transformer,
73
- new_layers,
74
- max_seq_len=max_seq_len,
75
- sliding_window_layers=self.sliding_window_layers,
76
- )
77
- new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
78
- return new_causal_lm
57
+ def get_rbln_attn_class(self):
58
+ return MidmAttention
59
+
60
+ def get_rbln_layer_class(self):
61
+ return MidmLayer
62
+
63
+ def get_rbln_model_class(self):
64
+ return MidmModel
65
+
66
+ def get_model_layer(self, causal_lm: "MidmLMHeadModel"):
67
+ return causal_lm.transformer
68
+
69
+ def get_decoder_layers(self, causal_lm: "MidmLMHeadModel"):
70
+ return causal_lm.transformer.h
79
71
 
80
72
 
81
73
  class MidmModel(DecoderOnlyModel):
@@ -12,5 +12,5 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from .configuration_mistral import RBLNMistralForCausalLMConfig
16
- from .modeling_mistral import RBLNMistralForCausalLM
15
+ from .configuration_mistral import RBLNMistralForCausalLMConfig, RBLNMistralModelConfig
16
+ from .modeling_mistral import RBLNMistralForCausalLM, RBLNMistralModel
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
15
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelConfig, RBLNDecoderOnlyModelForCausalLMConfig
16
16
 
17
17
 
18
18
  class RBLNMistralForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
@@ -40,3 +40,11 @@ class RBLNMistralForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
40
40
  )
41
41
  ```
42
42
  """
43
+
44
+
45
+ class RBLNMistralModelConfig(RBLNDecoderOnlyModelConfig):
46
+ """
47
+ Configuration class for RBLN Mistral models.
48
+
49
+ This class is an alias of RBLNDecoderOnlyModelConfig.
50
+ """
@@ -15,5 +15,5 @@
15
15
  from ..decoderonly.decoderonly_architecture import DecoderOnlyWrapper
16
16
 
17
17
 
18
- class MistralForCausalLMWrapper(DecoderOnlyWrapper):
18
+ class MistralWrapper(DecoderOnlyWrapper):
19
19
  pass
@@ -15,8 +15,12 @@
15
15
  from transformers import PretrainedConfig
16
16
 
17
17
  from ....utils import logging
18
- from ...models.decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyModelForCausalLMConfig
19
- from .mistral_architecture import MistralForCausalLMWrapper
18
+ from ...models.decoderonly import (
19
+ RBLNDecoderOnlyModel,
20
+ RBLNDecoderOnlyModelForCausalLM,
21
+ RBLNDecoderOnlyModelForCausalLMConfig,
22
+ )
23
+ from .mistral_architecture import MistralWrapper
20
24
 
21
25
 
22
26
  logger = logging.get_logger(__name__)
@@ -79,7 +83,26 @@ class RBLNMistralForCausalLM(RBLNDecoderOnlyModelForCausalLM):
79
83
  ```
80
84
  """
81
85
 
82
- _decoder_wrapper_cls = MistralForCausalLMWrapper
86
+ _decoder_wrapper_cls = MistralWrapper
87
+
88
+ @classmethod
89
+ def _update_sliding_window_config(
90
+ cls, model_config: PretrainedConfig, rbln_config: RBLNDecoderOnlyModelForCausalLMConfig
91
+ ):
92
+ rbln_config.cache_impl = "sliding_window"
93
+ rbln_config.sliding_window = model_config.sliding_window
94
+ rbln_config.sliding_window_layers = list(range(model_config.num_hidden_layers))
95
+
96
+ return rbln_config
97
+
98
+
99
+ class RBLNMistralModel(RBLNDecoderOnlyModel):
100
+ """
101
+ The Mistral Model transformer without a language modeling head.
102
+ This model inherits from [`RBLNDecoderOnlyModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
103
+ """
104
+
105
+ _decoder_wrapper_cls = MistralWrapper
83
106
 
84
107
  @classmethod
85
108
  def _update_sliding_window_config(
@@ -12,5 +12,5 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from .configuration_opt import RBLNOPTForCausalLMConfig
16
- from .modeling_opt import RBLNOPTForCausalLM
15
+ from .configuration_opt import RBLNOPTForCausalLMConfig, RBLNOPTModelConfig
16
+ from .modeling_opt import RBLNOPTForCausalLM, RBLNOPTModel
@@ -12,7 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
15
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelConfig, RBLNDecoderOnlyModelForCausalLMConfig
16
16
 
17
17
 
18
18
  class RBLNOPTForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
@@ -20,3 +20,10 @@ class RBLNOPTForCausalLMConfig(RBLNDecoderOnlyModelForCausalLMConfig):
20
20
  Configuration class for OPT causal language model.
21
21
  Inherits from RBLNDecoderOnlyModelForCausalLMConfig with no additional parameters.
22
22
  """
23
+
24
+
25
+ class RBLNOPTModelConfig(RBLNDecoderOnlyModelConfig):
26
+ """
27
+ Configuration class for OPT model.
28
+ Inherits from RBLNDecoderOnlyModelConfig with no additional parameters.
29
+ """