optimum-rbln 0.7.5a1__py3-none-any.whl → 0.7.5rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +10 -0
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/transformers/__init__.py +10 -0
- optimum/rbln/transformers/models/__init__.py +14 -0
- optimum/rbln/transformers/models/auto/__init__.py +1 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +7 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +114 -19
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +29 -10
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +5 -1
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +5 -1
- optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +69 -0
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +446 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +1057 -0
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
- optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
- optimum/rbln/transformers/models/opt/modeling_opt.py +2 -0
- optimum/rbln/transformers/models/opt/opt_architecture.py +4 -1
- optimum/rbln/transformers/models/phi/phi_architecture.py +4 -1
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +3 -2
- {optimum_rbln-0.7.5a1.dist-info → optimum_rbln-0.7.5rc0.dist-info}/METADATA +1 -1
- {optimum_rbln-0.7.5a1.dist-info → optimum_rbln-0.7.5rc0.dist-info}/RECORD +24 -20
- {optimum_rbln-0.7.5a1.dist-info → optimum_rbln-0.7.5rc0.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.7.5a1.dist-info → optimum_rbln-0.7.5rc0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,1057 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import inspect
|
15
|
+
from collections import deque
|
16
|
+
from dataclasses import dataclass
|
17
|
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
18
|
+
|
19
|
+
import rebel
|
20
|
+
import torch
|
21
|
+
from rebel.compile_context import CompileContext
|
22
|
+
from transformers import (
|
23
|
+
AutoModelForImageTextToText,
|
24
|
+
Gemma3ForConditionalGeneration,
|
25
|
+
PretrainedConfig,
|
26
|
+
PreTrainedModel,
|
27
|
+
)
|
28
|
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
29
|
+
from transformers.modeling_utils import no_init_weights
|
30
|
+
from transformers.models.gemma3.modeling_gemma3 import Gemma3TextScaledWordEmbedding
|
31
|
+
|
32
|
+
from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
|
33
|
+
from ....modeling import RBLNModel
|
34
|
+
from ....utils.logging import get_logger
|
35
|
+
from ..decoderonly.decoderonly_architecture import (
|
36
|
+
set_default_values,
|
37
|
+
validate_attention_method,
|
38
|
+
)
|
39
|
+
from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyOutput, RBLNRuntimeModel
|
40
|
+
from .configuration_gemma3 import RBLNGemma3ForCausalLMConfig
|
41
|
+
from .gemma3_architecture import Gemma3ForCausalLMWrapper
|
42
|
+
|
43
|
+
|
44
|
+
logger = get_logger()
|
45
|
+
|
46
|
+
|
47
|
+
if TYPE_CHECKING:
|
48
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, Gemma3ForConditionalGeneration
|
49
|
+
|
50
|
+
|
51
|
+
@dataclass
|
52
|
+
class RBLNGemma3ForCausalLMOutput(RBLNDecoderOnlyOutput):
|
53
|
+
attention_mask: Optional[torch.Tensor] = None
|
54
|
+
|
55
|
+
|
56
|
+
class LoopVisionTower:
|
57
|
+
def __init__(self, vision_tower: RBLNModel) -> None:
|
58
|
+
self.vision_tower = vision_tower
|
59
|
+
|
60
|
+
def forward(self, *args, **kwargs):
|
61
|
+
# Loop instead of batch
|
62
|
+
# shape of pixel_values : [batch, num_channel, height, width]
|
63
|
+
pixel_values = args[0]
|
64
|
+
|
65
|
+
batch_size = pixel_values.shape[0]
|
66
|
+
outputs = []
|
67
|
+
for i in range(batch_size):
|
68
|
+
outputs.append(self.vision_tower(pixel_values=pixel_values[i : i + 1], return_dict=True))
|
69
|
+
|
70
|
+
last_hidden_states = [output.last_hidden_state for output in outputs]
|
71
|
+
|
72
|
+
# FIXME:: This can be optimized using out= API of rbln runtime.
|
73
|
+
last_hidden_states = torch.cat(last_hidden_states, dim=0)
|
74
|
+
|
75
|
+
return BaseModelOutputWithPooling(
|
76
|
+
last_hidden_state=last_hidden_states,
|
77
|
+
)
|
78
|
+
|
79
|
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
80
|
+
return self.forward(*args, **kwds)
|
81
|
+
|
82
|
+
def __repr__(self) -> str:
|
83
|
+
return repr(self.vision_tower)
|
84
|
+
|
85
|
+
|
86
|
+
class LoopProjector:
|
87
|
+
def __init__(self, multi_modal_projector) -> None:
|
88
|
+
self.multi_modal_projector = multi_modal_projector
|
89
|
+
|
90
|
+
def forward(self, *args, **kwargs):
|
91
|
+
# Loop instead of batch
|
92
|
+
image_feature = args[0]
|
93
|
+
|
94
|
+
batch_size = image_feature.shape[0]
|
95
|
+
outputs = []
|
96
|
+
for i in range(batch_size):
|
97
|
+
outputs.append(self.multi_modal_projector(image_feature[i : i + 1]))
