optimum-rbln 0.7.5a0__py3-none-any.whl → 0.7.5rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. optimum/rbln/__init__.py +30 -0
  2. optimum/rbln/__version__.py +2 -2
  3. optimum/rbln/configuration_utils.py +9 -4
  4. optimum/rbln/modeling.py +7 -5
  5. optimum/rbln/ops/__init__.py +1 -0
  6. optimum/rbln/ops/attn.py +10 -0
  7. optimum/rbln/ops/flash_attn.py +8 -0
  8. optimum/rbln/ops/sliding_window_attn.py +111 -0
  9. optimum/rbln/transformers/__init__.py +32 -3
  10. optimum/rbln/transformers/models/__init__.py +37 -0
  11. optimum/rbln/transformers/models/auto/__init__.py +1 -0
  12. optimum/rbln/transformers/models/auto/modeling_auto.py +7 -0
  13. optimum/rbln/transformers/models/blip_2/__init__.py +20 -0
  14. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +93 -0
  15. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +298 -0
  16. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +12 -6
  17. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +189 -90
  18. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +186 -95
  19. optimum/rbln/transformers/models/exaone/exaone_architecture.py +5 -1
  20. optimum/rbln/transformers/models/gemma/gemma_architecture.py +5 -1
  21. optimum/rbln/transformers/models/gemma3/__init__.py +16 -0
  22. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +69 -0
  23. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +446 -0
  24. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +1057 -0
  25. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
  26. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +11 -7
  27. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +4 -4
  28. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
  29. optimum/rbln/transformers/models/opt/__init__.py +16 -0
  30. optimum/rbln/transformers/models/opt/configuration_opt.py +19 -0
  31. optimum/rbln/transformers/models/opt/modeling_opt.py +80 -0
  32. optimum/rbln/transformers/models/opt/opt_architecture.py +77 -0
  33. optimum/rbln/transformers/models/phi/phi_architecture.py +4 -1
  34. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +18 -11
  35. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +35 -52
  36. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -0
  37. optimum/rbln/transformers/models/siglip/__init__.py +20 -0
  38. optimum/rbln/transformers/models/siglip/configuration_siglip.py +66 -0
  39. optimum/rbln/transformers/models/siglip/modeling_siglip.py +146 -0
  40. optimum/rbln/transformers/models/whisper/whisper_architecture.py +1 -0
  41. optimum/rbln/transformers/utils/rbln_quantization.py +121 -72
  42. optimum/rbln/utils/submodule.py +13 -1
  43. {optimum_rbln-0.7.5a0.dist-info → optimum_rbln-0.7.5rc0.dist-info}/METADATA +1 -1
  44. {optimum_rbln-0.7.5a0.dist-info → optimum_rbln-0.7.5rc0.dist-info}/RECORD +46 -31
  45. {optimum_rbln-0.7.5a0.dist-info → optimum_rbln-0.7.5rc0.dist-info}/WHEEL +0 -0
  46. {optimum_rbln-0.7.5a0.dist-info → optimum_rbln-0.7.5rc0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,146 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from transformers import SiglipVisionConfig, SiglipVisionModel
19
+ from transformers.modeling_outputs import BaseModelOutputWithPooling
20
+ from transformers.models.siglip.modeling_siglip import SiglipVisionModelOutput
21
+
22
+ from ....configuration_utils import RBLNCompileConfig
23
+ from ....modeling import RBLNModel
24
+ from ....utils.logging import get_logger
25
+ from .configuration_siglip import RBLNSiglipVisionModelConfig
26
+
27
+
28
+ logger = get_logger(__name__)
29
+
30
+ if TYPE_CHECKING:
31
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
32
+
33
+ from ....diffusers.modeling_diffusers import RBLNDiffusionMixin, RBLNDiffusionMixinConfig
34
+
35
+
36
+ class _SiglipVisionModel(torch.nn.Module):
37
+ def __init__(self, model: SiglipVisionModel, interpolate_pos_encoding: bool, output_hidden_states: bool):
38
+ super().__init__()
39
+ self.vision_model = model.vision_model
40
+ self.interpolate_pos_encoding = interpolate_pos_encoding
41
+ self.output_hidden_states = output_hidden_states
42
+
43
+ def forward(self, inp):
44
+ enc_out = self.vision_model(
45
+ inp,
46
+ output_hidden_states=self.output_hidden_states,
47
+ return_dict=False,
48
+ interpolate_pos_encoding=self.interpolate_pos_encoding,
49
+ )
50
+ return tuple(x for x in enc_out if x is not None)
51
+
52
+
53
+ class RBLNSiglipVisionModel(RBLNModel):
54
+ @classmethod
55
+ def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNSiglipVisionModelConfig) -> torch.nn.Module:
56
+ wrapper_cfg = {
57
+ "interpolate_pos_encoding": rbln_config.interpolate_pos_encoding,
58
+ "output_hidden_states": rbln_config.output_hidden_states,
59
+ }
60
+ return _SiglipVisionModel(model, **wrapper_cfg).eval()
61
+
62
+ @classmethod
63
+ def update_rbln_config_using_pipe(
64
+ cls, pipe: "RBLNDiffusionMixin", rbln_config: "RBLNDiffusionMixinConfig", submodule_name: str
65
+ ) -> "RBLNDiffusionMixinConfig":
66
+ return rbln_config
67
+
68
+ @classmethod
69
+ def _update_rbln_config(
70
+ cls,
71
+ preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
72
+ model: Optional["PreTrainedModel"] = None,
73
+ model_config: "SiglipVisionConfig" = None,
74
+ rbln_config: Optional[RBLNSiglipVisionModelConfig] = None,
75
+ ) -> RBLNSiglipVisionModelConfig:
76
+ if rbln_config.image_size is None:
77
+ rbln_config.image_size = getattr(model_config, "image_size", None)
78
+
79
+ if isinstance(rbln_config.image_size, int):
80
+ rbln_config.image_size = (rbln_config.image_size, rbln_config.image_size)
81
+ if rbln_config.image_size is None:
82
+ raise ValueError("`rbln_image_size` should be specified!")
83
+
84
+ if rbln_config.output_hidden_states is None:
85
+ rbln_config.output_hidden_states = model_config.output_hidden_states
86
+
87
+ rbln_compile_config = RBLNCompileConfig(
88
+ input_info=[
89
+ (
90
+ "pixel_values",
91
+ [
92
+ rbln_config.batch_size,
93
+ 3,
94
+ rbln_config.image_height,
95
+ rbln_config.image_width,
96
+ ],
97
+ "float32",
98
+ )
99
+ ]
100
+ )
101
+
102
+ rbln_config.set_compile_cfgs([rbln_compile_config])
103
+ return rbln_config
104
+
105
+ def forward(
106
+ self,
107
+ pixel_values: Optional[torch.FloatTensor] = None,
108
+ return_dict: bool = None,
109
+ interpolate_pos_encoding: bool = False,
110
+ **kwargs,
111
+ ) -> Union[Tuple, SiglipVisionModelOutput]:
112
+ if len(kwargs) > 0 and any(kwargs.values()):
113
+ logger.warning(f"Currently, optimum-rbln does not support kwargs {kwargs.keys()} for {self.__class__}.")
114
+
115
+ if interpolate_pos_encoding != self.rbln_config.interpolate_pos_encoding:
116
+ raise ValueError(
117
+ f"Variable interpolate_pos_encoding {interpolate_pos_encoding} is not equal to rbln_config.interpolate_pos_encoding {self.rbln_config.interpolate_pos_encoding}"
118
+ f"Please compile again with the correct argument."
119
+ )
120
+ output = super().forward(pixel_values, return_dict=return_dict)
121
+ return output
122
+
123
+ def _prepare_output(self, output, return_dict):
124
+ """
125
+ Prepare model output based on return_dict flag.
126
+ This method can be overridden by subclasses to provide task-specific output handling.
127
+ """
128
+ if not return_dict:
129
+ return (output,) if not isinstance(output, (tuple, list)) else output
130
+ else:
131
+ last_hidden_state = (
132
+ output[0]
133
+ if self.rbln_config.interpolate_pos_encoding or self.rbln_config.output_hidden_states
134
+ else output
135
+ )
136
+ pooler_output = output[1] if self.rbln_config.interpolate_pos_encoding else None
137
+ if self.rbln_config.output_hidden_states:
138
+ hidden_states = (output[2:] if self.rbln_config.interpolate_pos_encoding else output[1:],)
139
+ else:
140
+ hidden_states = None
141
+
142
+ return BaseModelOutputWithPooling(
143
+ last_hidden_state=last_hidden_state,
144
+ pooler_output=pooler_output,
145
+ hidden_states=hidden_states,
146
+ )
@@ -313,6 +313,7 @@ class WhisperSelfAttention(WhisperAttention):
313
313
  args["mask"] = attention_mask.unsqueeze(2)
314
314
  attn_output = torch.ops.rbln_custom_ops.paged_attn_decode(**args)
315
315
  else:
316
+ args["mask"] = None
316
317
  attn_output = torch.ops.rbln_custom_ops.paged_causal_attn_decode(**args)
317
318
 
