optimum-rbln 0.8.1a3__py3-none-any.whl → 0.8.1a5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +4 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/diffusers/models/controlnet.py +1 -1
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +4 -1
- optimum/rbln/transformers/__init__.py +2 -0
- optimum/rbln/transformers/models/__init__.py +8 -0
- optimum/rbln/transformers/models/colpali/__init__.py +2 -0
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +221 -0
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +68 -0
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +383 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +0 -18
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +2 -2
- {optimum_rbln-0.8.1a3.dist-info → optimum_rbln-0.8.1a5.dist-info}/METADATA +5 -5
- {optimum_rbln-0.8.1a3.dist-info → optimum_rbln-0.8.1a5.dist-info}/RECORD +16 -12
- {optimum_rbln-0.8.1a3.dist-info → optimum_rbln-0.8.1a5.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.1a3.dist-info → optimum_rbln-0.8.1a5.dist-info}/licenses/LICENSE +0 -0
optimum/rbln/__init__.py
CHANGED
@@ -70,6 +70,8 @@ _import_structure = {
|
|
70
70
|
"RBLNCLIPVisionModelConfig",
|
71
71
|
"RBLNCLIPVisionModelWithProjection",
|
72
72
|
"RBLNCLIPVisionModelWithProjectionConfig",
|
73
|
+
"RBLNColPaliForRetrieval",
|
74
|
+
"RBLNColPaliForRetrievalConfig",
|
73
75
|
"RBLNDecoderOnlyModelForCausalLM",
|
74
76
|
"RBLNDecoderOnlyModelForCausalLMConfig",
|
75
77
|
"RBLNDistilBertForQuestionAnswering",
|
@@ -297,6 +299,8 @@ if TYPE_CHECKING:
|
|
297
299
|
RBLNCLIPVisionModelConfig,
|
298
300
|
RBLNCLIPVisionModelWithProjection,
|
299
301
|
RBLNCLIPVisionModelWithProjectionConfig,
|
302
|
+
RBLNColPaliForRetrieval,
|
303
|
+
RBLNColPaliForRetrievalConfig,
|
300
304
|
RBLNDecoderOnlyModelForCausalLM,
|
301
305
|
RBLNDecoderOnlyModelForCausalLMConfig,
|
302
306
|
RBLNDistilBertForQuestionAnswering,
|
optimum/rbln/__version__.py
CHANGED
@@ -17,5 +17,5 @@ __version__: str
|
|
17
17
|
__version_tuple__: VERSION_TUPLE
|
18
18
|
version_tuple: VERSION_TUPLE
|
19
19
|
|
20
|
-
__version__ = version = '0.8.
|
21
|
-
__version_tuple__ = version_tuple = (0, 8, 1, '
|
20
|
+
__version__ = version = '0.8.1a5'
|
21
|
+
__version_tuple__ = version_tuple = (0, 8, 1, 'a5')
|
@@ -16,7 +16,7 @@ from typing import TYPE_CHECKING, Dict, Optional, Union
|
|
16
16
|
|
17
17
|
import torch
|
18
18
|
from diffusers import ControlNetModel
|
19
|
-
from diffusers.models.controlnet import ControlNetOutput
|
19
|
+
from diffusers.models.controlnets.controlnet import ControlNetOutput
|
20
20
|
from transformers import PretrainedConfig
|
21
21
|
|
22
22
|
from ...configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
@@ -185,7 +185,10 @@ class RBLNUNet2DConditionModel(RBLNModel):
|
|
185
185
|
rbln_config: RBLNUNet2DConditionModelConfig,
|
186
186
|
image_size: Optional[Tuple[int, int]] = None,
|
187
187
|
) -> Tuple[int, int]:
|
188
|
-
|
188
|
+
if hasattr(pipe, "movq"):
|
189
|
+
scale_factor = 2 ** (len(pipe.movq.config.block_out_channels) - 1)
|
190
|
+
else:
|
191
|
+
scale_factor = pipe.vae_scale_factor
|
189
192
|
|
190
193
|
if image_size is None:
|
191
194
|
if "Img2Img" in pipe.__class__.__name__:
|
@@ -50,6 +50,8 @@ _import_structure = {
|
|
50
50
|
"RBLNBlip2QFormerModelConfig",
|
51
51
|
"RBLNBlip2VisionModel",
|
52
52
|
"RBLNBlip2VisionModelConfig",
|
53
|
+
"RBLNColPaliForRetrieval",
|
54
|
+
"RBLNColPaliForRetrievalConfig",
|
53
55
|
"RBLNCLIPTextModel",
|
54
56
|
"RBLNCLIPTextModelConfig",
|
55
57
|
"RBLNCLIPTextModelWithProjection",
|
@@ -69,6 +69,10 @@ _import_structure = {
|
|
69
69
|
"RBLNCLIPVisionModelWithProjection",
|
70
70
|
"RBLNCLIPVisionModelWithProjectionConfig",
|
71
71
|
],
|
72
|
+
"colpali": [
|
73
|
+
"RBLNColPaliForRetrieval",
|
74
|
+
"RBLNColPaliForRetrievalConfig",
|
75
|
+
],
|
72
76
|
"distilbert": [
|
73
77
|
"RBLNDistilBertForQuestionAnswering",
|
74
78
|
"RBLNDistilBertForQuestionAnsweringConfig",
|
@@ -193,6 +197,10 @@ if TYPE_CHECKING:
|
|
193
197
|
RBLNCLIPVisionModelWithProjection,
|
194
198
|
RBLNCLIPVisionModelWithProjectionConfig,
|
195
199
|
)
|
200
|
+
from .colpali import (
|
201
|
+
RBLNColPaliForRetrieval,
|
202
|
+
RBLNColPaliForRetrievalConfig,
|
203
|
+
)
|
196
204
|
from .decoderonly import (
|
197
205
|
RBLNDecoderOnlyModelForCausalLM,
|
198
206
|
RBLNDecoderOnlyModelForCausalLMConfig,
|
@@ -0,0 +1,221 @@
|
|
1
|
+
from typing import List, Optional, Tuple, Union
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch import nn
|
5
|
+
from transformers import GemmaForCausalLM, GemmaModel
|
6
|
+
|
7
|
+
from ..decoderonly.decoderonly_architecture import (
|
8
|
+
RotaryEmbedding,
|
9
|
+
apply_rotary_pos_emb,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
def slice_and_unsqueeze_cos_sin(cos, sin, position_ids):
|
14
|
+
"""Slice cos[cache_position], sin[cache_position] vector for the query."""