|
98
|
+
|
99
|
+
# FIXME:: This can be optimized using out= API of rbln runtime.
|
100
|
+
outputs = torch.cat(outputs, dim=0)
|
101
|
+
return outputs
|
102
|
+
|
103
|
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
104
|
+
return self.forward(*args, **kwds)
|
105
|
+
|
106
|
+
def __repr__(self) -> str:
|
107
|
+
return repr(self.multi_modal_projector)
|
108
|
+
|
109
|
+
|
110
|
+
class RBLNGemma3ForConditionalGeneration(RBLNModel):
|
111
|
+
auto_model_class = AutoModelForImageTextToText
|
112
|
+
_rbln_submodules = [
|
113
|
+
{"name": "vision_tower"},
|
114
|
+
{"name": "language_model"},
|
115
|
+
]
|
116
|
+
|
117
|
+
def __getattr__(self, __name: str) -> Any:
|
118
|
+
def redirect(func):
|
119
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
120
|
+
|
121
|
+
val = getattr(Gemma3ForConditionalGeneration, __name)
|
122
|
+
|
123
|
+
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
124
|
+
return redirect(val)
|
125
|
+
return val
|
126
|
+
|
127
|
+
def can_generate(self):
|
128
|
+
return True
|
129
|
+
|
130
|
+
def __post_init__(self, **kwargs):
|
131
|
+
self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
|
132
|
+
self.language_model = self.rbln_submodules[1]
|
133
|
+
self.multi_modal_projector = LoopProjector(self.model[0])
|
134
|
+
self.vocab_size = self.config.text_config.vocab_size
|
135
|
+
|
136
|
+
# Copied from the original class
|
137
|
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
138
|
+
return super().__post_init__(**kwargs)
|
139
|
+
|
140
|
+
def get_attn_impl(self) -> str:
|
141
|
+
return self.rbln_config.language_model.attn_impl
|
142
|
+
|
143
|
+
def get_kvcache_num_blocks(self) -> int:
|
144
|
+
return self.rbln_config.language_model.kvcache_num_blocks
|
145
|
+
|
146
|
+
def get_input_embeddings(self):
|
147
|
+
return self.language_model.get_input_embeddings()
|
148
|
+
|
149
|
+
@classmethod
|
150
|
+
def wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
|
151
|
+
return model.multi_modal_projector
|
152
|
+
|
153
|
+
@classmethod
|
154
|
+
def _update_rbln_config(
|
155
|
+
cls,
|
156
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
157
|
+
model: Optional["PreTrainedModel"] = None,
|
158
|
+
model_config: Optional["PretrainedConfig"] = None,
|
159
|
+
rbln_config: Optional[RBLNModelConfig] = None,
|
160
|
+
) -> RBLNModelConfig:
|
161
|
+
image_feature_dim = (model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2
|
162
|
+
feature_size = model_config.vision_config.hidden_size
|
163
|
+
|
164
|
+
input_info = [("image_features", [rbln_config.batch_size, image_feature_dim, feature_size], "float32")]
|
165
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
166
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
167
|
+
return rbln_config
|
168
|
+
|
169
|
+
def prepare_inputs_for_generation(
|
170
|
+
self,
|
171
|
+
input_ids,
|
172
|
+
inputs_embeds=None,
|
173
|
+
pixel_values=None,
|
174
|
+
image_sizes=None,
|
175
|
+
attention_mask=None,
|
176
|
+
generate_idx=None,
|
177
|
+
padded_cache_lengths=None,
|
178
|
+
token_type_ids=None,
|
179
|
+
**kwargs,
|
180
|
+
):
|
181
|
+
# Prepare HF generation
|
182
|
+
is_prefill_phase = generate_idx is None
|
183
|
+
|
184
|
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
185
|
+
input_ids=input_ids,
|
186
|
+
inputs_embeds=inputs_embeds,
|
187
|
+
generate_idx=generate_idx, # Not affect
|
188
|
+
attention_mask=attention_mask,
|
189
|
+
padded_cache_lengths=padded_cache_lengths,
|
190
|
+
**kwargs,
|
191
|
+
)
|
192
|
+
|
193
|
+
if is_prefill_phase:
|
194
|
+
model_inputs.update(
|
195
|
+
{
|
196
|
+
"pixel_values": pixel_values,
|
197
|
+
"image_sizes": image_sizes,
|
198
|
+
"token_type_ids": token_type_ids,
|
199
|
+
}
|
200
|
+
)
|
201
|
+
|
202
|
+
model_inputs["attention_mask"] = attention_mask
|
203
|
+
|
204
|
+
return model_inputs
|
205
|
+
|
206
|
+
def _update_model_kwargs_for_generation(
|
207
|
+
self,
|
208
|
+
outputs: RBLNDecoderOnlyOutput,
|
209
|
+
model_kwargs: Dict[str, Any],
|
210
|
+
**kwargs,
|
211
|
+
) -> Dict[str, Any]:
|
212
|
+
# update generate_idx
|
213
|
+
model_kwargs["generate_idx"] = outputs.generate_idx
|
214
|
+
model_kwargs["padded_cache_lengths"] = outputs.padded_cache_lengths
|
215
|
+
|
216
|
+
return model_kwargs
|
217
|
+
|
218
|
+
def get_image_features(self, pixel_values: torch.Tensor):
|
219
|
+
"""
|
220
|
+
Projects the last hidden state from the vision model into language model space.
|
221
|
+
|
222
|
+
Args:
|
223
|
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
224
|
+
The tensors corresponding to the input images.
|
225
|
+
Returns:
|
226
|
+
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
227
|
+
"""
|
228
|
+
vision_outputs = self.vision_tower(pixel_values).last_hidden_state
|
229
|
+
image_features = self.multi_modal_projector(vision_outputs)
|
230
|
+
return image_features
|
231
|
+
|
232
|
+
def _preprocess_prefill(
|
233
|
+
self,
|
234
|
+
input_ids: Optional[torch.LongTensor] = None,
|
235
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
236
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
237
|
+
**kwargs,
|
238
|
+
):
|
239
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
240
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
241
|
+
|
242
|
+
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
|
243
|
+
if input_ids is not None and self.config.image_token_index >= self.vocab_size:
|
244
|
+
special_image_mask = input_ids == self.config.image_token_index
|
245
|
+
llm_input_ids = input_ids.clone()
|
246
|
+
llm_input_ids[special_image_mask] = 0
|
247
|
+
else:
|
248
|
+
llm_input_ids = input_ids
|
249
|
+
|
250
|
+
if inputs_embeds is None:
|
251
|
+
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
|
252
|
+
|
253
|
+
# Merge text and images
|
254
|
+
if pixel_values is not None:
|
255
|
+
image_features = self.get_image_features(pixel_values)
|
256
|
+
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
|
257
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
258
|
+
|
259
|
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
260
|
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
261
|
+
|
262
|
+
return inputs_embeds
|
263
|
+
|
264
|
+
def forward(
|
265
|
+
self,
|
266
|
+
input_ids: torch.LongTensor = None,
|
267
|
+
pixel_values: torch.FloatTensor = None,
|
268
|
+
attention_mask: Optional[torch.Tensor] = None,
|
269
|
+
cache_position: Optional[torch.LongTensor] = None,
|
270
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
271
|
+
generate_idx: Optional[torch.Tensor] = None,
|
272
|
+
padded_cache_lengths: Optional[torch.Tensor] = None,
|
273
|
+
position_ids: Optional[torch.Tensor] = None,
|
274
|
+
token_type_ids: Optional[torch.Tensor] = None,
|
275
|
+
**lm_kwargs,
|
276
|
+
) -> Union[Tuple, RBLNDecoderOnlyOutput]:
|
277
|
+
# prefill
|
278
|
+
if cache_position is None:
|
279
|
+
logits = []
|
280
|
+
inputs_embeds = self._preprocess_prefill(input_ids, inputs_embeds, pixel_values)
|
281
|
+
batch_size = inputs_embeds.shape[0]
|
282
|
+
|
283
|
+
for b_idx in range(batch_size):
|
284
|
+
cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
|
285
|
+
output = self.language_model.prefill_decoder(
|
286
|
+
inputs_embeds=inputs_embeds[b_idx : b_idx + 1],
|
287
|
+
attention_mask=attention_mask[b_idx],
|
288
|
+
cache_position=cache_position,
|
289
|
+
batch_idx=b_idx,
|
290
|
+
token_type_ids=token_type_ids[b_idx : b_idx + 1] if token_type_ids is not None else None,
|
291
|
+
)
|
292
|
+
padded_cache_lengths[b_idx] += output.padded_cache_lengths
|
293
|
+
logits.append(output.logits)
|
294
|
+
|
295
|
+
logits = torch.cat(logits, dim=0)
|
296
|
+
# decoder
|
297
|
+
else:
|
298
|
+
inputs = inputs_embeds if inputs_embeds is not None else input_ids
|
299
|
+
batch_size = inputs.shape[0]
|
300
|
+
if batch_size not in self.language_model.decoders:
|
301
|
+
raise ValueError(
|
302
|
+
f"No decoder runtime available for batch size {batch_size}. "
|
303
|
+
f"Available batch sizes are: {list(self.decoders.keys())}. "
|
304
|
+
f"Please run your model with one of these batch sizes or add support for batch size {batch_size}."