318
319
  attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
@@ -12,94 +12,82 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- import functools
16
15
  import glob
17
16
  import os
18
- from typing import Any, Callable, Dict, Optional
17
+ from typing import Any, Dict, Optional, Union
19
18
 
20
19
  import torch
21
20
  from safetensors.torch import load_file
22
21
  from torch.nn import Linear, Parameter
23
22
  from torch.nn import functional as F
24
23
 
24
+ from ...configuration_utils import RBLNSerializableConfigProtocol
25
25
  from ...utils.logging import get_logger
26
26
 
27
27
 
28
28
  logger = get_logger()
29
29
 
30
- SUPPORTED_QUANTIZATIONS: Dict[str, list[str]] = {
31
- "rbln": ["w4a16"],
32
- }
33
30
 
31
+ class RBLNQuantizationConfig(RBLNSerializableConfigProtocol):
32
+ SUPPORTED_FORMATS = ["rbln"]
33
+ SUPPORTED_WEIGHTS = ["int4", "fp16"]
34
+ SUPPORTED_ACTIVATIONS = ["fp16"]
34
35
 
35
- class QuantizationManager:
36
36
  # The RBLN_QUANT_BITS environment variable defines the precision of each layer during the graph compilation process.
37
37
  # It specifies the quantization bit depth. For instance, setting RBLN_QUANT_BITS=4 will apply 4-bit precision for quantization.
38
38
  RBLN_QUANT_BITS_ENV = "RBLN_QUANT_BITS"
39
39
 