|
15
|
+
cos = cos[position_ids[0]][None, None, None, :, :]
|
16
|
+
sin = sin[position_ids[0]][None, None, None, :, :]
|
17
|
+
|
18
|
+
return cos, sin
|
19
|
+
|
20
|
+
|
21
|
+
class RBLNColPaliForRetrievalWrapper(nn.Module):
|
22
|
+
def __init__(
|
23
|
+
self,
|
24
|
+
causal_lm: GemmaForCausalLM,
|
25
|
+
embedding_proj_layer: nn.Module,
|
26
|
+
max_seq_len: int,
|
27
|
+
output_hidden_states: bool = False,
|
28
|
+
):
|
29
|
+
super().__init__()
|
30
|
+
self.text_config = causal_lm.config
|
31
|
+
self.rotary_emb = self.get_rotary_emb(max_seq_len=max_seq_len)
|
32
|
+
|
33
|
+
self.output_hidden_states = output_hidden_states
|
34
|
+
self.language_model = self.convert_to_rbln_language_model(causal_lm.model, max_seq_len)
|
35
|
+
|
36
|
+
self.num_hidden_layers = getattr(self.text_config, "num_hidden_layers", None)
|
37
|
+
self.embedding_proj_layer = embedding_proj_layer
|
38
|
+
|
39
|
+
def get_rotary_emb(self, max_seq_len):
|
40
|
+
return RotaryEmbedding(config=self.text_config, max_seq_len_cached=max_seq_len)
|
41
|
+
|
42
|
+
def convert_to_rbln_language_model(self, gemma_model: GemmaModel, max_seq_len: int):
|
43
|
+
new_layers = []
|
44
|
+
for layer in gemma_model.layers:
|
45
|
+
new_self_attn = ColPaliAttention(
|
46
|
+
layer.self_attn,
|
47
|
+
)
|
48
|
+
new_layer = ColPaliLayer(layer, new_self_attn)
|
49
|
+
new_layers.append(new_layer)
|
50
|
+
|
51
|
+
new_model = ColPaliModel(
|
52
|
+
gemma_model,
|
53
|
+
new_layers,
|
54
|
+
output_hidden_states=self.output_hidden_states,
|
55
|
+
max_seq_len=max_seq_len,
|
56
|
+
)
|
57
|
+
|
58
|
+
return new_model
|
59
|
+
|
60
|
+
def forward(self, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor):
|
61
|
+
attention_mask = (1.0 - attention_mask) * torch.finfo(torch.float32).min
|
62
|
+
attention_mask = attention_mask[:, None, None, None, :]
|
63
|
+
|
64
|
+
hidden_states, all_hidden_states = self.language_model(
|
65
|
+
inputs_embeds=inputs_embeds,
|
66
|
+
attention_mask=attention_mask,
|
67
|
+
rotary_emb=self.rotary_emb,
|
68
|
+
position_ids=position_ids,
|
69
|
+
)
|
70
|
+
embeddings = self.embedding_proj_layer(hidden_states)
|
71
|
+
|
72
|
+
if self.output_hidden_states:
|
73
|
+
return embeddings, all_hidden_states
|
74
|
+
else:
|
75
|
+
return embeddings
|
76
|
+
|
77
|
+
|
78
|
+
class ColPaliModel(nn.Module):
|
79
|
+
def __init__(
|
80
|
+
self, model, layers: List["ColPaliLayer"], output_hidden_states: bool = False, max_seq_len: int = 2048
|
81
|
+
):
|
82
|
+
super().__init__()
|
83
|
+
self._original_mod = model
|
84
|
+
self.layers = nn.ModuleList(layers)
|
85
|
+
self.output_hidden_states = output_hidden_states
|
86
|
+
self.norm = self._original_mod.norm
|
87
|
+
self.hidden_size = self._original_mod.config.hidden_size
|
88
|
+
self.max_seq_len = max_seq_len
|
89
|
+
|
90
|
+
def forward(
|
91
|
+
self,
|
92
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
93
|
+
attention_mask: torch.Tensor = None,
|
94
|
+
rotary_emb: Optional[Union[nn.Module, torch.Tensor]] = None,
|
95
|
+
position_ids: Optional[torch.Tensor] = None,
|
96
|
+
):
|
97
|
+
hidden_states = inputs_embeds * self.hidden_size**0.5
|
98
|
+
|
99
|
+
cos, sin = rotary_emb(hidden_states, self.max_seq_len) # dtype carrier, max_seq_len
|
100
|
+
cos, sin = slice_and_unsqueeze_cos_sin(cos, sin, position_ids)
|
101
|
+
|
102
|
+
all_hidden_states = () if self.output_hidden_states else None
|
103
|
+
for layer in self.layers:
|
104
|
+
if self.output_hidden_states:
|
105
|
+
all_hidden_states += (hidden_states,)
|
106
|
+
|
107
|
+
hidden_states = layer(
|
108
|
+
hidden_states=hidden_states,
|
109
|
+
attention_mask=attention_mask,
|
110
|
+
cos=cos,
|
111
|
+
sin=sin,
|
112
|
+
)
|
113
|
+
hidden_states = self.norm(hidden_states)
|
114
|
+
|
115
|
+
if self.output_hidden_states:
|
116
|
+
all_hidden_states += (hidden_states,)
|
117
|
+
|
118
|
+
return hidden_states, all_hidden_states
|
119
|
+
|
120
|
+
|
121
|
+
class ColPaliLayer(nn.Module):
|
122
|
+
def __init__(self, layer, self_attn: "ColPaliAttention"):
|
123
|
+
super().__init__()
|
124
|
+
self._original_mod = layer
|
125
|
+
self.self_attn = self_attn
|
126
|
+
self.mlp = layer.mlp
|
127
|
+
self.input_layernorm = layer.input_layernorm
|
128
|
+
self.post_attention_layernorm = layer.post_attention_layernorm
|
129
|
+
|
130
|
+
def forward(
|
131
|
+
self,
|
132
|
+
hidden_states: torch.Tensor,
|
133
|
+
attention_mask: Optional[torch.Tensor] = None,
|
134
|
+
cos: Optional[torch.Tensor] = None,
|
135
|
+
sin: Optional[torch.Tensor] = None,
|
136
|
+
) -> Tuple[torch.FloatTensor]:
|
137
|
+
residual = hidden_states
|
138
|
+
hidden_states = self.input_layernorm(hidden_states)
|
139
|
+
|
140
|
+
# Self Attention
|
141
|
+
hidden_states = self.self_attn(
|
142
|
+
hidden_states=hidden_states,
|
143
|
+
attention_mask=attention_mask,
|
144
|
+
cos=cos,
|
145
|
+
sin=sin,
|
146
|
+
)
|
147
|
+
hidden_states = residual + hidden_states
|
148
|
+
|
149
|
+
# Fully Connected
|
150
|
+
residual = hidden_states
|
151
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