|
305
|
+
)
|
306
|
+
|
307
|
+
logits = self.language_model.decoders[batch_size](
|
308
|
+
input_ids=input_ids,
|
309
|
+
inputs_embeds=inputs_embeds,
|
310
|
+
cache_position=cache_position,
|
311
|
+
position_ids=position_ids if self.rbln_config.language_model.use_position_ids else None,
|
312
|
+
).logits
|
313
|
+
|
314
|
+
return RBLNDecoderOnlyOutput(
|
315
|
+
logits=logits, generate_idx=generate_idx, padded_cache_lengths=padded_cache_lengths
|
316
|
+
)
|
317
|
+
|
318
|
+
|
319
|
+
class RBLNGemma3RuntimeModel(RBLNRuntimeModel):
|
320
|
+
def __init__(self, *args, image_prefill: Optional[rebel.Runtime] = None, **kwargs):
|
321
|
+
super().__init__(*args, **kwargs)
|
322
|
+
self.image_prefill = image_prefill # FIXME(taehoon)
|
323
|
+
self.prefill = self.runtime if self.phase == "prefill" else None # FIXME
|
324
|
+
self.decode = self.runtime if self.phase == "decode" else None
|
325
|
+
|
326
|
+
def pad_for_chunked_images(
|
327
|
+
self,
|
328
|
+
inputs: torch.Tensor,
|
329
|
+
attention_mask: torch.Tensor,
|
330
|
+
position_ids: torch.Tensor,
|
331
|
+
token_type_ids: Optional[torch.Tensor] = None,
|
332
|
+
):
|
333
|
+
"""
|
334
|
+
Pads inputs, attention_mask, and position_ids so image token groups (256 tokens with token_type_ids == 1)
|
335
|
+
start at multiples of prefill_chunk_size (256). Returns padded tensors and total padded length.
|
336
|
+
|
337
|
+
Args:
|
338
|
+
inputs: (1, seq_len, hidden_size) tensor.
|
339
|
+
attention_mask: (1, seq_len) tensor, 1 for valid, 0 for masked.
|
340
|
+
position_ids: (1, seq_len) tensor for RoPE.
|
341
|
+
token_type_ids: (1, seq_len) tensor, 0 for text, 1 for image.
|
342
|
+
|
343
|
+
Returns:
|
344
|
+
Tuple: (inputs_padded, attention_mask_padded, position_ids_padded, padded_len, token_type_ids_padded).
|
345
|
+
"""
|
346
|
+
|
347
|
+
if token_type_ids is None:
|
348
|
+
return inputs, attention_mask, position_ids, 0, torch.zeros(inputs.shape[:2], dtype=torch.long)
|
349
|
+
|
350
|
+
seq_len = inputs.shape[1]
|
351
|
+
|
352
|
+
# Find image start positions
|
353
|
+
image_starts = [
|
354
|
+
s
|
355
|
+
for s in range(seq_len - self.prefill_chunk_size + 1)
|
356
|
+
if torch.all(token_type_ids[:, s : s + self.prefill_chunk_size] == 1)
|
357
|
+
]
|
358
|
+
|
359
|
+
# Initialize padded tensors
|
360
|
+
padded_input_len = seq_len
|
361
|
+
for image_start in image_starts:
|
362
|
+
pad_needed = (
|
363
|
+
self.prefill_chunk_size - (image_start + padded_input_len - seq_len) % self.prefill_chunk_size
|
364
|
+
) % self.prefill_chunk_size
|
365
|
+
padded_input_len += pad_needed
|
366
|
+
total_padding = padded_input_len - seq_len
|
367
|
+
|
368
|
+
if inputs.dim() == 3:
|
369
|
+
inputs_padded = torch.zeros(1, padded_input_len, inputs.shape[2], dtype=inputs.dtype)
|
370
|
+
else:
|
371
|
+
inputs_padded = torch.zeros(1, padded_input_len, dtype=inputs.dtype)
|
372
|
+
attention_mask_padded = torch.zeros(1, padded_input_len, dtype=attention_mask.dtype)
|
373
|
+
position_ids_padded = torch.zeros(1, padded_input_len, dtype=position_ids.dtype)
|
374
|
+
token_type_ids_padded = torch.zeros(1, padded_input_len, dtype=token_type_ids.dtype)
|
375
|
+
|
376
|
+
# Fill padded tensors
|
377
|
+
dest_pos = 0
|
378
|
+
src_pos = 0
|
379
|
+
last_pos_id = -1
|
380
|
+
for image_start in image_starts + [seq_len]:
|
381
|
+
# Text segment
|
382
|
+
if src_pos < image_start:
|
383
|
+
length = image_start - src_pos
|
384
|
+
inputs_padded[:, dest_pos : dest_pos + length] = inputs[:, src_pos:image_start]
|
385
|
+
attention_mask_padded[:, dest_pos : dest_pos + length] = attention_mask[:, src_pos:image_start]
|
386
|
+
position_ids_padded[:, dest_pos : dest_pos + length] = position_ids[:, src_pos:image_start]
|
387
|
+
token_type_ids_padded[:, dest_pos : dest_pos + length] = token_type_ids[:, src_pos:image_start]
|
388
|
+
dest_pos += length
|
389
|
+
last_pos_id = position_ids[0, image_start - 1].item()
|
390
|
+
src_pos = image_start
|
391
|
+
|
392
|
+
# Padding
|
393
|
+
pad_needed = (self.prefill_chunk_size - dest_pos % self.prefill_chunk_size) % self.prefill_chunk_size
|
394
|
+
if pad_needed and dest_pos < padded_input_len:
|
395
|
+
position_ids_padded[:, dest_pos : dest_pos + pad_needed] = torch.arange(
|
396
|
+
last_pos_id + 1, last_pos_id + pad_needed + 1, dtype=position_ids.dtype
|
397
|
+
).unsqueeze(0)
|
398
|
+
dest_pos += pad_needed
|
399
|
+
|
400
|
+
# Image segment
|
401
|
+
if src_pos < seq_len and src_pos == image_start:
|
402
|
+
inputs_padded[:, dest_pos : dest_pos + self.prefill_chunk_size] = inputs[
|
403
|
+
:, src_pos : src_pos + self.prefill_chunk_size
|
404
|
+
]
|
405
|
+
attention_mask_padded[:, dest_pos : dest_pos + self.prefill_chunk_size] = attention_mask[
|
406
|
+
:, src_pos : src_pos + self.prefill_chunk_size
|
407
|
+
]
|
408
|
+
position_ids_padded[:, dest_pos : dest_pos + self.prefill_chunk_size] = position_ids[
|
409
|
+
:, src_pos : src_pos + self.prefill_chunk_size
|
410
|
+
]
|
411
|
+
token_type_ids_padded[:, dest_pos : dest_pos + self.prefill_chunk_size] = token_type_ids[
|
412
|
+
:, src_pos : src_pos + self.prefill_chunk_size
|
413
|
+
]
|
414
|
+
dest_pos += self.prefill_chunk_size
|
415
|
+
src_pos += self.prefill_chunk_size
|
416
|
+
last_pos_id = position_ids[0, image_start + self.prefill_chunk_size - 1].item()
|
417
|
+
|
418
|
+
return inputs_padded, attention_mask_padded, position_ids_padded, total_padding, token_type_ids_padded
|
419
|
+
|
420
|
+
def _prepare_prefill_inputs(
|
421
|
+
self,
|
422
|
+
inputs: torch.Tensor,
|
423
|
+
cache_position: torch.Tensor,
|
424
|
+
attention_mask: Optional[torch.Tensor] = None,
|
425
|
+
position_embed: Optional[torch.Tensor] = None,
|
426
|
+
token_type_ids: Optional[torch.Tensor] = None,
|
427
|
+
):
|
428
|
+
"""
|
429
|
+
Prepare inputs for prefill phase.