40
- @staticmethod
41
- def _raise_invalid_config_error(
42
- key: str, value: str, valid_values: list[str], context: Optional[str] = None
43
- ) -> None:
44
- context_info = f" for {context}" if context else ""
45
- valid_values_str = ", ".join(valid_values)
46
- raise ValueError(f"Invalid {key}: {value}{context_info}. Supported values are: {valid_values_str}")
47
-
48
- @staticmethod
49
- def validate_quantization_config(quantize_config: Optional[dict]) -> Optional[dict]:
50
- if not quantize_config:
51
- return None
52
-
53
- q_format = quantize_config.get("format")
54
- q_precision = quantize_config.get("precision")
55
-
56
- if q_format not in SUPPORTED_QUANTIZATIONS:
57
- QuantizationManager._raise_invalid_config_error(
58
- "quantization format", q_format, list(SUPPORTED_QUANTIZATIONS.keys())
40
+ def __init__(
41
+ self,
42
+ format: Optional[str] = None,
43
+ precision: Optional[str] = None,
44
+ weights: Optional[str] = None,
45
+ activations: Optional[str] = None,
46
+ ):
47
+ self.format = format
48
+ if precision is not None:
49
+ logger.warning("The `precision` argument is deprecated. Use `weights` and `activations` instead.")
50
+ if any(precision_arg is not None for precision_arg in (weights, activations)):
51
+ raise ValueError("`precision` and `weights` or `activations` cannot be set at the same time.")
52
+
53
+ if precision == "w4a16":
54
+ weights = "int4"
55
+ activations = "fp16"
56
+ else:
57
+ raise ValueError(f"Invalid precision: {precision}")
58
+
59
+ self.weights = weights or "fp16"
60
+ self.activations = activations or "fp16"
61
+ self._validate()
62
+
63
+ def _validate(self):
64
+ if self.format not in self.SUPPORTED_FORMATS:
65
+ raise ValueError(f"Invalid format: {self.format}, supported formats are: {self.SUPPORTED_FORMATS}")
66
+ if self.weights not in self.SUPPORTED_WEIGHTS:
67
+ raise ValueError(f"Invalid weights: {self.weights}, supported weights are: {self.SUPPORTED_WEIGHTS}")
68
+ if self.activations not in self.SUPPORTED_ACTIVATIONS:
69
+ raise ValueError(
70
+ f"Invalid activations: {self.activations}, supported activations are: {self.SUPPORTED_ACTIVATIONS}"
59
71
  )
72
+ if self.weights == "fp16" and self.activations == "fp16":
73
+ raise ValueError("weights and activations cannot be both fp16. It is meaningless.")
60
74
 
61
- if q_precision not in SUPPORTED_QUANTIZATIONS[q_format]:
62
- QuantizationManager._raise_invalid_config_error(
63
- "precision", q_precision, SUPPORTED_QUANTIZATIONS[q_format], q_format
64
- )
75
+ def _prepare_for_serialization(self) -> Dict[str, Any]:
76
+ return {
77
+ "format": self.format,
78
+ "weights": self.weights,
79
+ "activations": self.activations,
80
+ }
65
81
 
66
- return quantize_config
67
-
68
- @classmethod
69
- def _set_env_var(cls, name: str, value: str) -> None:
70
- os.environ[name] = value
71
-
72
- @classmethod
73
- def _unset_env_var(cls, name: str) -> None:
74
- os.environ.pop(name, None)
75
-
76
- @classmethod
77
- def set_quantization_env(cls, quantize_config: Optional[dict]) -> Optional[str]:
78
- quantize_config = cls.validate_quantization_config(quantize_config)
79
- if quantize_config:
80
- q_precision: str = quantize_config["precision"]
81
- quant_bits = q_precision.split("w")[1].split("a")[0]
82
- cls._set_env_var(cls.RBLN_QUANT_BITS_ENV, quant_bits)
83
- return cls.RBLN_QUANT_BITS_ENV
84
- return None
85
-
86
- @classmethod
87
- def reset_quantization_env(cls, env_var_name: Optional[str]) -> None:
88
- if env_var_name:
89
- cls._unset_env_var(env_var_name)
90
-
91
- @classmethod
92
- def with_quantization_env(cls, func: Callable) -> Callable:
93
- @functools.wraps(func)
94
- def wrapper(*args, **kwargs):
95
- quantize_config = kwargs.get("quantize_config")
96
- quantize_env_var = cls.set_quantization_env(quantize_config)
97
- try:
98
- return func(*args, **kwargs)
99
- finally:
100
- cls.reset_quantization_env(quantize_env_var)
101
-
102
- return wrapper
82
+ def maybe_set_quantization_env(self):
83
+ quant_bits = None
84
+ if self.weights == "int4":
85
+ quant_bits = "4"
86
+ os.environ[self.RBLN_QUANT_BITS_ENV] = quant_bits
87
+
88
+ def maybe_reset_quantization_env(self):
89
+ if self.RBLN_QUANT_BITS_ENV in os.environ:
90
+ os.environ.pop(self.RBLN_QUANT_BITS_ENV)
103
91
 
104
92
 
105
93
  # Constants
@@ -114,12 +102,31 @@ QUANTIZED_WEIGHTS = {
114
102
  }
115
103
 
116
104
 
117
- def prepare_model_for_quantization(model: torch.nn.Module, model_id: str, n_layer: Optional[int] = None) -> None:
105
+ def prepare_model_for_quantization(
106
+ model: torch.nn.Module,
107
+ model_id: str,
108
+ n_layer: Optional[int] = None,
109
+ use_auth_token: Optional[Union[bool, str]] = None,
110
+ revision: Optional[str] = None,
111
+ cache_dir: Optional[str] = None,
112
+ force_download: bool = False,
113
+ local_files_only: bool = False,
114
+ ) -> torch.nn.Module:
118
115
  """
119
116
  Prepare the model for quantization by updating specified linear layers to quantized (qlinear) layers.
120
117
  """
121
118
  update_layers_to_quantize(model)
122
- load_weights(model, model_id, n_layer)
119
+ load_weights(
120
+ model,
121
+ model_id,
122
+ n_layer,
123
+ use_auth_token=use_auth_token,
124
+ revision=revision,
125
+ cache_dir=cache_dir,
126
+ force_download=force_download,
127
+ local_files_only=local_files_only,
128
+ )
129
+ return model
123
130
 
124
131
 
125
132
  def update_layers_to_quantize(module: torch.nn.Module) -> None:
@@ -140,18 +147,57 @@ def update_layers_to_quantize(module: torch.nn.Module) -> None:
140
147
  logger.debug(f"Updated the following linear layers to quantized layers:\n {{{', '.join(processed_layers)}}}")
141
148
 
142
149
 
143
- def load_weights(model, model_id, n_layer=None):
150
+ def load_weights(
151
+ model,
152
+ model_id,
153
+ n_layer=None,
154
+ use_auth_token=None,
155
+ revision=None,
156
+ cache_dir=None,
157
+ force_download=False,
158
+ local_files_only=False,
159
+ ):
144
160
  """
145
161
  Load safetensor file data directly into the model, filtering by layer if n_layer is provided.
146
162
  """
147
- logger.debug("Loading the quantized weights into the CPU.") # TODO(jongho): remove.
148
163
 
