optimum-rbln 0.7.4a8__py3-none-any.whl → 0.7.5a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. optimum/rbln/__init__.py +1 -0
  2. optimum/rbln/__version__.py +2 -2
  3. optimum/rbln/configuration_utils.py +30 -4
  4. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +8 -0
  5. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +8 -0
  6. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +8 -0
  7. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +8 -0
  8. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +32 -17
  9. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +19 -15
  10. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +8 -8
  11. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +8 -8
  12. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +8 -8
  13. optimum/rbln/diffusers/modeling_diffusers.py +9 -2
  14. optimum/rbln/diffusers/models/controlnet.py +1 -1
  15. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +1 -1
  16. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +1 -1
  17. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +2 -0
  18. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +2 -0
  19. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +2 -0
  20. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +2 -0
  21. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +2 -0
  22. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -0
  23. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +2 -0
  24. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +2 -0
  25. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +2 -0
  26. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -0
  27. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +2 -0
  28. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +2 -0
  29. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +2 -0
  30. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +2 -0
  31. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +2 -0
  32. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +2 -0
  33. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +2 -0
  34. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +2 -0
  35. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +31 -1
  36. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +103 -59
  37. optimum/rbln/utils/import_utils.py +23 -6
  38. {optimum_rbln-0.7.4a8.dist-info → optimum_rbln-0.7.5a0.dist-info}/METADATA +1 -1
  39. {optimum_rbln-0.7.4a8.dist-info → optimum_rbln-0.7.5a0.dist-info}/RECORD +41 -41
  40. {optimum_rbln-0.7.4a8.dist-info → optimum_rbln-0.7.5a0.dist-info}/WHEEL +0 -0
  41. {optimum_rbln-0.7.4a8.dist-info → optimum_rbln-0.7.5a0.dist-info}/licenses/LICENSE +0 -0
optimum/rbln/__init__.py CHANGED
@@ -337,6 +337,7 @@ else:
337
337
  globals()["__file__"],
338
338
  _import_structure,
339
339
  module_spec=__spec__,
340
+ extra_objects={"__version__": __version__},
340
341
  )
341
342
 
342
343
 
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.7.4a8'
21
- __version_tuple__ = version_tuple = (0, 7, 4, 'a8')
20
+ __version__ = version = '0.7.5a0'
21
+ __version_tuple__ = version_tuple = (0, 7, 5, 'a0')
@@ -19,7 +19,6 @@ from dataclasses import asdict, dataclass
19
19
  from pathlib import Path
20
20
  from typing import Any, Dict, List, Optional, Tuple, Type, Union
21
21
 
22
- import rebel
23
22
  import torch
24
23
 
25
24
  from .__version__ import __version__
@@ -452,6 +451,7 @@ class RBLNModelConfig:
452
451
  "activate_profiler",
453
452
  ]
454
453
  submodules: List[str] = []
454
+ subclass_non_save_attributes = []
455
455
 
456
456
  def init_submodule_config(
457
457
  self,
@@ -480,7 +480,11 @@ class RBLNModelConfig:
480
480
  return submodule_config
481
481
 
482
482
  def __setattr__(self, key, value):
483
- if key != "_attributes_map" and key not in self.non_save_attributes:
483
+ if (
484
+ key != "_attributes_map"
485
+ and key not in self.non_save_attributes
486
+ and key not in self.subclass_non_save_attributes
487
+ ):
484
488
  self._attributes_map[key] = value
485
489
 
486
490
  if hasattr(self, "_frozen") and self._frozen:
@@ -528,7 +532,7 @@ class RBLNModelConfig:
528
532
 
529
533
  Args:
530
534
  cls_name (Optional[str]): The class name of the configuration. Defaults to the current class name.
531
- create_runtimes (Optional[bool]): Whether to create RBLN runtimes. Defaults to True if an NPU is available.
535
+ create_runtimes (Optional[bool]): Whether to create RBLN runtimes. Defaults to True.
532
536
  optimize_host_memory (Optional[bool]): Whether to optimize host memory usage. Defaults to True.
533
537
  device (Optional[Union[int, List[int]]]): The device(s) to load the model onto. Can be a single device ID or a list.
534
538
  device_map (Optional[Dict[str, Union[int, List[int]]]]): Mapping from compiled model names to device IDs.
@@ -723,13 +727,35 @@ class RBLNModelConfig:
723
727
 