|
430
|
+
"""
|
431
|
+
# Handle continuous batching in a compiled graph by extracting valid inputs
|
432
|
+
# If an attention mask is provided, select only the valid (non-masked) inputs
|
433
|
+
inputs = inputs[:, attention_mask.bool()] if attention_mask is not None else inputs
|
434
|
+
token_type_ids = (
|
435
|
+
token_type_ids[:, attention_mask.bool()]
|
436
|
+
if attention_mask is not None and token_type_ids is not None
|
437
|
+
else token_type_ids
|
438
|
+
)
|
439
|
+
|
440
|
+
if position_embed is not None:
|
441
|
+
position_embed = (
|
442
|
+
position_embed[:, :, :, attention_mask.bool(), :] if attention_mask is not None else position_embed
|
443
|
+
)
|
444
|
+
|
445
|
+
seq_len = inputs.shape[1]
|
446
|
+
# Initialize attention mask for chunked processing
|
447
|
+
if self.use_attention_mask:
|
448
|
+
chunked_attention_mask = (
|
449
|
+
torch.ones(1, seq_len, dtype=torch.float32)
|
450
|
+
if self.use_position_ids
|
451
|
+
else torch.zeros(1, 1, self.prefill_chunk_size, self.max_seq_len, dtype=torch.float32)
|
452
|
+
)
|
453
|
+
else:
|
454
|
+
chunked_attention_mask = None
|
455
|
+
|
456
|
+
# Buffer for storing output logits
|
457
|
+
out_buffers = [
|
458
|
+
torch.empty(
|
459
|
+
size=self.output_size,
|
460
|
+
dtype=torch.float32,
|
461
|
+
device="cpu",
|
462
|
+
)
|
463
|
+
]
|
464
|
+
|
465
|
+
inputs, chunked_attention_mask, position_ids, padded_cache_lengths, token_type_ids_padded = (
|
466
|
+
self.pad_for_chunked_images(inputs, chunked_attention_mask, cache_position, token_type_ids)
|
467
|
+
)
|
468
|
+
|
469
|
+
query_length = inputs.shape[1]
|
470
|
+
if query_length > self.max_seq_len:
|
471
|
+
raise ValueError(
|
472
|
+
f"Input length ({query_length}) exceeds the maximum allowed sequence length ({self.max_seq_len})."
|
473
|
+
)
|
474
|
+
|
475
|
+
# Align attention_mask to compiled shape
|
476
|
+
if self.use_position_ids:
|
477
|
+
chunked_attention_mask = torch.nn.functional.pad(
|
478
|
+
chunked_attention_mask, (0, self.max_seq_len - query_length)
|
479
|
+
)
|
480
|
+
|
481
|
+
# Pad input and cache_position if the last chunk is smaller than `prefill_chunk_size`
|
482
|
+
if query_length % self.prefill_chunk_size != 0:
|
483
|
+
padding_size = self.prefill_chunk_size - query_length % self.prefill_chunk_size
|
484
|
+
# inputs_embeds
|
485
|
+
if inputs.dim() == 3:
|
486
|
+
inputs = torch.nn.functional.pad(inputs, (0, 0, 0, padding_size))
|
487
|
+
# inputs_ids
|
488
|
+
else:
|
489
|
+
inputs = torch.nn.functional.pad(inputs, (0, padding_size))
|
490
|
+
|
491
|
+
position_ids = torch.cat(
|
492
|
+
[
|
493
|
+
position_ids,
|
494
|
+
torch.arange(
|
495
|
+
query_length,
|
496
|
+
query_length + padding_size,
|
497
|
+
dtype=torch.int32,
|
498
|
+
).unsqueeze(0),
|
499
|
+
],
|
500
|
+
dim=-1,
|
501
|
+
)
|
502
|
+
token_type_ids_padded = torch.nn.functional.pad(token_type_ids_padded, (0, padding_size))
|
503
|
+
|
504
|
+
if position_embed is not None:
|
505
|
+
position_embed = torch.nn.functional.pad(position_embed, (0, 0, 0, padding_size))
|
506
|
+
|
507
|
+
cache_position = torch.arange(0, query_length + padding_size, dtype=torch.int32).unsqueeze(0)
|
508
|
+
|
509
|
+
return (
|
510
|
+
inputs,
|
511
|
+
cache_position,
|
512
|
+
chunked_attention_mask,
|
513
|
+
out_buffers,
|
514
|
+
position_ids,
|
515
|
+
position_embed,
|
516
|
+
padded_cache_lengths,
|
517
|
+
query_length,
|
518
|
+
token_type_ids_padded,
|
519
|
+
)
|
520
|
+
|
521
|
+
def prefill_forward(
|
522
|
+
self,
|
523
|
+
inputs: torch.Tensor,
|
524
|
+
cache_position: torch.Tensor = None,
|
525
|
+
attention_mask: Optional[torch.Tensor] = None,
|
526
|
+
batch_idx: int = None,
|
527
|
+
block_tables: torch.Tensor = None,
|
528
|
+
is_external_block_tables: bool = None,
|
529
|
+
position_embed: Optional[torch.Tensor] = None,
|
530
|
+
token_type_ids: Optional[torch.Tensor] = None,
|
531
|
+
local_block_tables: Optional[torch.Tensor] = None,
|
532
|
+
) -> torch.FloatTensor:
|
533
|
+
"""
|
534
|
+
Performs chunked prefill for efficient KV-cache updates and memory optimization.
|
535
|
+
Instead of processing the entire sequence at once, the input is divided into chunks of size `prefill_chunk_size`,
|
536
|
+
and each chunk is processed sequentially. This allows for better memory utilization and compatibility with continuous batching.