149
164
  model_params = dict(model.named_parameters(recurse=True))
150
165
  model_buffers = dict(model.named_buffers(recurse=True))
151
- safetensor_files = glob.glob(f"{model_id}/*.safetensors")
166
+
167
+ if os.path.isdir(model_id):
168
+ safetensor_files = glob.glob(f"{model_id}/*.safetensors")
169
+ else:
170
+ from huggingface_hub import hf_hub_download, list_repo_files
171
+
172
+ try:
173
+ # List all files in the repository
174
+ repo_files = list_repo_files(model_id, revision=revision, token=use_auth_token)
175
+ # Filter for safetensors files
176
+ safetensor_files = []
177
+
178
+ for file in repo_files:
179
+ if file.endswith(".safetensors"):
180
+ # Download the safetensors file
181
+ downloaded_file = hf_hub_download(
182
+ repo_id=model_id,
183
+ filename=file,
184
+ revision=revision,
185
+ token=use_auth_token,
186
+ cache_dir=cache_dir,
187
+ force_download=force_download,
188
+ local_files_only=local_files_only,
189
+ )
190
+ safetensor_files.append(downloaded_file)
191
+ except Exception as e:
192
+ logger.error(f"Failed to download safetensors files from Hugging Face Hub: {e}")
193
+ raise e
194
+
195
+ if not safetensor_files:
196
+ raise FileNotFoundError(f"No safetensors files found for model_id: {model_id}")
152
197
 
153
198
  target_layers = list(range(n_layer)) if n_layer is not None else None
154
199
 
200
+ unloaded_keys = []
155
201
  for safetensor_file in safetensor_files:
156
202
  file_data = load_file(safetensor_file)
157
203
  for key, value in file_data.items():
@@ -165,8 +211,11 @@ def load_weights(model, model_id, n_layer=None):
165
211
  model_params[key].data.copy_(value)
166
212
  elif key in model_buffers:
167
213
  model_buffers[key].data.copy_(value)
214
+ else:
215
+ unloaded_keys.append(key)
168
216
 
169
- logger.debug("Loaded the quantized weights into the CPU.")
217
+ if len(unloaded_keys) > 0:
218
+ logger.warning(f"There are unexpected parameters/buffers on the checkpoint: {unloaded_keys}")
170
219
 
171
220
 
172
221
  def is_target_for_qlinear_replacement(layer_name: str, layer: torch.nn.Module) -> bool:
@@ -13,8 +13,11 @@
13
13
  # limitations under the License.
14
14
 
15
15
  import importlib
16
+ from pathlib import Path
16
17
  from typing import TYPE_CHECKING, Any, Dict, List, Type
17
18
 
19
+ from transformers import PretrainedConfig
20
+
18
21
  from ..configuration_utils import RBLNModelConfig
19
22
 
20
23
 
@@ -38,6 +41,10 @@ class SubModulesMixin:
38
41
  for submodule_meta, submodule in zip(self._rbln_submodules, rbln_submodules):
39
42
  setattr(self, submodule_meta["name"], submodule)
40
43
 
44
+ @classmethod
45
+ def _update_submodule_config(cls, model: "PreTrainedModel", rbln_config: RBLNModelConfig):
46
+ return rbln_config
47
+
41
48
  @classmethod
42
49
  def _export_submodules_from_model(
43
50
  cls, model: "PreTrainedModel", model_save_dir: str, rbln_config: RBLNModelConfig, **kwargs
@@ -62,6 +69,8 @@ class SubModulesMixin:
62
69
  submodule_rbln_config = submodule_rbln_config_class(**submodule_rbln_config)
63
70
  setattr(rbln_config, submodule_name, submodule_rbln_config)
64
71
 
72
+ submodule_rbln_config = submodule_cls._update_submodule_config(model, submodule_rbln_config)
73
+
65
74
  rbln_submodule = submodule_cls.from_model(
66
75
  model=torch_submodule,
67
76
  config=torch_submodule.config,
@@ -90,9 +99,12 @@ class SubModulesMixin:
90
99
  importlib.import_module("optimum.rbln"), submodule_rbln_config.rbln_model_cls_name
91
100
  )
92
101
 