152
|
+
hidden_states = self.mlp(hidden_states)
|
153
|
+
hidden_states = residual + hidden_states
|
154
|
+
|
155
|
+
return hidden_states
|
156
|
+
|
157
|
+
|
158
|
+
class ColPaliAttention(nn.Module):
|
159
|
+
def __init__(self, self_attn):
|
160
|
+
super().__init__()
|
161
|
+
self._original_mod = self_attn
|
162
|
+
self.num_heads = getattr(self._original_mod, "num_heads", None) or getattr(
|
163
|
+
self._original_mod.config, "num_attention_heads"
|
164
|
+
)
|
165
|
+
self.head_dim = self._original_mod.head_dim
|
166
|
+
self.scaling = self.head_dim**-0.5
|
167
|
+
|
168
|
+
if hasattr(self._original_mod, "num_key_value_heads"):
|
169
|
+
self.num_key_value_heads = self._original_mod.num_key_value_heads
|
170
|
+
elif hasattr(self._original_mod, "config") and hasattr(self._original_mod.config, "num_key_value_heads"):
|
171
|
+
self.num_key_value_heads = self._original_mod.config.num_key_value_heads
|
172
|
+
else:
|
173
|
+
self.num_key_value_heads = self.num_heads
|
174
|
+
|
175
|
+
self.__post_init__()
|
176
|
+
|
177
|
+
def __post_init__(self):
|
178
|
+
self.q_proj = self._original_mod.q_proj
|
179
|
+
self.k_proj = self._original_mod.k_proj
|
180
|
+
self.v_proj = self._original_mod.v_proj
|
181
|
+
self.o_proj = self._original_mod.o_proj
|
182
|
+
|
183
|
+
def projection(self, hidden_states) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
184
|
+
query_states = self.q_proj(hidden_states)
|
185
|
+
key_states = self.k_proj(hidden_states)
|
186
|
+
value_states = self.v_proj(hidden_states)
|
187
|
+
|
188
|
+
return query_states, key_states, value_states
|
189
|
+
|
190
|
+
def forward(
|
191
|
+
self,
|
192
|
+
hidden_states: torch.Tensor,
|
193
|
+
attention_mask: torch.Tensor,
|
194
|
+
cos: Optional[torch.Tensor] = None,
|
195
|
+
sin: Optional[torch.Tensor] = None,
|
196
|
+
):
|
197
|
+
batch_size, query_length, _ = hidden_states.size()
|
198
|
+
|
199
|
+
query_states, key_states, value_states = self.projection(hidden_states=hidden_states)
|
200
|
+
|
201
|
+
query_states = query_states.view(batch_size, query_length, 1, self.num_heads, self.head_dim).transpose(1, 3)
|
202
|
+
key_states = key_states.view(batch_size, query_length, 1, self.num_key_value_heads, self.head_dim).transpose(
|
203
|
+
1, 3
|
204
|
+
)
|
205
|
+
value_states = value_states.view(
|
206
|
+
batch_size, query_length, 1, self.num_key_value_heads, self.head_dim
|
207
|
+
).transpose(1, 3)
|
208
|
+
|
209
|
+
if cos is not None and sin is not None:
|
210
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
211
|
+
|
212
|
+
attn_weights = torch.matmul(query_states, key_states.transpose(3, 4)) * self.scaling
|
213
|
+
attn_weights = attn_weights + attention_mask
|
214
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32)
|
215
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
216
|
+
attn_output = attn_output.transpose(1, 3)
|
217
|
+
|
218
|
+
attn_output = attn_output.reshape(batch_size, query_length, -1)
|
219
|
+
attn_output = self.o_proj(attn_output)
|
220
|
+
|
221
|
+
return attn_output
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
from typing import List, Optional, Union
|
15
|
+
|
16
|
+
from ....configuration_utils import RBLNModelConfig
|
17
|
+
|
18
|
+
|
19
|
+
class RBLNColPaliForRetrievalConfig(RBLNModelConfig):
|
20
|
+
"""
|
21
|
+
Configuration class for RBLN ColPali models for document retrieval.
|
22
|
+
|
23
|
+
This class extends RBLNModelConfig with specific configurations for ColPali models,
|
24
|
+
including vision tower settings and multi-sequence length support.
|
25
|
+
|
26
|
+
Example usage:
|
27
|
+
```python
|
28
|
+
from optimum.rbln import RBLNColPaliForRetrieval, RBLNColPaliForRetrievalConfig
|
29
|
+
|
30
|
+
# Create a configuration object
|
31
|
+
config = RBLNColPaliForRetrievalConfig(
|
32
|
+
max_seq_lens=1152,
|
33
|
+
output_hidden_states=False,
|
34
|
+
tensor_parallel_size=4
|
35
|
+
)
|
36
|
+
|
37
|
+
# Use the configuration with from_pretrained
|
38
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
39
|
+
"vidore/colpali-v1.3-hf",
|
40
|
+
export=True,
|
41
|
+
rbln_config=config
|
42
|
+
)
|
43
|
+
```
|
44
|
+
"""
|
45
|
+
|
46
|
+
submodules = ["vision_tower"]
|
47
|
+
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
max_seq_lens: Union[int, List[int]] = None,
|
51
|
+
output_hidden_states: Optional[bool] = None,
|
52
|
+
vision_tower: Optional[RBLNModelConfig] = None,
|
53
|
+
**kwargs,
|
54
|
+
):
|
55
|
+
"""
|
56
|
+
Args:
|
57
|
+
vision_tower (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
|
58
|
+
max_seq_lens (Union[int, List[int]]): The maximum sequence lengths for the language model.
|
59
|
+
This can be multiple values, and the model will be compiled for each max_seq_len, allowing selection of the most appropriate max_seq_len at inference time.
|
60
|
+
output_hidden_states (Optional[bool]): Whether to output the hidden states of the language model.
|
61
|
+
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
62
|
+
Raises:
|
63
|
+
ValueError: If batch_size is not a positive integer.