|
537
|
+
"""
|
538
|
+
(
|
539
|
+
inputs,
|
540
|
+
cache_position,
|
541
|
+
chunked_attention_mask,
|
542
|
+
out_buffers,
|
543
|
+
position_ids,
|
544
|
+
position_embed,
|
545
|
+
padded_cache_lengths,
|
546
|
+
query_length,
|
547
|
+
token_type_ids_padded,
|
548
|
+
) = self._prepare_prefill_inputs(
|
549
|
+
inputs, cache_position, attention_mask, position_embed, token_type_ids=token_type_ids
|
550
|
+
)
|
551
|
+
self.dec_attn_mask[batch_idx : batch_idx + 1] = chunked_attention_mask[:1]
|
552
|
+
if not is_external_block_tables:
|
553
|
+
local_block_tables = torch.tensor([batch_idx], dtype=torch.int16)
|
554
|
+
|
555
|
+
if self.use_attention_mask and self.use_position_ids:
|
556
|
+
chunked_attention_mask = torch.zeros(1, self.max_seq_len, dtype=torch.float32)
|
557
|
+
|
558
|
+
# Process input in chunks of size `prefill_chunk_size`
|
559
|
+
for step in range(0, query_length, self.prefill_chunk_size):
|
560
|
+
# Extract the current chunk of inputs and cache positions
|
561
|
+
input_chunk = inputs[:, step : step + self.prefill_chunk_size]
|
562
|
+
cache_pos_chunk = cache_position[:, step : step + self.prefill_chunk_size]
|
563
|
+
position_ids_chunk = (
|
564
|
+
position_ids[:, step : step + self.prefill_chunk_size] if position_ids is not None else None
|
565
|
+
)
|
566
|
+
|
567
|
+
# Not used in Gemma3 yet.
|
568
|
+
if self.use_attention_mask:
|
569
|
+
if self.use_position_ids:
|
570
|
+
chunked_attention_mask[0, step : step + self.prefill_chunk_size] = self.dec_attn_mask[
|
571
|
+
batch_idx, step : step + self.prefill_chunk_size
|
572
|
+
]
|
573
|
+
else:
|
574
|
+
# Update attention mask to ensure proper causal behavior
|
575
|
+
if step >= self.prefill_chunk_size:
|
576
|
+
chunked_attention_mask[:, :, :, step - self.prefill_chunk_size : step] = 1
|
577
|
+
chunked_attention_mask[:, :, :, step : step + self.prefill_chunk_size] = self.causal_mask
|
578
|
+
|
579
|
+
# Define query position
|
580
|
+
query_position = (
|
581
|
+
torch.sum(
|
582
|
+
chunked_attention_mask[0][step : step + self.prefill_chunk_size], dim=-1, dtype=torch.int16
|
583
|
+
).squeeze(0)
|
584
|
+
- 1
|
585
|
+
)
|
586
|
+
if token_type_ids_padded[:, step] == 1:
|
587
|
+
if torch.any(token_type_ids_padded[:, step : step + self.prefill_chunk_size] == 0):
|
588
|
+
raise ValueError("All tokens of image_prefill should be the same image.")
|
589
|
+
else:
|
590
|
+
logits = self.image_prefill(
|
591
|
+
input_chunk,
|
592
|
+
chunked_attention_mask,
|
593
|
+
cache_pos_chunk,
|
594
|
+
position_ids_chunk,
|
595
|
+
query_position,
|
596
|
+
block_tables,
|
597
|
+
local_block_tables,
|
598
|
+
out=out_buffers,
|
599
|
+
)
|
600
|
+
else:
|
601
|
+
# Forward pass for the current chunk
|
602
|
+
logits = self.prefill(
|
603
|
+
input_chunk,
|
604
|
+
chunked_attention_mask,
|
605
|
+
cache_pos_chunk,
|
606
|
+
position_ids_chunk,
|
607
|
+
query_position,
|
608
|
+
block_tables,
|
609
|
+
local_block_tables,
|
610
|
+
out=out_buffers,
|
611
|
+
)
|
612
|
+
|
613
|
+
return RBLNGemma3ForCausalLMOutput(
|
614
|
+
logits=logits, padded_cache_lengths=padded_cache_lengths, attention_mask=chunked_attention_mask
|
615
|
+
)
|
616
|
+
|
617
|
+
def decode_forward(
|
618
|
+
self,
|
619
|
+
inputs: torch.Tensor,
|
620
|
+
cache_position: torch.Tensor = None,
|
621
|
+
block_tables: torch.Tensor = None,
|
622
|
+
is_external_block_tables: bool = None,
|
623
|
+
attention_mask: Optional[torch.Tensor] = None,
|
624
|
+
position_embed: Optional[torch.Tensor] = None,
|
625
|
+
position_ids: Optional[torch.Tensor] = None,
|
626
|
+
local_block_tables: Optional[torch.Tensor] = None,
|
627
|
+
) -> torch.FloatTensor:
|
628
|
+
batch_size = inputs.shape[0]
|
629
|
+
if batch_size != self.batch_size:
|
630
|
+
raise RuntimeError(
|
631
|
+
f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
|
632
|
+
)
|
633
|
+
|
634
|
+
if batch_size != cache_position.shape[0]:
|
635
|
+
raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
|
636
|
+
|
637
|
+
# FIXME(taehoon): how to handle pos_attn_mask with external block tables
|
638
|
+
if is_external_block_tables:
|
639
|
+
if attention_mask is None:
|
640
|
+
raise ValueError("attention_mask should be provided with external block tables.")
|
641
|
+
if local_block_tables is None:
|
642
|
+
raise ValueError("local_block_tables should be provided with external block tables.")
|
643
|
+
else:
|
644
|
+
local_block_tables = (
|
645
|
+
local_block_tables
|
646
|
+
if local_block_tables is not None
|
647
|
+
else torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, -1)
|
648
|
+
)
|
649
|
+
if self.use_attention_mask and attention_mask is None:
|
650
|
+
for b_idx in range(batch_size):
|
651
|
+
decoding_step = cache_position[b_idx].item()
|
652
|
+
if not (0 <= decoding_step < self.dec_attn_mask.shape[-1]):
|
653
|
+
raise ValueError(
|
654
|
+
f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
|
655
|
+
)
|
656
|
+
self.dec_attn_mask[b_idx, decoding_step] = 1
|
657
|
+
|
658
|
+
attention_mask = self.dec_attn_mask
|
659
|
+
|
660
|
+
if self.batch_size < block_tables.shape[0]:
|
661
|
+
block_tables = block_tables[: self.batch_size]
|
662
|
+
|
663
|
+
if attention_mask is not None and self.batch_size < attention_mask.shape[0]:
|
664
|
+
attention_mask = attention_mask[: self.batch_size]
|
665
|
+
|
666
|
+
logits = self.decode(inputs, attention_mask, cache_position, position_ids, block_tables, local_block_tables)
|
667
|
+
|
668
|
+
return RBLNDecoderOnlyOutput(logits=logits)
|
669
|
+
|
670
|
+
|
671
|
+
class RBLNGemma3ForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
672
|
+
"""
|
673
|
+
The Gemma3 Model transformer with a language modeling head (linear layer) on top.
|
674
|
+
This model inherits from [`RBLNDecoderOnlyModelForCausalLM`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
675
|
+
|
676
|
+
A class to convert and run pre-trained transformers based Gemma3ForCausalLM model on RBLN devices.
|
677
|
+
It implements the methods to convert a pre-trained transformers Gemma3ForCausalLM model into a RBLN transformer model by:
|
678
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
679
|
+
- compiling the resulting graph using the RBLN compiler.