102
+ json_file_path = Path(model_save_dir) / submodule_name / "config.json"
103
+ config = PretrainedConfig.from_json_file(json_file_path)
104
+
93
105
  rbln_submodule = submodule_cls._from_pretrained(
94
106
  model_id=model_save_dir,
95
- config=None,
107
+ config=config,
96
108
  subfolder=submodule_name,
97
109
  rbln_config=submodule_rbln_config,
98
110
  **kwargs,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.7.5a0
3
+ Version: 0.7.5rc0
4
4
  Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -1,7 +1,7 @@
1
- optimum/rbln/__init__.py,sha256=89QJBCQbW1u83pFzFif2gwnJ09eAWYEUEuiVF_mDHBI,13238
2
- optimum/rbln/__version__.py,sha256=bJpxWEb0lqqNtDNdD8kjIjXRVQ1JbWhjYWAaVwJIkmU,519
3
- optimum/rbln/configuration_utils.py,sha256=Bz4mDuKQAbIvd1F1E5hssLenqUIwGWYZIRAe0UCaHbU,31050
4
- optimum/rbln/modeling.py,sha256=qDXB69Oq0jx9hfONebDiSNe2_DgKYhnAGLTbGAtwYVw,9677
1
+ optimum/rbln/__init__.py,sha256=oAnsJSMrPYwBGEttUt3CMXTIESVNe15ftTWRTShwhZI,14386
2
+ optimum/rbln/__version__.py,sha256=34rdkaF19JfWW5k_S6Q9ZJaeOOAsCoPR3_vN57l-b28,521
3
+ optimum/rbln/configuration_utils.py,sha256=gvAjRFEGw5rnSoH0IoyuLrE4fkxtk3DN1pikqrN_Rpk,31277
4
+ optimum/rbln/modeling.py,sha256=4Xwi3ovWDHOOqxUDH_ZgsgTuea8Kyg25D9s81zVYpr0,9669
5
5
  optimum/rbln/modeling_base.py,sha256=iQKw2IORu1cN6sOK0xeBVrhatt-ZPeinT_v6l2FnGRw,24173
6
6
  optimum/rbln/diffusers/__init__.py,sha256=XL6oKPHbPCV6IVCw3fu0-M9mD2KO_x6unx5kJdAtpVY,6180
7
7
  optimum/rbln/diffusers/modeling_diffusers.py,sha256=bPyP5RMbOFLb2DfEAuLVp7hTuQWJvWid7El72wGmFrY,19535
@@ -55,21 +55,22 @@ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=9iIMZYvp
55
55
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=9GQIzBSgBae2kE9esGycg7WqNwO8TGF5c97rMx9934Y,1029
56
56
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=BtzoyVd6Np5BPu3-OyXjbVMM8tl2ARF3HeFZab9NLXU,1071
57
57
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py,sha256=7_ezUBCaH24e25VS19vrhJHBvmEOFnBpgfslpjL6aT4,1071
58
- optimum/rbln/ops/__init__.py,sha256=rSz6mfC0aGbNYjMaNSsOZSPYxPRenW8DWbNpAkjTfAc,703
59
- optimum/rbln/ops/attn.py,sha256=x02yFLk7FcONFqfow0ROmVy9fmxo5Pw0SPCiDY3AZNg,9012
60
- optimum/rbln/ops/flash_attn.py,sha256=NmCqUdMTzgJ4sbYGj8IWXJEsLWvbuCMponR01w5DK6w,4121
58
+ optimum/rbln/ops/__init__.py,sha256=SPepB2VbmvEgathWAs_oCbDOPVyBhPey3wZX2X6dIBM,738
59
+ optimum/rbln/ops/attn.py,sha256=lFAypLsboLq9p74y3n-x7iwYTjaKdCZGTKLgvFWkXTI,9481
60
+ optimum/rbln/ops/flash_attn.py,sha256=z39DJZSk94630ueoOCkiybxR5gzvNR-SRADHs0F6pzU,4346
61
61
  optimum/rbln/ops/kv_cache_update.py,sha256=HjnHBR-oFrJQibsVnkYb0P5_-wEma8jl0mkjkylwakU,1270
62
62
  optimum/rbln/ops/linear.py,sha256=1_7Hg-9wXxhu97fqPobotLQx17k7VPeSSL91_9Z7EDg,1018
63
- optimum/rbln/transformers/__init__.py,sha256=P89UOclQWiLgNkH90GXdnwWD2492O2tusM-fZApfBNg,8084
63
+ optimum/rbln/ops/sliding_window_attn.py,sha256=EQrV_yRGc5z6kvwEsAcLP028bJWkQg2UPI3xubt9skU,3487
64
+ optimum/rbln/transformers/__init__.py,sha256=LW6abfb0W0jHziE8dIEDBeyb4Cj-aq8dUldOYKNR6_E,9183
64
65
  optimum/rbln/transformers/configuration_alias.py,sha256=qFVfg6ohsR7a6b-CBgxjBUPDrk9MyiJwtO8AQah_RTU,1505
65
66
  optimum/rbln/transformers/configuration_generic.py,sha256=XIiZ1-5p1CMHhG7Sr2qR4SLYKcYw9aph7eGlga3Opx0,5056
66
67
  optimum/rbln/transformers/modeling_alias.py,sha256=yx7FnZQWAnrWzivaO5hI7T6i-fyLzt2tMIXG2oDNbPo,1657
67
68
  optimum/rbln/transformers/modeling_generic.py,sha256=nT_lytAILkYtwBVJKxXg0dxmh0UpjGYO6zOdLoMs1uU,12891
68
69
  optimum/rbln/transformers/modeling_rope_utils.py,sha256=3zwkhYUyTZhxCJUSmwCc88iiY1TppRWEY9ShwUqNB2k,14293
69
- optimum/rbln/transformers/models/__init__.py,sha256=72eMPN5UYGJ9P5gnJ2yi25cGdX1jV7viTOKmsX2OqBg,7221
70
- optimum/rbln/transformers/models/auto/__init__.py,sha256=GvGbb3ZpMv-h6euXeZ42jSizoOfrL2O1uvpAnfKxYEo,1034
70
+ optimum/rbln/transformers/models/__init__.py,sha256=qNh_d7bBKxhxBbUImXJ66n0Vo0NW1m7tMIU5M2ZxGmw,8510
71
+ optimum/rbln/transformers/models/auto/__init__.py,sha256=34Xghf1ogG4u-jhBMlj134nHdgnR3JEHSeZTPuy3MpY,1071
71
72
  optimum/rbln/transformers/models/auto/auto_factory.py,sha256=Uf5rCUoxec2qhIAwbAeZNZN4NIMFaLurSB1EdI79lwA,7044
72
- optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Un9qoqdy3dO8JBza_bTJF_6_fRVNM9QisihSgTRFI-o,3933
73
+ optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Ex2ARRRIt3LtKhazr0UWy67R6WFAwSKRoi5n6B8TvoI,4213
73
74
  optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
74
75
  optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=Oo-Cdne7igKEex8wwP-gztKJHgs5GLHQjK1oc3IZIDE,5801