|
64
|
+
"""
|
65
|
+
super().__init__(**kwargs)
|
66
|
+
self.vision_tower = vision_tower
|
67
|
+
self.max_seq_lens = max_seq_lens
|
68
|
+
self.output_hidden_states = output_hidden_states
|
@@ -0,0 +1,383 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import bisect
|
16
|
+
from pathlib import Path
|
17
|
+
from typing import TYPE_CHECKING, Any, Optional, Union
|
18
|
+
|
19
|
+
import torch
|
20
|
+
from transformers import (
|
21
|
+
PretrainedConfig,
|
22
|
+
PreTrainedModel,
|
23
|
+
)
|
24
|
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
25
|
+
from transformers.modeling_utils import no_init_weights
|
26
|
+
from transformers.models.colpali.modeling_colpali import ColPaliForRetrievalOutput
|
27
|
+
from transformers.models.paligemma.modeling_paligemma import PaliGemmaMultiModalProjector
|
28
|
+
|
29
|
+
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
30
|
+
from ....modeling import RBLNModel
|
31
|
+
from .colpali_architecture import RBLNColPaliForRetrievalWrapper
|
32
|
+
|
33
|
+
|
34
|
+
if TYPE_CHECKING:
|
35
|
+
from transformers import (
|
36
|
+
AutoFeatureExtractor,
|
37
|
+
AutoProcessor,
|
38
|
+
AutoTokenizer,
|
39
|
+
PretrainedConfig,
|
40
|
+
)
|
41
|
+
|
42
|
+
|
43
|
+
class LoopVisionTower:
|
44
|
+
def __init__(self, vision_tower: RBLNModel) -> None:
|
45
|
+
self.vision_tower = vision_tower
|
46
|
+
|
47
|
+
def forward(self, pixel_values, **kwargs):
|
48
|
+
batch_size = pixel_values.shape[0]
|
49
|
+
outputs = []
|
50
|
+
for i in range(batch_size):
|
51
|
+
outputs.append(self.vision_tower(pixel_values[i : i + 1]))
|
52
|
+
|
53
|
+
last_hidden_states = [output.last_hidden_state for output in outputs]
|
54
|
+
last_hidden_states = torch.cat(last_hidden_states, dim=0)
|
55
|
+
|
56
|
+
return BaseModelOutputWithPooling(
|
57
|
+
last_hidden_state=last_hidden_states,
|
58
|
+
)
|
59
|
+
|
60
|
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
61
|
+
return self.forward(*args, **kwds)
|
62
|
+
|
63
|
+
def __repr__(self) -> str:
|
64
|
+
return repr(self.vision_tower)
|
65
|
+
|
66
|
+
|
67
|
+
class LoopLanguageModel:
|
68
|
+
def __init__(self, language_model: RBLNModel, rbln_config: RBLNModelConfig) -> None:
|
69
|
+
self.language_model = language_model
|
70
|
+
self.rbln_config = rbln_config
|
71
|
+
|
72
|
+
def prepare_inputs(self, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor):
|
73
|
+
input_len = inputs_embeds.shape[1]
|
74
|
+
idx = bisect.bisect_left(self.rbln_config.max_seq_lens, input_len)
|
75
|
+
if idx == len(self.rbln_config.max_seq_lens):
|
76
|
+
raise ValueError(
|
77
|
+
f"Required seq_len({input_len}) is larger than available max_seq_lens({self.rbln_config.max_seq_lens})."
|
78
|
+
)
|
79
|
+
else:
|
80
|
+
max_seq_len = self.rbln_config.max_seq_lens[idx]
|
81
|
+
|
82
|
+
inputs_embed = torch.nn.functional.pad(inputs_embeds, (0, 0, 0, max_seq_len - input_len))
|
83
|
+
attn_mask = torch.nn.functional.pad(attention_mask, (0, max_seq_len - input_len)).to(torch.float32)
|
84
|
+
position_ids = torch.arange(max_seq_len, dtype=torch.int32).view(1, -1)
|
85
|
+
|
86
|
+
return inputs_embed, attn_mask, position_ids
|
87
|
+
|
88
|
+
def forward(self, inputs_embeds: torch.Tensor, attention_mask: torch.Tensor, **kwargs):
|
89
|
+
padded_inputs_embed, padded_attn_mask, padded_position_ids = self.prepare_inputs(inputs_embeds, attention_mask)
|
90
|
+
input_batch_size = inputs_embeds.shape[0]
|
91
|
+
input_seq_len = inputs_embeds.shape[1]
|
92
|
+
|
93
|
+
all_embeddings = []
|
94
|
+
all_hidden_states = []
|
95
|
+
for i in range(input_batch_size):
|
96
|
+
outputs = self.language_model(
|
97
|
+
inputs_embeds=padded_inputs_embed[i : i + 1],
|
98
|
+
attention_mask=padded_attn_mask[i : i + 1],
|
99
|
+
position_ids=padded_position_ids,
|
100
|
+
)
|
101
|
+
|
102
|
+
if self.rbln_config.output_hidden_states:
|
103
|
+
embedding = outputs[0]
|
104
|
+
hidden_states = outputs[1:]
|
105
|
+
else:
|
106
|
+
embedding = outputs
|
107
|
+
hidden_states = None
|
108
|
+
|
109
|
+
all_embeddings.append(embedding)
|
110
|
+
all_hidden_states.append(hidden_states)
|
111
|
+
|
112
|
+
embeddings = torch.cat(all_embeddings, dim=0)[:, :input_seq_len]
|
113
|
+
if self.rbln_config.output_hidden_states:
|
114
|
+
hidden_states = [
|
115
|
+
torch.cat(
|
116
|
+
[batch_hidden_states[layer_idx][:, :input_seq_len] for batch_hidden_states in all_hidden_states],
|
117
|
+
dim=0,
|
118
|
+
)
|
119
|
+
for layer_idx in range(len(all_hidden_states[0]))
|
120
|
+
]
|
121
|
+
return embeddings, tuple(hidden_states)
|
122
|
+
else:
|
123
|
+
return embeddings
|
124
|
+
|
125
|
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
126
|
+
return self.forward(*args, **kwds)
|
127
|
+
|
128
|
+
def __repr__(self) -> str:
|
129
|
+
return repr(self.language_model)
|
130
|
+
|
131
|
+
|
132
|
+
class RBLNColPaliForRetrieval(RBLNModel):
|
133
|
+
"""
|
134
|
+
The ColPali Model transformer for document retrieval using vision-language models.
|
135
|
+
This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
136
|
+
|
137
|
+
A class to convert and run pre-trained transformers based ColPaliForRetrieval model on RBLN devices.
|
138
|
+
It implements the methods to convert a pre-trained transformers ColPaliForRetrieval model into a RBLN transformer model by:
|
139
|
+
|
140
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
141
|
+
- compiling the resulting graph using the RBLN compiler.