|
680
|
+
"""
|
681
|
+
|
682
|
+
_decoder_wrapper_cls = Gemma3ForCausalLMWrapper
|
683
|
+
|
684
|
+
def __post_init__(self, **kwargs):
|
685
|
+
main_input_name = self.main_input_name
|
686
|
+
|
687
|
+
if self.rbln_config.use_inputs_embeds:
|
688
|
+
main_input_name = "inputs_embeds"
|
689
|
+
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
690
|
+
self.embed_tokens = self._create_embedding_layer()
|
691
|
+
self.embed_tokens.load_state_dict(artifacts["embed_tokens"])
|
692
|
+
else:
|
693
|
+
self.embed_tokens = None
|
694
|
+
|
695
|
+
# Initialize shared resources to be used across Runtime instances (prefill and decode phases)
|
696
|
+
dec_attn_mask = torch.zeros(self.rbln_config.batch_size, self.rbln_config.max_seq_len, dtype=torch.float32)
|
697
|
+
block_tables = torch.zeros(
|
698
|
+
self.rbln_config.batch_size,
|
699
|
+
self.rbln_config.max_seq_len // self.rbln_config.kvcache_block_size,
|
700
|
+
dtype=torch.int16,
|
701
|
+
).fill_(-1)
|
702
|
+
free_block_pool = deque(x for x in range(self.rbln_config.kvcache_num_blocks))
|
703
|
+
|
704
|
+
self.prefill_decoder = RBLNGemma3RuntimeModel(
|
705
|
+
runtime=self.model[0],
|
706
|
+
image_prefill=self.model[1],
|
707
|
+
main_input_name=main_input_name,
|
708
|
+
embed_tokens=self.embed_tokens,
|
709
|
+
phase="prefill",
|
710
|
+
batch_size=self.rbln_config.batch_size,
|
711
|
+
dec_attn_mask=dec_attn_mask,
|
712
|
+
block_tables=block_tables,
|
713
|
+
free_block_pool=free_block_pool,
|
714
|
+
kvcache_block_size=self.rbln_config.kvcache_block_size,
|
715
|
+
vocab_size=self.config.vocab_size,
|
716
|
+
prefill_chunk_size=self.rbln_config.prefill_chunk_size,
|
717
|
+
max_seq_len=self.rbln_config.max_seq_len,
|
718
|
+
use_attention_mask=self.rbln_config.use_attention_mask,
|
719
|
+
attn_impl=self.rbln_config.attn_impl,
|
720
|
+
use_position_ids=self.rbln_config.use_position_ids,
|
721
|
+
)
|
722
|
+
|
723
|
+
self.decoders = {}
|
724
|
+
for i, batch_size in enumerate(self.rbln_config.decoder_batch_sizes):
|
725
|
+
self.decoders[batch_size] = RBLNGemma3RuntimeModel(
|
726
|
+
runtime=self.model[i + 2],
|
727
|
+
main_input_name=main_input_name,
|
728
|
+
embed_tokens=self.embed_tokens,
|
729
|
+
phase="decode",
|
730
|
+
batch_size=batch_size,
|
731
|
+
dec_attn_mask=dec_attn_mask,
|
732
|
+
block_tables=block_tables,
|
733
|
+
free_block_pool=free_block_pool,
|
734
|
+
kvcache_block_size=self.rbln_config.kvcache_block_size,
|
735
|
+
use_attention_mask=self.rbln_config.use_attention_mask,
|
736
|
+
attn_impl=self.rbln_config.attn_impl,
|
737
|
+
use_position_ids=self.rbln_config.use_position_ids,
|
738
|
+
)
|
739
|
+
|
740
|
+
# NOTE(eunji): Use a decoder whose batch size matches the model's main batch size for compatibility.
|
741
|
+
self.decoder = self.decoders[self.rbln_config.batch_size]
|
742
|
+
|
743
|
+
def _create_embedding_layer(self):
|
744
|
+
with no_init_weights():
|
745
|
+
embed_tokens = Gemma3TextScaledWordEmbedding(
|
746
|
+
self.config.vocab_size,
|
747
|
+
self.config.hidden_size,
|
748
|
+
self.config.pad_token_id,
|
749
|
+
embed_scale=self.config.hidden_size**0.5,
|
750
|
+
)
|
751
|
+
return embed_tokens
|
752
|
+
|
753
|
+
@classmethod
|
754
|
+
def get_input_info(
|
755
|
+
cls,
|
756
|
+
batch_size: int,
|
757
|
+
query_length: int,
|
758
|
+
use_inputs_embeds: bool,
|
759
|
+
use_attention_mask: bool,
|
760
|
+
use_position_ids: bool,
|
761
|
+
max_seq_len: int,
|
762
|
+
kvcache_block_size: int,
|
763
|
+
kvcache_num_blocks: int,
|
764
|
+
num_key_value_heads: int,
|
765
|
+
num_hidden_layers: int,
|
766
|
+
hidden_size: int,
|
767
|
+
head_dim: int,
|
768
|
+
sliding_window: int,
|
769
|
+
sliding_window_pattern: int,
|
770
|
+
dec_batch_size: int,
|
771
|
+
):
|
772
|
+
if use_inputs_embeds:
|
773
|
+
main_input = ("inputs_embeds", [batch_size, query_length, hidden_size], "float32")
|
774
|
+
else:
|
775
|
+
main_input = ("input_ids", [batch_size, query_length], "int64")
|
776
|
+
|
777
|
+
input_info = [
|
778
|
+
main_input,
|
779
|
+
(
|
780
|
+
"attention_mask",
|
781
|
+
[batch_size, 1, query_length, max_seq_len] if not use_position_ids else [batch_size, max_seq_len],
|
782
|
+
"float32",
|
783
|
+
),
|
784
|
+
(
|
785
|
+
"cache_position",
|
786
|
+
[batch_size, query_length],
|
787
|
+
"int32",
|
788
|
+
),
|
789
|
+
(
|
790
|
+
"position_ids",
|
791
|
+
[batch_size, query_length],
|
792
|
+
"int32",
|
793
|
+
),
|
794
|
+
]
|
795
|
+
|
796
|
+
if query_length > 1:
|
797
|
+
input_info.extend(
|
798
|
+
[
|
799
|
+
("query_position", [], "int16"),
|
800
|
+
]
|
801
|
+
)
|
802
|
+
|
803
|
+
max_block_cnt = max_seq_len // kvcache_block_size
|
804
|
+
|
805
|
+
if query_length > 1:
|
806
|
+
input_info.extend([("global_block_tables", [max_block_cnt], "int16")])
|
807
|
+
input_info.extend([("local_block_tables", [1], "int16")])
|
808
|
+
else:
|
809
|
+
input_info.extend([("global_block_tables", [batch_size, max_block_cnt], "int16")])
|
810
|
+
input_info.extend([("local_block_tables", [batch_size, 1], "int16")])
|
811
|
+
|
812
|
+
def is_sliding(layer_idx: int) -> bool:
|
813
|
+
return bool((layer_idx + 1) % sliding_window_pattern)
|
814
|
+
|
815
|
+
local_kvcache_shape = [dec_batch_size, num_key_value_heads, sliding_window, head_dim]
|
816
|
+
global_kvcache_shape = [kvcache_num_blocks, num_key_value_heads, kvcache_block_size, head_dim]
|
817
|
+
input_info.extend(
|
818
|
+
[
|
819
|
+
(
|
820
|
+
f"past_key_values_{i}",
|
821
|
+
local_kvcache_shape if is_sliding(i // 2) else global_kvcache_shape,
|
822
|
+
"float32",
|
823
|
+
)
|
824
|
+
for i in range(num_hidden_layers * 2)
|
825
|
+
]
|
826
|
+
)
|
827
|
+
|
828
|
+
return input_info
|
829
|
+
|
830
|
+
@classmethod
|
831
|
+
def _update_submodule_config(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
|
832
|
+
if rbln_config.prefill_chunk_size is None:
|
833
|
+
rbln_config.prefill_chunk_size = model.config.mm_tokens_per_image
|
834
|
+
|
835
|
+
if rbln_config.prefill_chunk_size != model.config.mm_tokens_per_image:
|
836
|
+
logger.warning(
|
837
|
+
f"Prefill chunk size is different from mm_tokens_per_image: {rbln_config.prefill_chunk_size} != {model.config.mm_tokens_per_image}"
|
838
|
+
)
|
839
|
+
return rbln_config
|
840
|
+
|
841
|
+
@classmethod
|
842
|
+
def _update_rbln_config(
|
843
|
+
cls,
|
844
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]] = None,
|
845
|
+
model: Optional["PreTrainedModel"] = None,
|
846
|
+
model_config: Optional["PretrainedConfig"] = None,
|
847
|
+
rbln_config: Optional[RBLNGemma3ForCausalLMConfig] = None,
|
848
|
+
) -> RBLNGemma3ForCausalLMConfig:
|
849
|
+
if rbln_config.max_seq_len is None:
|
850
|
+
rbln_config.max_seq_len = getattr(model_config, "max_position_embeddings", None)
|
851
|
+
if rbln_config.max_seq_len is None:
|
852
|
+
raise ValueError("`max_seq_len` should be specified.")