75
76
  optimum/rbln/transformers/models/bart/configuration_bart.py,sha256=iIuotDRU0IZteTNUY97jnsecIEYokaJ0BF5Sv_MJk00,909
@@ -77,62 +78,76 @@ optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=q42gQ42Ldkfrw_rv0_
77
78
  optimum/rbln/transformers/models/bert/__init__.py,sha256=86FuGRBLw315_Roa9D5OUx6Ku2PM0DqSPZ-YSqbF-io,806
78
79
  optimum/rbln/transformers/models/bert/configuration_bert.py,sha256=NIlBRn-zrnNirkEfJ4Uv2TZRIBL761PLJ9-cZaPyzpg,1017
79
80
  optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=XxsRhBhexZ2w3mRCvKl73pIyGdqcFR1RrOKG7h4EAyk,1223
81
+ optimum/rbln/transformers/models/blip_2/__init__.py,sha256=L01gPXcUCa8Vg-bcng20vZvBIN_jlqCzwUSFuq0QOag,855
82
+ optimum/rbln/transformers/models/blip_2/configuration_blip_2.py,sha256=Dh_gbeF46Tg3DKK4lq9DRblweI3B7XZHE2PlxO8qStU,3662
83
+ optimum/rbln/transformers/models/blip_2/modeling_blip_2.py,sha256=4-EWHRau363-YoZQcTfLXqm97IsAs3-Uya2L1IVGfxE,10830
80
84
  optimum/rbln/transformers/models/clip/__init__.py,sha256=TLeXDqcFK6M6v9x7Xr64kBbqGu3hFHM7p754dQ8UVQc,938
81
85
  optimum/rbln/transformers/models/clip/configuration_clip.py,sha256=wgfZeVvcVdSzrN9tcnt7DKJQ0NLR0REvW7MyUXyv2Bg,2976
82
86
  optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=UslcDN6otyQ_psou7F_YcdK5vCImEtgIdcbwmexSfOM,7256
83
87
  optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=vQYZDDdoddwA7yKc5zzrq2Zs9sax-0p8rNF_aYfF4bk,1006
84
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=tIBzKmts1Ea-CZWXC7RtJqeE9bd5wjmkugZg269wmVg,5962
85
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=NG2tKC3gT57r34PYKgU0evZHctEHzJGRrk2FOjLyK7Q,41748
86
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=n5Kh5hE49m8Rl94DDwe2aDD3Y-dCPwRcENn-x9qkpzM,45245
88
+ optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py,sha256=WQlHUjcMuD_3BPLo1Ytzz-xAI-8J9BYfr7dEzmpLVks,6389
89
+ optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=m_wTGXSK8cBG3NjLDNLTxSWyErl7MB4PPU9fQ6zijEI,45991
90
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=bYhw5co6aeueDNR2VHc9vwzhn9JL_fHTJS7E2bE6500,49471
87
91
  optimum/rbln/transformers/models/dpt/__init__.py,sha256=Nzep9mlzKyL1kV726IBqY8DnLp1DkH9JzFeknWSRhok,714
88
92
  optimum/rbln/transformers/models/dpt/configuration_dpt.py,sha256=4fW6bzVhaAxym4wGV3F785rvUOoWPyw_gdEMqB08Leg,755
89
93
  optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=oKLX7MQZvfk1QB8wOtcdi7AmZH2fOIVbypa9A3RA9MI,733
90
94
  optimum/rbln/transformers/models/exaone/__init__.py,sha256=eUL0mq3yGVzCQfjLlOtVF2MecIN3DQWm07EmXubGSTs,921
91
95
  optimum/rbln/transformers/models/exaone/configuration_exaone.py,sha256=97r1wkO9cgwErePk2UX6n7WeVkOmWUeGgpK6qAGOUi4,774
92
- optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256=ZM5vvz8KBipOiMVi8vqfvejkDSknW69xh4GrvJix-g0,3350
96
+ optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256=UTpMOLFOt3r9eziNRd8qWU6ekVmM3CxTxg5x8mA12MI,3511
93
97
  optimum/rbln/transformers/models/exaone/modeling_exaone.py,sha256=WjyH8PmsMljSea7kJn_Cq1FJ96OXwXAoU7hv2Q8zUnI,1747
94
98
  optimum/rbln/transformers/models/gemma/__init__.py,sha256=VqPIlokw3kjn_ZoLXINCLXw3vaysQFo5oPGGy6bnt4Q,708
95
99
  optimum/rbln/transformers/models/gemma/configuration_gemma.py,sha256=ek7PiMWx4LDAJ0mCedJ55o_TKTiOCSGD5V-1o1Fy4f8,773
96
- optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=bmCx405FVcffhgrQ53qMMZDbSlPxWOjucMHbvq19Gnw,2286
100
+ optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=_Ip8J4IKEkXwEiynKvoj7NEYDR0eJ4IEWXqgjXibBy4,2447
97
101
  optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=-U3w3cEOv3ps1S8aL7uOq6Kq2siCPZz7Z8MXhDQgQqo,1530
102
+ optimum/rbln/transformers/models/gemma3/__init__.py,sha256=6rugk3615SEt4lh7gduo_J9VyGiSReuEIvL0Uno0eaI,790
103
+ optimum/rbln/transformers/models/gemma3/configuration_gemma3.py,sha256=nndcYVwDYkOige_qO4td-YwLNtUz6aLiSQDIfPdGG9A,2840
104
+ optimum/rbln/transformers/models/gemma3/gemma3_architecture.py,sha256=Uer27wG06hgV1WNf92x1ZeUpl4Q0zskfCqzlLhtgtNU,17348
105
+ optimum/rbln/transformers/models/gemma3/modeling_gemma3.py,sha256=OUGsML-H6FOKldld7KRW9l0nRoT4DojWBDl8ZHpfXVA,44982
98
106
  optimum/rbln/transformers/models/gpt2/__init__.py,sha256=socBMIBZSiLbrVN12rQ4nL9gFeT0axMgz6SWaCaD4Ac,704
99
107
  optimum/rbln/transformers/models/gpt2/configuration_gpt2.py,sha256=vKvJD8P9Li4W9wdVoQcqMEr1MwEXojPBnF2NE85VXAo,772
100
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=1IxqHmB-GlH2Dv2Yk4z0rMxL9CpxMGHhSu_x8_4cxvs,3008
108
+ optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=kf5jk7Djv9XXX3Q83oTosiMpt9g44TF_gCT-vMiWDJk,3097
101
109
  optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=qBDanUk_O-HtOIVCA4IE3FYyCsnL9xIDK00vft-0caw,1490
102
110
  optimum/rbln/transformers/models/idefics3/__init__.py,sha256=ulxE7HEfXsNJhd25J9Fvi6vggo9aZH9sLKJjWB6LlzQ,814
103
111
  optimum/rbln/transformers/models/idefics3/configuration_idefics3.py,sha256=sM0pXsvkxcpDXagoKlqwKdBAcNdayB9KlWdYC9xlyDU,1889
104
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=Rr9BJDyoOqJFQ8dJV78QU4Tjjhhj3aqRk05JcDqFv6Y,17904
112
+ optimum/rbln/transformers/models/idefics3/modeling_idefics3.py,sha256=oSF08arqwjoodq9_A304jhRlQbk_FEIkR4EhJqiNAzk,18062
105
113
  optimum/rbln/transformers/models/llama/__init__.py,sha256=knxvRkPx8x6-WOxqSq_PlaKYD-9F9Q8dh7r095Esey0,708
106
114
  optimum/rbln/transformers/models/llama/configuration_llama.py,sha256=B9gr4pTn9yiv3-8DIk0P7_AQdIHEc7SuLaH9gZAmP8E,773
107
115
  optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=S7MCPfyjG5eUqgaS-QNBB0ApUD6wnb5fR0RHq7k7-pA,728
108
116
  optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=Z3iony7icoFhRQ11MAuFx9UF03uJCsvJQZ6bxHXlrgk,1530
109
117
  optimum/rbln/transformers/models/llava_next/__init__.py,sha256=kDXKr7wMkp1XqE__DER2B8kQF_NYMxhzsQS5ytGg56I,752
110
118
  optimum/rbln/transformers/models/llava_next/configuration_llava_next.py,sha256=QPreWZyohwRL23GOyvoAfKtk5UNg7IJ_Y_pNfUDe7cU,1838
111
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=xOXc1XUIK4oLSFvAq7Q0lxiOLlDFMbFdOcg5JvLnVkI,25979
119
+ optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=Igq_VCcOgSxltzm7eV9F5MiHS-vyDAp4DIswH80q76c,26022
112
120
  optimum/rbln/transformers/models/midm/__init__.py,sha256=IC3FETwgYinbp3wDj7tp4zIHJhbqM-c6GfTRdYcMNj8,913
113
121
  optimum/rbln/transformers/models/midm/configuration_midm.py,sha256=Kv5g5dIsBrhGcZ2_pFUOPNB80np4Xiw0wPH1IZm1PHI,772
114
- optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=357iviqQkzI0s_lU_teH1sVOChNRDUABe3GA0HuhZZY,5444
122
+ optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=I2oEE6IjV0Khx5X9t2NpOzEF59zacw6XJgEFxKL26cA,5533
115
123
  optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=GG25BozEZriAL-OPFGpzOjyDtSFB-NfeiLJTDAqxe20,1734
116
124
  optimum/rbln/transformers/models/mistral/__init__.py,sha256=9FE64bCYfSIyrBkRcwlqF8QyacSJFWvwEufHFi1ZIrM,716
117
125
  optimum/rbln/transformers/models/mistral/configuration_mistral.py,sha256=zCHZnmjTXs7UKYIIRR2IYjccROm5ODXfonWploITNxg,775
118
126
  optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=_aU8TE_tdvfo0K7QpgTlz_d0qwk4O82dl9268lPL16E,733
119
127
  optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=7nrddoBIHf8S12LZWBUpotnvG3gND11vMQda9yYXJ-s,1560
128
+ optimum/rbln/transformers/models/opt/__init__.py,sha256=w0v8GzbzlR5_4yL851njGDSJgX89TrYxrHnpNfMHZEI,700
129
+ optimum/rbln/transformers/models/opt/configuration_opt.py,sha256=1BIxum4m6An5dsYpw1Kmf-QIHSGQK8uDjMd2hUkRvzE,771
130
+ optimum/rbln/transformers/models/opt/modeling_opt.py,sha256=NteN2EIW0le-QT_gWyGUb7yC-eAqHrI1x1UflCldu6Q,3131
131
+ optimum/rbln/transformers/models/opt/opt_architecture.py,sha256=zrgOrZ2C_mdHcX-beOu6TB52rjNhe3PLqS5BpC-_UpU,2681
120
132
  optimum/rbln/transformers/models/phi/__init__.py,sha256=uqQb-sO1HXuaju2hfo7qJHk_IWhnptY-qFjNjK_uOc0,700
121
133
  optimum/rbln/transformers/models/phi/configuration_phi.py,sha256=9Mk06ZNymGnC2P0eiU02oguH1KFKxL-LYtMJSNqpmmo,771
122
134
  optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=j-6Pqd5rR2JE8I1pnKFlCi4nW5Dv3wZjoPWxohissoo,1516
123
- optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=TueyqmjPXWmOPOxBm4dIFyd0X3iV1jgw0U6c26iCAPk,4090
135
+ optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=MioLLM4uxZvJqaWQn25WvDo85pI_rXKTJqlwaptqZ80,4191
124
136
  optimum/rbln/transformers/models/qwen2/__init__.py,sha256=Tu4_AXy3ktTvxGwxED3kewiv62S75HgDWD6-TeC1DfA,708
125
137
  optimum/rbln/transformers/models/qwen2/configuration_qwen2.py,sha256=sQBu4UjM8Ctiy696FLjKeck1t49MR31zWTCN_bMvBl4,773
126
138
  optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=9-aFDvjMzPNUyGOz0qo33RE18bUFGYZ3Wt_68zb5uJY,1530
127
139
  optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
128
140
  optimum/rbln/transformers/models/qwen2_5_vl/__init__.py,sha256=rAW3DKQUzGL6EMwa5r1iLu94yhpiZpk6zfoD7TtYXrc,865
129
141
  optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py,sha256=dPcGNaLwJf61PIvVbyt-lvBflp_dvK0hubhNoA3len0,3123
130