|
142
|
+
|
143
|
+
**Configuration:**
|
144
|
+
This model uses [`RBLNColPaliForRetrievalConfig`] for configuration. When calling methods like `from_pretrained` or `from_model`,
|
145
|
+
the `rbln_config` parameter should be an instance of [`RBLNColPaliForRetrievalConfig`] or a dictionary conforming to its structure.
|
146
|
+
|
147
|
+
See the [`RBLNColPaliForRetrievalConfig`] class for all available configuration options.
|
148
|
+
|
149
|
+
Examples:
|
150
|
+
```python
|
151
|
+
from optimum.rbln import RBLNColPaliForRetrieval
|
152
|
+
|
153
|
+
# Simple usage using rbln_* arguments
|
154
|
+
# `max_seq_lens` is automatically inferred from the model config
|
155
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
156
|
+
"vidore/colpali-v1.3-hf",
|
157
|
+
export=True,
|
158
|
+
rbln_max_seq_lens=1152,
|
159
|
+
)
|
160
|
+
|
161
|
+
# Using a config dictionary
|
162
|
+
rbln_config = {
|
163
|
+
"max_seq_lens": 1152,
|
164
|
+
"output_hidden_states": False,
|
165
|
+
}
|
166
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
167
|
+
"vidore/colpali-v1.3-hf",
|
168
|
+
export=True,
|
169
|
+
rbln_config=rbln_config
|
170
|
+
)
|
171
|
+
|
172
|
+
# Using a RBLNColPaliForRetrievalConfig instance (recommended for type checking)
|
173
|
+
from optimum.rbln import RBLNColPaliForRetrievalConfig
|
174
|
+
|
175
|
+
config = RBLNColPaliForRetrievalConfig(
|
176
|
+
max_seq_lens=1152,
|
177
|
+
output_hidden_states=False,
|
178
|
+
tensor_parallel_size=4
|
179
|
+
)
|
180
|
+
model = RBLNColPaliForRetrieval.from_pretrained(
|
181
|
+
"vidore/colpali-v1.3-hf",
|
182
|
+
export=True,
|
183
|
+
rbln_config=config
|
184
|
+
)
|
185
|
+
```
|
186
|
+
"""
|
187
|
+
|
188
|
+
auto_model_class = None
|
189
|
+
_rbln_submodules = [
|
190
|
+
{"name": "vision_tower"},
|
191
|
+
]
|
192
|
+
|
193
|
+
def __post_init__(self, **kwargs):
|
194
|
+
self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
|
195
|
+
self.language_model = LoopLanguageModel(self.model[0], self.rbln_config)
|
196
|
+
|
197
|
+
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
198
|
+
self.embed_tokens = self._create_embedding_layer()
|
199
|
+
self.embed_tokens.load_state_dict(artifacts["embed_tokens"])
|
200
|
+
self.multi_modal_projector = self._create_multi_modal_projector()
|
201
|
+
self.multi_modal_projector.load_state_dict(artifacts["multi_modal_projector"])
|
202
|
+
|
203
|
+
return super().__post_init__(**kwargs)
|
204
|
+
|
205
|
+
def _create_embedding_layer(self):
|
206
|
+
with no_init_weights():
|
207
|
+
embed_tokens = torch.nn.Embedding(
|
208
|
+
self.config.text_config.vocab_size,
|
209
|
+
self.config.text_config.hidden_size,
|
210
|
+
self.config.text_config.pad_token_id,
|
211
|
+
)
|
212
|
+
return embed_tokens
|
213
|
+
|
214
|
+
def _create_multi_modal_projector(self):
|
215
|
+
with no_init_weights():
|
216
|
+
multi_modal_projector = PaliGemmaMultiModalProjector(self.config.vlm_config)
|
217
|
+
return multi_modal_projector
|
218
|
+
|
219
|
+
@classmethod
|
220
|
+
def wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
|
221
|
+
return RBLNColPaliForRetrievalWrapper(
|
222
|
+
causal_lm=model.vlm.language_model,
|
223
|
+
embedding_proj_layer=model.embedding_proj_layer,
|
224
|
+
max_seq_len=max(rbln_config.max_seq_lens),
|
225
|
+
output_hidden_states=rbln_config.output_hidden_states,
|
226
|
+
)
|
227
|
+
|
228
|
+
@classmethod
|
229
|
+
def save_torch_artifacts(
|
230
|
+
cls,
|
231
|
+
model: "PreTrainedModel",
|
232
|
+
save_dir_path: Path,
|
233
|
+
subfolder: str,
|
234
|
+
rbln_config: RBLNModelConfig,
|
235
|
+
):
|
236
|
+
save_dict = {}
|
237
|
+
save_dict["embed_tokens"] = model.vlm.get_input_embeddings().state_dict()
|
238
|
+
save_dict["multi_modal_projector"] = model.vlm.multi_modal_projector.state_dict()
|
239
|
+
torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
|
240
|
+
|
241
|
+
@classmethod
|
242
|
+
def _update_rbln_config(
|
243
|
+
cls,
|
244
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
245
|
+
model: Optional["PreTrainedModel"] = None,
|
246
|
+
model_config: Optional["PretrainedConfig"] = None,
|
247
|
+
rbln_config: Optional[RBLNModelConfig] = None,
|
248
|
+
) -> RBLNModelConfig:
|
249
|
+
hidden_size = model_config.vlm_config.text_config.hidden_size
|
250
|
+
if rbln_config.max_seq_lens is None:
|
251
|
+
rbln_config.max_seq_lens = [model_config.vlm_config.text_config.max_position_embeddings]
|
252
|
+
if isinstance(rbln_config.max_seq_lens, int):
|
253
|
+
rbln_config.max_seq_lens = [rbln_config.max_seq_lens]
|
254
|
+
rbln_config.max_seq_lens = sorted(set(rbln_config.max_seq_lens))
|
255
|
+
|
256
|
+
if rbln_config.output_hidden_states is None:
|
257
|
+
rbln_config.output_hidden_states = model_config.vlm_config.text_config.output_hidden_states
|
258
|
+
|
259
|
+
input_infos = []
|
260
|
+
for max_seq_len in rbln_config.max_seq_lens:
|
261
|
+
input_info = [
|
262
|
+
("inputs_embeds", [1, max_seq_len, hidden_size], "float32"),
|
263
|
+
("attention_mask", [1, max_seq_len], "float32"),
|
264
|
+
("position_ids", [1, max_seq_len], "int32"),
|
265
|
+
]
|
266
|
+
input_infos.append(input_info)
|
267
|
+
|
268
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_infos)
|
269
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
270
|
+
|
271
|
+
return rbln_config
|
272
|
+
|
273
|
+
@classmethod
|
274
|
+
def from_model(cls, model: "PreTrainedModel", *args, **kwargs):
|
275
|
+
if not hasattr(model, "vision_tower"):
|
276
|
+
model.vision_tower = model.vlm.vision_tower
|
277
|
+
del model.vlm.vision_tower
|
278
|
+
model = super().from_model(model, *args, **kwargs)
|
279
|
+
return model
|
280
|
+
|
281
|
+
@classmethod
|
282
|
+
def get_pytorch_model(cls, *args, **kwargs):
|
283
|
+
model = super().get_pytorch_model(*args, **kwargs)
|
284
|
+
model.vision_tower = model.vlm.vision_tower
|
285
|
+
del model.vlm.vision_tower
|
286
|
+
|
287
|
+
return model
|
288
|
+
|
289
|
+
def get_image_features(self, pixel_values: torch.Tensor):