724
728
  return rbln_config, kwargs
725
729
 
730
+ def get_default_values_for_original_cls(self, func_name: str, keys: List[str]) -> Dict[str, Any]:
731
+ """
732
+ Get default values for original class attributes from RBLNModelConfig.
733
+
734
+ Args:
735
+ func_name (str): The name of the function to get the default values for.
736
+ keys (List[str]): The keys of the attributes to get.
737
+
738
+ Returns:
739
+ Dict[str, Any]: The default values for the attributes.
740
+ """
741
+ model_cls = self.rbln_model_cls.get_hf_class()
742
+ func = getattr(model_cls, func_name)
743
+ func_signature = inspect.signature(func)
744
+ default_values = {}
745
+ for key in keys:
746
+ if key in func_signature.parameters:
747
+ default_values[key] = func_signature.parameters[key].default
748
+ else:
749
+ raise ValueError(f"Default value for `{key}` is not set for the model class.")
750
+ return default_values
751
+
726
752
  @property
727
753
  def create_runtimes(self):
728
754
  context = ContextRblnConfig.get_current_context()["create_runtimes"]
729
755
  if context is not None:
730
756
  return context
731
757
  elif self._runtime_options["create_runtimes"] is None:
732
- return rebel.npu_is_available()
758
+ return True
733
759
  return self._runtime_options["create_runtimes"]
734
760
 
735
761
  @create_runtimes.setter
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNControlNetModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -44,6 +46,8 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
44
46
  ValueError: If batch_size is not a positive integer.
45
47
  """
46
48
  super().__init__(**kwargs)
49
+ self._batch_size_is_specified = batch_size is not None
50
+
47
51
  self.batch_size = batch_size or 1
48
52
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
49
53
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -52,3 +56,7 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
52
56
  self.unet_sample_size = unet_sample_size
53
57
  self.vae_sample_size = vae_sample_size
54
58
  self.text_model_hidden_size = text_model_hidden_size
59
+
60
+ @property
61
+ def batch_size_is_specified(self):
62
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNPriorTransformerConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -36,9 +38,15 @@ class RBLNPriorTransformerConfig(RBLNModelConfig):
36
38
  ValueError: If batch_size is not a positive integer.
37
39
  """
38
40
  super().__init__(**kwargs)
41
+ self._batch_size_is_specified = batch_size is not None
42
+
39
43
  self.batch_size = batch_size or 1
40
44
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
41
45
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
42
46
 
43
47
  self.embedding_dim = embedding_dim
44
48
  self.num_embeddings = num_embeddings
49
+
50
+ @property
51
+ def batch_size_is_specified(self):
52
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -38,6 +40,8 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
38
40
  ValueError: If batch_size is not a positive integer.
39
41
  """
40
42
  super().__init__(**kwargs)
43
+ self._batch_size_is_specified = batch_size is not None
44
+
41
45
  self.batch_size = batch_size or 1
42
46
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
43
47
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -46,3 +50,7 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
46
50
  self.sample_size = sample_size
47
51
  if isinstance(self.sample_size, int):
48
52
  self.sample_size = (self.sample_size, self.sample_size)
53
+
54
+ @property
55
+ def batch_size_is_specified(self):
56
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -49,6 +51,8 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
49
51
  ValueError: If batch_size is not a positive integer.
50
52
  """
51
53
  super().__init__(**kwargs)
54
+ self._batch_size_is_specified = batch_size is not None
55
+
52
56
  self.batch_size = batch_size or 1
53
57
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
54
58
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -64,3 +68,7 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
64
68
  self.sample_size = sample_size
65
69
  if isinstance(sample_size, int):
66
70
  self.sample_size = (sample_size, sample_size)
71
+
72
+ @property
73
+ def batch_size_is_specified(self):
74
+ return self._batch_size_is_specified
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig, RBLNCLIPTextModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNControlNetModelConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "unet", "vae", "controlnet"]
28
24
  _vae_uses_encoder = False
@@ -58,7 +54,7 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
58
54
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
59
55
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
60
56
  Cannot be used together with img_height/img_width.
61
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
57
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
62
58
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
63
59
 