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=sKsDAiMGWtbquTw6_PITK4ijL0aHBZqgs2nPObEiFN8,24951
131
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=YRy7Ylm-UQLovt5BmxhayJMKzF3rj0_HIc4tUXaiPO0,7474
142
+ optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py,sha256=DUlTQc24IJwWMTIi3ou3F7eraYJy9WERjH7yAZo80u4,25172
143
+ optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py,sha256=OR-tTu8uzeFryenohoqRwgIVqw5zM7dcsZHwKL_jD0A,7232
132
144
  optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=6WKstWiS1kW0oFDn_jyrKMW5QEJAWkmsSRAaadNedDM,715
133
145
  optimum/rbln/transformers/models/seq2seq/configuration_seq2seq2.py,sha256=vSNP1eILfL32cbiLOAD58Ocz6lk3hYFnhIRLDVqlSoI,2624
134
146
  optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=7MN6CNVyYg4JsULYXDfQ_KkDd3w-1TXuxndSrM-CX8w,16980
135
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=w5pMnWbJhgYmpl5NT_vJEzcb4RfEbHfalJ371IL3wp8,18685
147
+ optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=i2YXcusNvWjqYmS3ZvrWJiilovKIlfozB92fqDrtwq8,18729
148
+ optimum/rbln/transformers/models/siglip/__init__.py,sha256=39MdhvWLZU0_9julQtJYVEiWI4csPrryS9krMauEA3s,730
149
+ optimum/rbln/transformers/models/siglip/configuration_siglip.py,sha256=tXzkTXeFamOwRnafJMYmjIPDODKwM6xNsW-UTf5cH38,2625
150
+ optimum/rbln/transformers/models/siglip/modeling_siglip.py,sha256=hvffh55rYxHx7CLHe5TR_5nfCGUhVd3dUmCwUasLjwE,5941
136
151
  optimum/rbln/transformers/models/t5/__init__.py,sha256=R1Q8Z1vaIdx4rDjeCmm_ZMSgewWaqaI0l93AHwewtew,818
137
152
  optimum/rbln/transformers/models/t5/configuration_t5.py,sha256=cOa2NAAocNSSECTtLpOsVVLfn4-7l7K7jz3nf6CSNCs,912
138
153
  optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=cnN76IAw6QaJN8Oodfk5Y4Dte6m84Fy_CRgnqquzzTI,2990
@@ -148,12 +163,12 @@ optimum/rbln/transformers/models/whisper/__init__.py,sha256=ErquiUlYycSYPsDcq9Iw
148
163
  optimum/rbln/transformers/models/whisper/configuration_whisper.py,sha256=-Su7pbkg3gkYTf-ECRJyxkpD3JtUJX4y5Mfml8tJJBI,2612
149
164
  optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=GIHTca3b1VtW81kp7BzKQ7f77c2t9OsEsbZetripgDo,4582
150
165
  optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=7VcOjxV3ZAHBYFDLiSc6wVJ3PZLqzmbBAIkQ4JVfpNM,17538
151
- optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=zEwfn8DDTbt2TN7lHKMZG9JXZc5WdW9Cp8mH4OVfo3s,13949
166
+ optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=fKUbAMIl20o6EBMVcLg9TDSsJ1FDp8NKcl4jT9RWCEM,13981
152
167
  optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=mFeFTiF6xY_n1glUsvZ420uKKwkeVOS5Oag0L6E4Qs8,718
153
168
  optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py,sha256=XBICzoxTaZ8DhBtr8qos2tDJar4jvCiKOZwXGImlTAw,779
154
169
  optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=rro7kH_BLDIlKSBRUfeuX-qQu6MeO5SzbVcf0AbFxEk,757
155
170
  optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
156
- optimum/rbln/transformers/utils/rbln_quantization.py,sha256=gwBVHf97sQgPNmGa0wq87E8mPyrtXYhMnO4X4sKp3c8,7639
171
+ optimum/rbln/transformers/utils/rbln_quantization.py,sha256=um0N2ZruU_lNibo6rlzgwHAI2_8QOrYE7W7pA1qfXKM,9396
157
172
  optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
158
173
  optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
159
174
  optimum/rbln/utils/hub.py,sha256=Z_R9Ic9VAew8bUmlaAlxZf5JGMDBivHvvFRI557pILY,4196
@@ -162,8 +177,8 @@ optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE
162
177
  optimum/rbln/utils/model_utils.py,sha256=V2kFpUe2aqVzLwbpztD8JOVFQqRHncvIWwJbgnUPr4E,1274
163
178
  optimum/rbln/utils/runtime_utils.py,sha256=LoKNK3AQNV_BSScstIZWjICkJf265MnUgy360BOocVI,5454
164
179
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
165
- optimum/rbln/utils/submodule.py,sha256=TtcH3OLctFd2Dosc-zNMGZ8xOXKKUfE91dLQ1v09E8Q,4636
166
- optimum_rbln-0.7.5a0.dist-info/METADATA,sha256=4whxRZ9ifF1V_E6GUaWfwDfEW8oM0ahTpV_KttLvsrE,5299
167
- optimum_rbln-0.7.5a0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
168
- optimum_rbln-0.7.5a0.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
169
- optimum_rbln-0.7.5a0.dist-info/RECORD,,
180
+ optimum/rbln/utils/submodule.py,sha256=ZfI7e3YzbjbbBW4Yjfucj8NygEsukfIkaJi3PtwHrhc,5105
181
+ optimum_rbln-0.7.5rc0.dist-info/METADATA,sha256=aXeccsNinGR5xXxBOKIMhxfeHyF-wQE5DxWtOrt2WyI,5300
182
+ optimum_rbln-0.7.5rc0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
183
+ optimum_rbln-0.7.5rc0.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
184
+ optimum_rbln-0.7.5rc0.dist-info/RECORD,,