|
290
|
+
# Projects the last hidden state from the vision model into language model space.
|
291
|
+
# Args:
|
292
|
+
# pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
293
|
+
# The tensors corresponding to the input images.
|
294
|
+
# Returns:
|
295
|
+
# image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
296
|
+
|
297
|
+
vision_outputs = self.vision_tower(pixel_values).last_hidden_state
|
298
|
+
image_features = self.multi_modal_projector(vision_outputs)
|
299
|
+
image_features = image_features / (self.config.text_config.hidden_size**0.5)
|
300
|
+
return image_features
|
301
|
+
|
302
|
+
def _preprocess_inputs(
|
303
|
+
self,
|
304
|
+
input_ids: Optional[torch.LongTensor] = None,
|
305
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
306
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
307
|
+
**kwargs,
|
308
|
+
):
|
309
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
310
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
311
|
+
|
312
|
+
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
|
313
|
+
if input_ids is not None and self.config.vlm_config.image_token_index >= self.config.text_config.vocab_size:
|
314
|
+
special_image_mask = input_ids == self.config.vlm_config.image_token_index
|
315
|
+
llm_input_ids = input_ids.clone()
|
316
|
+
llm_input_ids[special_image_mask] = 0
|
317
|
+
else:
|
318
|
+
llm_input_ids = input_ids
|
319
|
+
|
320
|
+
if inputs_embeds is None:
|
321
|
+
inputs_embeds = self.embed_tokens(llm_input_ids)
|
322
|
+
|
323
|
+
# Merge text and images
|
324
|
+
image_features = None
|
325
|
+
if pixel_values is not None:
|
326
|
+
image_features = self.get_image_features(pixel_values)
|
327
|
+
special_image_mask = (input_ids == self.config.vlm_config.image_token_index).unsqueeze(-1)
|
328
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
329
|
+
|
330
|
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
331
|
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
332
|
+
|
333
|
+
return inputs_embeds, image_features
|
334
|
+
|
335
|
+
def forward(
|
336
|
+
self,
|
337
|
+
input_ids: Optional[torch.LongTensor] = None,
|
338
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
339
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
340
|
+
attention_mask: Optional[torch.Tensor] = None,
|
341
|
+
output_attentions: Optional[bool] = None,
|
342
|
+
output_hidden_states: Optional[bool] = None,
|
343
|
+
return_dict: Optional[bool] = None,
|
344
|
+
**kwargs,
|
345
|
+
) -> ColPaliForRetrievalOutput:
|
346
|
+
if pixel_values is not None:
|
347
|
+
pixel_values = pixel_values.to(dtype=self.dtype)
|
348
|
+
|
349
|
+
if output_attentions:
|
350
|
+
raise ValueError("output_attentions is not supported for RBLNColPaliForRetrieval")
|
351
|
+
|
352
|
+
if output_hidden_states is not None and output_hidden_states != self.rbln_config.output_hidden_states:
|
353
|
+
raise ValueError(
|
354
|
+
f"Variable output_hidden_states {output_hidden_states} is not equal to rbln_config.output_hidden_states {self.rbln_config.output_hidden_states} "
|
355
|
+
f"Please compile again with the correct argument."
|
356
|
+
)
|
357
|
+
|
358
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
359
|
+
|
360
|
+
inputs_embeds, image_features = self._preprocess_inputs(
|
361
|
+
input_ids=input_ids, inputs_embeds=inputs_embeds, pixel_values=pixel_values
|
362
|
+
)
|
363
|
+
|
364
|
+
# Embedding_proj_layer is fused on the bottom of the language model.
|
365
|
+
outputs = self.language_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask)
|
366
|
+
|
367
|
+
embeddings = outputs if not self.rbln_config.output_hidden_states else outputs[0]
|
368
|
+
hidden_states = None if not self.rbln_config.output_hidden_states else outputs[1]
|
369
|
+
|
370
|
+
# L2 normalization
|
371
|
+
embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
372
|
+
|
373
|
+
if attention_mask is not None:
|
374
|
+
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
375
|
+
|
376
|
+
if not return_dict:
|
377
|
+
return (embeddings, hidden_states, image_features)
|
378
|
+
else:
|
379
|
+
return ColPaliForRetrievalOutput(
|
380
|
+
embeddings=embeddings,
|
381
|
+
hidden_states=hidden_states,
|
382
|
+
image_hidden_states=image_features,
|
383
|
+
)
|
@@ -11,7 +11,6 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
-
import importlib
|
15
14
|
import inspect
|
16
15
|
from collections import deque
|
17
16
|
from dataclasses import dataclass
|
@@ -124,23 +123,6 @@ class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
|
124
123
|
def can_generate(self):
|
125
124
|
return True
|
126
125
|
|
127
|
-
@classmethod
|
128
|
-
def get_pytorch_model(cls, *args, **kwargs):
|
129
|
-
model = super().get_pytorch_model(*args, **kwargs)
|
130
|
-
|
131
|
-
with no_init_weights():
|
132
|
-
model_cls_name = model.model.language_model.__class__.__name__
|
133
|
-
causal_model_cls_name = model_cls_name.replace("TextModel", "ForCausalLM")
|
134
|
-
causal_model_cls = getattr(importlib.import_module("transformers"), causal_model_cls_name)
|
135
|
-
new_language_model = causal_model_cls(model.model.language_model.config)
|
136
|
-
|
137
|
-
new_language_model.lm_head = model.lm_head
|
138
|
-
new_language_model.model = model.model.language_model
|
139
|
-
model.model.language_model = new_language_model
|
140
|
-
model.lm_head = None
|
141
|
-
del model.lm_head
|
142
|
-
return model
|
143
|
-
|
144
126
|
def __post_init__(self, **kwargs):
|
145
127
|
self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
|
146
128
|
self.language_model = self.rbln_submodules[1]
|
@@ -79,7 +79,7 @@ class Qwen2_5_VLVisionFullAttention(nn.Module):
|
|
79
79
|
super().__init__()
|
80
80
|
self._origin_model = model
|
81
81
|
self.num_heads = model.num_heads
|
82
|
-
self.head_dim = model.