64
60
  Raises:
@@ -79,7 +75,6 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
79
75
  self.unet = self.init_submodule_config(
80
76
  RBLNUNet2DConditionModelConfig,
81
77
  unet,
82
- batch_size=batch_size,
83
78
  sample_size=sample_size,
84
79
  )
85
80
  self.vae = self.init_submodule_config(
@@ -89,14 +84,24 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
89
84
  uses_encoder=self.__class__._vae_uses_encoder,
90
85
  sample_size=image_size, # image size is equal to sample size in vae
91
86
  )
92
- self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet, batch_size=batch_size)
87
+ self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet)
88
+
89
+ # Get default guidance scale from original class to set UNet and ControlNet batch size
90
+ if guidance_scale is None:
91
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
93
92
 
94
93
  if guidance_scale is not None:
95
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
96
94
  do_classifier_free_guidance = guidance_scale > 1.0
97
95
  if do_classifier_free_guidance:
98
- self.unet.batch_size = self.text_encoder.batch_size * 2
99
- self.controlnet.batch_size = self.text_encoder.batch_size * 2
96
+ if not self.unet.batch_size_is_specified:
97
+ self.unet.batch_size = self.text_encoder.batch_size * 2
98
+ if not self.controlnet.batch_size_is_specified:
99
+ self.controlnet.batch_size = self.text_encoder.batch_size * 2
100
+ else:
101
+ if not self.unet.batch_size_is_specified:
102
+ self.unet.batch_size = self.text_encoder.batch_size
103
+ if not self.controlnet.batch_size_is_specified:
104
+ self.controlnet.batch_size = self.text_encoder.batch_size
100
105
 
101
106
  @property
102
107
  def batch_size(self):
@@ -157,7 +162,7 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
157
162
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
158
163
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
159
164
  Cannot be used together with img_height/img_width.
160
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
165
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
161
166
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
162
167
 
163
168
  Raises:
@@ -181,7 +186,6 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
181
186
  self.unet = self.init_submodule_config(
182
187
  RBLNUNet2DConditionModelConfig,
183
188
  unet,
184
- batch_size=batch_size,
185
189
  sample_size=sample_size,
186
190
  )
187
191
  self.vae = self.init_submodule_config(
@@ -191,14 +195,25 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
191
195
  uses_encoder=self.__class__._vae_uses_encoder,
192
196
  sample_size=image_size, # image size is equal to sample size in vae
193
197
  )
194
- self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet, batch_size=batch_size)
198
+ self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet)
195
199
 
196
- if guidance_scale is not None:
197
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
198
- do_classifier_free_guidance = guidance_scale > 1.0
199
- if do_classifier_free_guidance:
200
+ # Get default guidance scale from original class to set UNet and ControlNet batch size
201
+ guidance_scale = (
202
+ guidance_scale
203
+ or self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
204
+ )
205
+
206
+ do_classifier_free_guidance = guidance_scale > 1.0
207
+ if do_classifier_free_guidance:
208
+ if not self.unet.batch_size_is_specified:
200
209
  self.unet.batch_size = self.text_encoder.batch_size * 2
210
+ if not self.controlnet.batch_size_is_specified:
201
211
  self.controlnet.batch_size = self.text_encoder.batch_size * 2
212
+ else:
213
+ if not self.unet.batch_size_is_specified:
214
+ self.unet.batch_size = self.text_encoder.batch_size
215
+ if not self.controlnet.batch_size_is_specified:
216
+ self.controlnet.batch_size = self.text_encoder.batch_size
202
217
 
203
218
  @property
204
219
  def batch_size(self):
@@ -16,14 +16,10 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelWithProjectionConfig, RBLNCLIPVisionModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNUNet2DConditionModelConfig, RBLNVQModelConfig
21
20
  from ..models.configuration_prior_transformer import RBLNPriorTransformerConfig
22
21
 
23
22
 
24
- logger = get_logger(__name__)
25
-
26
-
27
23
  class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
28
24
  submodules = ["unet", "movq"]
29
25
  _movq_uses_encoder = False
@@ -49,7 +45,7 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
49
45
  Initialized as RBLNVQModelConfig if not provided.
50
46
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
51
47
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
52
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
48
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
53
49
  image_size (Optional[Tuple[int, int]]): Dimensions for the generated images.
54
50
  Cannot be used together with img_height/img_width.
55
51
  img_height (Optional[int]): Height of the generated images.
@@ -70,9 +66,7 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
70
66
  if img_height is not None and img_width is not None:
71
67
  image_size = (img_height, img_width)
72
68
 