|
853
|
+
|
854
|
+
rbln_config.attn_impl, rbln_config.kvcache_partition_len, rbln_config.kvcache_block_size = set_default_values(
|
855
|
+
attn_impl=rbln_config.attn_impl,
|
856
|
+
kvcache_partition_len=rbln_config.kvcache_partition_len,
|
857
|
+
kvcache_block_size=rbln_config.kvcache_block_size,
|
858
|
+
max_seq_len=rbln_config.max_seq_len,
|
859
|
+
)
|
860
|
+
|
861
|
+
validate_attention_method(
|
862
|
+
attn_impl=rbln_config.attn_impl,
|
863
|
+
kvcache_partition_len=rbln_config.kvcache_partition_len,
|
864
|
+
kvcache_block_size=rbln_config.kvcache_block_size,
|
865
|
+
max_seq_len=rbln_config.max_seq_len,
|
866
|
+
)
|
867
|
+
|
868
|
+
required_num_blocks = (rbln_config.max_seq_len // rbln_config.kvcache_block_size) * rbln_config.batch_size
|
869
|
+
max_num_blocks = required_num_blocks
|
870
|
+
|
871
|
+
if rbln_config.attn_impl == "flash_attn":
|
872
|
+
flash_min_blocks = rbln_config.max_seq_len // rbln_config.kvcache_block_size + 1
|
873
|
+
if max_num_blocks < flash_min_blocks:
|
874
|
+
max_num_blocks = flash_min_blocks
|
875
|
+
|
876
|
+
if max_num_blocks < rbln_config.batch_size:
|
877
|
+
raise RuntimeError(
|
878
|
+
f"Batch size ({rbln_config.batch_size}) exceeds available KV cache blocks ({max_num_blocks}). "
|
879
|
+
"Ensure the number of blocks is at least equal to the batch size."
|
880
|
+
)
|
881
|
+
|
882
|
+
if rbln_config.kvcache_num_blocks is None:
|
883
|
+
rbln_config.kvcache_num_blocks = max_num_blocks
|
884
|
+
elif rbln_config.kvcache_num_blocks > max_num_blocks:
|
885
|
+
logger.warning(
|
886
|
+
f"The set `kvcache_num_blocks` ({rbln_config.kvcache_num_blocks}) is greater"
|
887
|
+
f" than the estimated maximum number of blocks ({max_num_blocks})."
|
888
|
+
"This can cause a failure during model compilation."
|
889
|
+
)
|
890
|
+
logger.info(f"[KVCache] Compiling with num_blocks: {rbln_config.kvcache_num_blocks}")
|
891
|
+
|
892
|
+
num_attention_heads = getattr(model_config, "n_head", None) or getattr(model_config, "num_attention_heads")
|
893
|
+
num_key_value_heads = getattr(model_config, "num_key_value_heads", None) or num_attention_heads
|
894
|
+
num_hidden_layers = getattr(model_config, "n_layer", None) or getattr(model_config, "num_hidden_layers")
|
895
|
+
hidden_size = getattr(model_config, "n_embd", None) or getattr(model_config, "hidden_size")
|
896
|
+
head_dim = getattr(model_config, "head_dim", None) or hidden_size // num_attention_heads
|
897
|
+
sliding_window = getattr(model_config, "sliding_window", None)
|
898
|
+
sliding_window_pattern = getattr(model_config, "sliding_window_pattern", None)
|
899
|
+
|
900
|
+
prefill_input_info = cls.get_input_info(
|
901
|
+
batch_size=1,
|
902
|
+
query_length=rbln_config.prefill_chunk_size,
|
903
|
+
use_inputs_embeds=rbln_config.use_inputs_embeds,
|
904
|
+
use_attention_mask=rbln_config.use_attention_mask,
|
905
|
+
use_position_ids=rbln_config.use_position_ids,
|
906
|
+
max_seq_len=rbln_config.max_seq_len,
|
907
|
+
kvcache_block_size=rbln_config.kvcache_block_size,
|
908
|
+
kvcache_num_blocks=rbln_config.kvcache_num_blocks,
|
909
|
+
num_key_value_heads=num_key_value_heads,
|
910
|
+
num_hidden_layers=num_hidden_layers,
|
911
|
+
hidden_size=hidden_size,
|
912
|
+
head_dim=head_dim,
|
913
|
+
sliding_window=sliding_window,
|
914
|
+
sliding_window_pattern=sliding_window_pattern,
|
915
|
+
dec_batch_size=max(rbln_config.decoder_batch_sizes),
|
916
|
+
)
|
917
|
+
prefill_compile_config = RBLNCompileConfig(compiled_model_name="prefill", input_info=prefill_input_info)
|
918
|
+
image_prefill_compile_config = RBLNCompileConfig(
|
919
|
+
compiled_model_name="image_prefill", input_info=prefill_input_info
|
920
|
+
)
|
921
|
+
|
922
|
+
dec_compile_configs = []
|
923
|
+
for batch_size in rbln_config.decoder_batch_sizes:
|
924
|
+
dec_input_info = cls.get_input_info(
|
925
|
+
batch_size=batch_size,
|
926
|
+
query_length=1,
|
927
|
+
use_inputs_embeds=rbln_config.use_inputs_embeds,
|
928
|
+
use_attention_mask=rbln_config.use_attention_mask,
|
929
|
+
use_position_ids=rbln_config.use_position_ids,
|
930
|
+
max_seq_len=rbln_config.max_seq_len,
|
931
|
+
kvcache_block_size=rbln_config.kvcache_block_size,
|
932
|
+
kvcache_num_blocks=rbln_config.kvcache_num_blocks,
|
933
|
+
num_key_value_heads=num_key_value_heads,
|
934
|
+
num_hidden_layers=num_hidden_layers,
|
935
|
+
hidden_size=hidden_size,
|
936
|
+
head_dim=head_dim,
|
937
|
+
sliding_window=sliding_window,
|
938
|
+
sliding_window_pattern=sliding_window_pattern,
|
939
|
+
dec_batch_size=batch_size,
|
940
|
+
)
|
941
|
+
dec_compile_configs.append(
|
942
|
+
RBLNCompileConfig(compiled_model_name=f"decoder_batch_{batch_size}", input_info=dec_input_info)
|
943
|
+
)
|
944
|
+
rbln_config.set_compile_cfgs([prefill_compile_config, image_prefill_compile_config, *dec_compile_configs])
|
945
|
+
|
946
|
+
return rbln_config
|
947
|
+
|
948
|
+
@classmethod
|
949
|
+
@torch.inference_mode()
|
950
|
+
def get_compiled_model(cls, model: "PreTrainedModel", rbln_config: RBLNGemma3ForCausalLMConfig):
|
951
|
+
wrapped_model = cls.wrap_model_if_needed(model, rbln_config)
|
952
|
+
|
953
|
+
rbln_compile_configs = rbln_config.compile_cfgs
|
954
|
+
prefill_compile_config = rbln_compile_configs[0]
|
955
|
+
|
956
|
+
context = CompileContext(use_weight_sharing=True)