|
82
|
+
self.head_dim = getattr(model, "head_dim", model.proj.in_features // model.num_heads)
|
83
83
|
self.qkv = model.qkv
|
84
84
|
self.proj = model.proj
|
85
85
|
|
@@ -114,7 +114,7 @@ class Qwen2_5_VLVisionWindowAttention(nn.Module):
|
|
114
114
|
super().__init__()
|
115
115
|
self._origin_model = model
|
116
116
|
self.num_heads = model.num_heads
|
117
|
-
self.head_dim = model.
|
117
|
+
self.head_dim = getattr(model, "head_dim", model.proj.in_features // model.num_heads)
|
118
118
|
self.qkv = model.qkv
|
119
119
|
self.proj = model.proj
|
120
120
|
self.window_seq_len = window_seq_len
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: optimum-rbln
|
3
|
-
Version: 0.8.
|
3
|
+
Version: 0.8.1a5
|
4
4
|
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
@@ -23,11 +23,11 @@ Classifier: Programming Language :: Python :: 3.12
|
|
23
23
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
24
24
|
Requires-Python: <3.13,>=3.9
|
25
25
|
Requires-Dist: accelerate>=1.0.1
|
26
|
-
Requires-Dist: diffusers
|
26
|
+
Requires-Dist: diffusers==0.34.0
|
27
27
|
Requires-Dist: packaging>=24.1
|
28
|
-
Requires-Dist: torch==2.
|
29
|
-
Requires-Dist: torchaudio<=2.
|
30
|
-
Requires-Dist: torchvision<=0.
|
28
|
+
Requires-Dist: torch==2.7.0
|
29
|
+
Requires-Dist: torchaudio<=2.7.0
|
30
|
+
Requires-Dist: torchvision<=0.22.0
|
31
31
|
Requires-Dist: transformers==4.51.3
|
32
32
|
Description-Content-Type: text/markdown
|
33
33
|
|
@@ -1,5 +1,5 @@
|
|
1
|
-
optimum/rbln/__init__.py,sha256=
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
1
|
+
optimum/rbln/__init__.py,sha256=Z5GM8hmc_cgNzhdfOAKbAQr-vFP24kC-IbiRaIOIxxE,14584
|
2
|
+
optimum/rbln/__version__.py,sha256=Ln2yvKWXaraNsP7hCs26LOEd96BBrL7JNrmQ42n0dqA,519
|
3
3
|
optimum/rbln/configuration_utils.py,sha256=o5oer7fBdE-MHLGNXoP35FjmuQbMmjEIDv0QE_k3kpo,32336
|
4
4
|
optimum/rbln/modeling.py,sha256=ZlJ_tOCWiFjDIlwJ_B_HOCO0kBduWrBAbW9VSEVIAFg,12088
|
5
5
|
optimum/rbln/modeling_base.py,sha256=5fUb1FaxfjApzJIkT8-SrPhuygGo_1Uc0i7UedawOeE,23393
|
@@ -20,7 +20,7 @@ optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.p
|
|
20
20
|
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=5pDsxol2tm9hYs8u6_6713VwHxCo-iNhAK5G4JVwNwU,7952
|
21
21
|
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=zg7aRyp8jYJuAnb_dTg6HdACCcAvhv1jX2FhEfRD6V0,7114
|
22
22
|
optimum/rbln/diffusers/models/__init__.py,sha256=mkCvJyH1KcwrsUvYSq_bVC79oOfyqtBSFDyPS1_48wA,1478
|
23
|
-
optimum/rbln/diffusers/models/controlnet.py,sha256=
|
23
|
+
optimum/rbln/diffusers/models/controlnet.py,sha256=6owledPe9BXhbZOG8lbuuYvpBU0UrQV7zmat6SoMXOM,10585
|
24
24
|
optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=dg17ZTUsiqTcbIaEE4fqew9uRbao0diQ21PXvRKIqKg,679
|
25
25
|
optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py,sha256=UwaYFHXKRJTzJDmfYMC7-xvaWTh7JUDQYD3bRiQs4ZA,8367
|
26
26
|
optimum/rbln/diffusers/models/autoencoders/vae.py,sha256=ja9yLhPYGmg1d3Kec6fS-6XgfS0yVJXuVsNDD0X3yHM,4048
|
@@ -29,7 +29,7 @@ optimum/rbln/diffusers/models/transformers/__init__.py,sha256=V8rSR7WzHs-i8Cwb_M
|
|
29
29
|
optimum/rbln/diffusers/models/transformers/prior_transformer.py,sha256=SWoeVK--BRMwuXVABNVtonmzJDusx0iz4Q3EAvJ9uN8,5395
|
30
30
|
optimum/rbln/diffusers/models/transformers/transformer_sd3.py,sha256=yF7sS0QvawowpV9hR5GeT8DaE8CCp3mj1njHHd9cKTc,6630
|
31
31
|
optimum/rbln/diffusers/models/unets/__init__.py,sha256=MaICuK9CWjgzejXy8y2NDrphuEq1rkzanF8u45k6O5I,655
|
32
|
-
optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=
|
32
|
+
optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=v3WS9EGKROE_QClXrxC7rmRko1BspAvAbeIfh83LK88,15832
|
33
33
|
optimum/rbln/diffusers/pipelines/__init__.py,sha256=5KLZ5LrpMzBya2e_3_PvEoPwG24U8JMexfw_ygZREKc,3140
|
34
34
|
optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
|
35
35
|
optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=3S9dogIHW8Bqg5kIlCudhCQG-4g3FcdOPEWhBOf7CJA,4059
|
@@ -61,11 +61,11 @@ optimum/rbln/ops/flash_attn.py,sha256=z39DJZSk94630ueoOCkiybxR5gzvNR-SRADHs0F6pz
|
|
61
61
|
optimum/rbln/ops/kv_cache_update.py,sha256=HjnHBR-oFrJQibsVnkYb0P5_-wEma8jl0mkjkylwakU,1270
|
62
62
|
optimum/rbln/ops/linear.py,sha256=1_7Hg-9wXxhu97fqPobotLQx17k7VPeSSL91_9Z7EDg,1018
|
63
63
|
optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
|
64
|
-
optimum/rbln/transformers/__init__.py,sha256=
|
64
|
+
optimum/rbln/transformers/__init__.py,sha256=MF7OaGf-KI9rz4EOzejxHTDYUB3RO2L02BquTe0PXmI,9107
|
65
65
|
optimum/rbln/transformers/configuration_generic.py,sha256=kNhPWtzF0IovUnrsXfxXdXITqgpfCAAedjfB6jSAhEg,5131
|
66
66
|
optimum/rbln/transformers/modeling_generic.py,sha256=u1JzjWcPsQgH_rqBzRVr582NARqOk7XVKgY4CdEfXe8,12228