73
- self.unet = self.init_submodule_config(
74
- RBLNUNet2DConditionModelConfig, unet, batch_size=batch_size, sample_size=sample_size
75
- )
69
+ self.unet = self.init_submodule_config(RBLNUNet2DConditionModelConfig, unet, sample_size=sample_size)
76
70
  self.movq = self.init_submodule_config(
77
71
  RBLNVQModelConfig,
78
72
  movq,
@@ -81,11 +75,16 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
81
75
  uses_encoder=self._movq_uses_encoder,
82
76
  )
83
77
 
84
- if guidance_scale is not None:
85
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
78
+ # Get default guidance scale from original class to set UNet batch size
79
+ if guidance_scale is None:
80
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
81
+
82
+ if not self.unet.batch_size_is_specified:
86
83
  do_classifier_free_guidance = guidance_scale > 1.0
87
84
  if do_classifier_free_guidance:
88
85
  self.unet.batch_size = self.movq.batch_size * 2
86
+ else:
87
+ self.unet.batch_size = self.movq.batch_size
89
88
 
90
89
  @property
91
90
  def batch_size(self):
@@ -136,7 +135,7 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
136
135
  prior (Optional[RBLNPriorTransformerConfig]): Configuration for the prior transformer component.
137
136
  Initialized as RBLNPriorTransformerConfig if not provided.
138
137
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
139
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
138
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
140
139
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
141
140
 
142
141
  Note:
@@ -151,13 +150,18 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
151
150
  RBLNCLIPVisionModelWithProjectionConfig, image_encoder, batch_size=batch_size
152
151
  )
153
152
 
154
- self.prior = self.init_submodule_config(RBLNPriorTransformerConfig, prior, batch_size=batch_size)
153
+ self.prior = self.init_submodule_config(RBLNPriorTransformerConfig, prior)
154
+
155
+ # Get default guidance scale from original class to set UNet batch size
156
+ if guidance_scale is None:
157
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
155
158
 
156
- if guidance_scale is not None:
157
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
159
+ if not self.prior.batch_size_is_specified:
158
160
  do_classifier_free_guidance = guidance_scale > 1.0
159
161
  if do_classifier_free_guidance:
160
162
  self.prior.batch_size = self.text_encoder.batch_size * 2
163
+ else:
164
+ self.prior.batch_size = self.text_encoder.batch_size
161
165
 
162
166
  @property
163
167
  def batch_size(self):
@@ -208,7 +212,7 @@ class _RBLNKandinskyV22CombinedPipelineBaseConfig(RBLNModelConfig):
208
212
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
209
213
  img_height (Optional[int]): Height of the generated images.
210
214
  img_width (Optional[int]): Width of the generated images.
211
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
215
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
212
216
  prior_prior (Optional[RBLNPriorTransformerConfig]): Direct configuration for the prior transformer.
213
217
  Used if prior_pipe is not provided.
214
218
  prior_image_encoder (Optional[RBLNCLIPVisionModelWithProjectionConfig]): Direct configuration for the image encoder.
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "unet", "vae"]
28
24
  _vae_uses_encoder = False
@@ -55,7 +51,7 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
55
51
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
56
52
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
57
53
  Cannot be used together with img_height/img_width.
58
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
54
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
59
55
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
60
56
 
61
57
  Raises:
@@ -76,7 +72,6 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
76
72
  self.unet = self.init_submodule_config(
77
73
  RBLNUNet2DConditionModelConfig,
78
74
  unet,
79
- batch_size=batch_size,
80
75
  sample_size=sample_size,
81
76
  )
82
77
  self.vae = self.init_submodule_config(
@@ -87,11 +82,16 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
87
82
  sample_size=image_size, # image size is equal to sample size in vae
88
83
  )
89
84
 
90
- if guidance_scale is not None:
91
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
85
+ # Get default guidance scale from original class to set UNet batch size
86
+ if guidance_scale is None:
87
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
88
+
89
+ if not self.unet.batch_size_is_specified:
92
90
  do_classifier_free_guidance = guidance_scale > 1.0
93
91
  if do_classifier_free_guidance:
94
92
  self.unet.batch_size = self.text_encoder.batch_size * 2
93
+ else:
94
+ self.unet.batch_size = self.text_encoder.batch_size
95
95
 