|
957
|
+
|
958
|
+
# Here we use meta tensor, for the memory efficiency.
|
959
|
+
meta_tensor_names = [name for name, _, _ in prefill_compile_config.input_info if "past_key_values" in name]
|
960
|
+
prefill_example_inputs = prefill_compile_config.get_dummy_inputs(fill=0, meta_tensor_names=meta_tensor_names)
|
961
|
+
|
962
|
+
# Mark static tensors (self kv states)
|
963
|
+
static_tensors = {}
|
964
|
+
for (name, _, _), tensor in zip(prefill_compile_config.input_info, prefill_example_inputs):
|
965
|
+
if "past_key_values" in name:
|
966
|
+
static_tensors[name] = tensor
|
967
|
+
context.mark_static_address(tensor)
|
968
|
+
|
969
|
+
def compile_model(wrapped_model, compile_config, example_inputs, compile_context, quantization):
|
970
|
+
try:
|
971
|
+
if quantization:
|
972
|
+
quantization.maybe_set_quantization_env()
|
973
|
+
original_linear = torch.nn.functional.linear
|
974
|
+
torch.nn.functional.linear = torch.ops.rbln_custom_ops.linear
|
975
|
+
compiled_model = RBLNModel.compile(
|
976
|
+
wrapped_model,
|
977
|
+
compile_config,
|
978
|
+
example_inputs=example_inputs,
|
979
|
+
compile_context=compile_context,
|
980
|
+
)
|
981
|
+
return compiled_model
|
982
|
+
finally:
|
983
|
+
torch.nn.functional.linear = original_linear
|
984
|
+
if quantization:
|
985
|
+
quantization.maybe_reset_quantization_env()
|
986
|
+
|
987
|
+
wrapped_model.phase = "prefill"
|
988
|
+
compiled_prefill = compile_model(
|
989
|
+
wrapped_model,
|
990
|
+
prefill_compile_config,
|
991
|
+
prefill_example_inputs,
|
992
|
+
context,
|
993
|
+
rbln_config.quantization,
|
994
|
+
)
|
995
|
+
|
996
|
+
image_prefill_compile_config = rbln_compile_configs[1]
|
997
|
+
wrapped_model.phase = "image_prefill"
|
998
|
+
compiled_image_prefill = compile_model(
|
999
|
+
wrapped_model,
|
1000
|
+
image_prefill_compile_config,
|
1001
|
+
prefill_example_inputs,
|
1002
|
+
context,
|
1003
|
+
rbln_config.quantization,
|
1004
|
+
)
|
1005
|
+
|
1006
|
+
compiled_models = {"prefill": compiled_prefill, "image_prefill": compiled_image_prefill}
|
1007
|
+
wrapped_model.phase = "decode"
|
1008
|
+
for batch_size, dec_compile_config in zip(rbln_config.decoder_batch_sizes, rbln_compile_configs[2:]):
|
1009
|
+
dec_example_inputs = dec_compile_config.get_dummy_inputs(fill=0, static_tensors=static_tensors)
|
1010
|
+
compiled_decoder = compile_model(
|
1011
|
+
wrapped_model,
|
1012
|
+
dec_compile_config,
|
1013
|
+
dec_example_inputs,
|
1014
|
+
context,
|
1015
|
+
rbln_config.quantization,
|
1016
|
+
)
|
1017
|
+
compiled_models[f"decoder_batch_{batch_size}"] = compiled_decoder
|
1018
|
+
|
1019
|
+
return compiled_models
|
1020
|
+
|
1021
|
+
@classmethod
|
1022
|
+
def _create_runtimes(
|
1023
|
+
cls,
|
1024
|
+
compiled_models: List[rebel.RBLNCompiledModel],
|
1025
|
+
rbln_config: RBLNGemma3ForCausalLMConfig,
|
1026
|
+
) -> List[rebel.Runtime]:
|
1027
|
+
expected_model_names = [
|
1028
|
+
"prefill",
|
1029
|
+
"image_prefill",
|
1030
|
+
*[f"decoder_batch_{batch_size}" for batch_size in rbln_config.decoder_batch_sizes],
|
1031
|
+
]
|
1032
|
+
if any(model_name not in rbln_config.device_map for model_name in expected_model_names):
|
1033
|
+
cls._raise_missing_compiled_file_error(expected_model_names)
|
1034
|
+
|
1035
|
+
return [
|
1036
|
+
rebel.Runtime(
|
1037
|
+
compiled_models[0],
|
1038
|
+
tensor_type="pt",
|
1039
|
+
device=rbln_config.device_map["prefill"],
|
1040
|
+
activate_profiler=rbln_config.activate_profiler,
|
1041
|
+
),
|
1042
|
+
rebel.Runtime(
|
1043
|
+
compiled_models[1],
|
1044
|
+
tensor_type="pt",
|
1045
|
+
device=rbln_config.device_map["image_prefill"],
|
1046
|
+
activate_profiler=rbln_config.activate_profiler,
|
1047
|
+
),
|
1048
|
+
*[
|
1049
|
+
rebel.Runtime(
|
1050
|
+
compiled_models[i + 2],
|
1051
|
+
tensor_type="pt",
|
1052
|
+
device=rbln_config.device_map[f"decoder_batch_{batch_size}"],
|
1053
|
+
activate_profiler=rbln_config.activate_profiler,
|
1054
|
+
)
|
1055
|
+
for i, batch_size in enumerate(rbln_config.decoder_batch_sizes)
|
1056
|
+
],
|
1057
|
+
]
|