|
67
67
|
optimum/rbln/transformers/modeling_rope_utils.py,sha256=6Zg3r-TeUk4WQAlr95pqfhuoAD_RQ4njT1rbO9uPL0Q,14379
|
68
|
-
optimum/rbln/transformers/models/__init__.py,sha256
|
68
|
+
optimum/rbln/transformers/models/__init__.py,sha256=VVQJgpUUnN4MPAQlOsxsw63w7WPK05ggFfRkGYuZFJQ,10266
|
69
69
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/__init__.py,sha256=I2vL4lrzbT5p4eJcH-EKHzEfcPkj_XVsie7jb9q6yic,775
|
70
70
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py,sha256=z7LJiVJPmnlCM3mcyhPJP8AufSrxO_dsPeJ51onq-Nc,833
|
71
71
|
optimum/rbln/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py,sha256=FIKEVWpIt6-JQX9B_rAfCrAPqdUHtR2i8D_X2k7639E,1498
|
@@ -85,6 +85,10 @@ optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=gx9pPXQfaIjDUN
|
|
85
85
|
optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
|
86
86
|
optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=mgtR_lS1_g5vAh_wWarff3-pwM_tzzRAWm7XkfhGwmo,3019
|
87
87
|
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=0u1JTlO47qoH_-qxWGvXLc67whddLzcuLoMB5KaMh94,7285
|
88
|
+
optimum/rbln/transformers/models/colpali/__init__.py,sha256=n3rueXT_oC0N8myoZiic0YkVK24CW5hZBPa-0L8so6Y,119
|
89
|
+
optimum/rbln/transformers/models/colpali/colpali_architecture.py,sha256=bWG7TehWRZkTh2y6mGkpd85_onWAyiyKdaQC9TFsy3E,8065
|
90
|
+
optimum/rbln/transformers/models/colpali/configuration_colpali.py,sha256=yPzLYON6qRJlBkzxFfIBzBWd2KjYWvdClO4iAqd_V7E,2609
|
91
|
+
optimum/rbln/transformers/models/colpali/modeling_colpali.py,sha256=jzvJCBrrCXSpjfmJ3O-VvPNFGWGaNbpOV09JwLPAZWs,15757
|
88
92
|
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=vQYZDDdoddwA7yKc5zzrq2Zs9sax-0p8rNF_aYfF4bk,1006
|
89
93
|
optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=cakn8RGo8gS3nmXdEqOfC2xUBOMGInROgLEbCOoLFR0,13398
|
90
94
|
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=YAn8J_lIq4IS-HM_gbi5Qov8_osxhWtBr5z_28QRbGM,49667
|
@@ -106,7 +110,7 @@ optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=Ojvum34EhDHWfMB4
|
|
106
110
|
optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
|
107
111
|
optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=eupMGTHJGJNNrAZ3GE6M6GQBAQzBb7KFJvalyDmbM-A,3063
|
108
112
|
optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=sgFQQbvEr15tb2Sxk_tgcgQFcjhKGbNSW6fm2u7-Vck,8609
|
109
|
-
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=
|
113
|
+
optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=IMrDtY2o-kzDQd3VG5qx_I8HejSxqGPDV2EqTjzrrfM,38220
|
110
114
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=socBMIBZSiLbrVN12rQ4nL9gFeT0axMgz6SWaCaD4Ac,704
|
111
115
|
optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=9sS6-EGapmow3rG9ViejK9qwrqy_X86VBxQ7u9x0Yqk,923
|
112
116
|
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=pnGgixjgjW7HULbs5211cC2guw_4e4-MlS69vdCRMMg,3206
|
@@ -144,7 +148,7 @@ optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLoh
|
|
144
148
|
optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
|
145
149
|
optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=U3ngIfkA58itqQZqTf-gbISMPoV7ipDttI7V2uwK_18,4155
|
146
150
|
optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=Q4U-avMkby-CunNXEERqvRZx9duC5i-6UmfF1376ciU,26336
|
147
|
-
optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=
|
151
|
+
optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=oU4MyNeDHzqD3dl1DgwrMev07yvMFhl_hXvV6tRdXCo,7422
|
148
152
|
optimum/rbln/transformers/models/resnet/__init__.py,sha256=0QqtEQF1IMYgEmmfXMGarCDS8kJB5tzODfwTEzDVZRg,837
|
149
153
|
optimum/rbln/transformers/models/resnet/configuration_resnet.py,sha256=KQd887jgNOl_Am3b407P2OvKtzkkeBS1cEhCfiN0tJg,769
|
150
154
|
optimum/rbln/transformers/models/resnet/modeling_resnet.py,sha256=E8vg3Rw_KsHt6vaOg0ungZD7sXe0T4OMP0X8NFG1EXI,816
|
@@ -191,7 +195,7 @@ optimum/rbln/utils/model_utils.py,sha256=4k5879Kh75m3x_vS4-qOGfqsOiAvc2kdNFFfvsF
|
|
191
195
|
optimum/rbln/utils/runtime_utils.py,sha256=LoKNK3AQNV_BSScstIZWjICkJf265MnUgy360BOocVI,5454
|
192
196
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
193
197
|
optimum/rbln/utils/submodule.py,sha256=w5mgPgncI740gVKMu3S-69DGNdUSI0bTZxegQGcZ98Y,5011
|
194
|
-
optimum_rbln-0.8.
|
195
|
-
optimum_rbln-0.8.
|
196
|
-
optimum_rbln-0.8.
|
197
|
-
optimum_rbln-0.8.
|
198
|
+
optimum_rbln-0.8.1a5.dist-info/METADATA,sha256=yetswBiXM1Cce75lQOgrUw3pNMuaxt6XoaclWnDlGIE,5299
|
199
|
+
optimum_rbln-0.8.1a5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
200
|
+
optimum_rbln-0.8.1a5.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
201
|
+
optimum_rbln-0.8.1a5.dist-info/RECORD,,
|
File without changes
|
File without changes
|