96
96
  @property
97
97
  def batch_size(self):
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelWithProjectionConfig, RBLNT5EncoderModelConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNSD3Transformer2DModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["transformer", "text_encoder", "text_encoder_2", "text_encoder_3", "vae"]
28
24
  _vae_uses_encoder = False
@@ -63,7 +59,7 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
63
59
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
64
60
  img_height (Optional[int]): Height of the generated images.
65
61
  img_width (Optional[int]): Width of the generated images.
66
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
62
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
67
63
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
68
64
 
69
65
  Raises:
@@ -97,7 +93,6 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
97
93
  self.transformer = self.init_submodule_config(
98
94
  RBLNSD3Transformer2DModelConfig,
99
95
  transformer,
100
- batch_size=batch_size,
101
96
  sample_size=sample_size,
102
97
  )
103
98
  self.vae = self.init_submodule_config(
@@ -108,11 +103,16 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
108
103
  sample_size=image_size,
109
104
  )
110
105
 
111
- if guidance_scale is not None:
112
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
106
+ # Get default guidance scale from original class to set Transformer batch size
107
+ if guidance_scale is None:
108
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
109
+
110
+ if not self.transformer.batch_size_is_specified:
113
111
  do_classifier_free_guidance = guidance_scale > 1.0
114
112
  if do_classifier_free_guidance:
115
113
  self.transformer.batch_size = self.text_encoder.batch_size * 2
114
+ else:
115
+ self.transformer.batch_size = self.text_encoder.batch_size
116
116
 
117
117
  @property
118
118
  def max_seq_len(self):
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig, RBLNCLIPTextModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
28
24
  _vae_uses_encoder = False
@@ -58,7 +54,7 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
58
54
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
59
55
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
60
56
  Cannot be used together with img_height/img_width.
61
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
57
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
62
58
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
63
59
 
64
60
  Raises:
@@ -82,7 +78,6 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
82
78
  self.unet = self.init_submodule_config(
83
79
  RBLNUNet2DConditionModelConfig,
84
80
  unet,
85
- batch_size=batch_size,
86
81
  sample_size=sample_size,
87
82
  )
88
83
  self.vae = self.init_submodule_config(
@@ -93,11 +88,16 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
93
88
  sample_size=image_size, # image size is equal to sample size in vae
94
89
  )
95
90
 
96
- if guidance_scale is not None:
97
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
91
+ # Get default guidance scale from original class to set UNet batch size
92
+ if guidance_scale is None:
93
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
94
+
95
+ if not self.unet.batch_size_is_specified:
98
96
  do_classifier_free_guidance = guidance_scale > 1.0
99
97
  if do_classifier_free_guidance:
100
98
  self.unet.batch_size = self.text_encoder.batch_size * 2
99
+ else:
100
+ self.unet.batch_size = self.text_encoder.batch_size
101
101
 
102
102
  @property
103
103
  def batch_size(self):
@@ -21,8 +21,6 @@ import torch
21
21
 
22
22
  from ..configuration_utils import ContextRblnConfig, RBLNModelConfig
23
23
  from ..modeling import RBLNModel
24
-
25
- # from ..transformers import RBLNCLIPTextModelConfig
26
24
  from ..utils.decorator_utils import remove_compile_time_kwargs
27
25
  from ..utils.logging import get_logger
28
26
 
@@ -70,6 +68,7 @@ class RBLNDiffusionMixin:
70
68
  _submodules = []
71
69
  _prefix = {}
72
70
  _rbln_config_class = None
71
+ _hf_class = None
73
72
 
74
73
  @staticmethod
75
74
  def _maybe_apply_and_fuse_lora(
@@ -125,6 +124,14 @@ class RBLNDiffusionMixin:
125
124
  )
126
125
  return cls._rbln_config_class
127
126
 
127
+ @classmethod
128
+ def get_hf_class(cls):
129
+ if cls._hf_class is None:
130
+ hf_cls_name = cls.__name__[4:]
131
+ library = importlib.import_module("diffusers")
132
+ cls._hf_class = getattr(library, hf_cls_name, None)
133
+ return cls._hf_class
134
+
128
135
  @classmethod
129
136
  def from_pretrained(
130
137
  cls,
@@ -222,7 +222,7 @@ class RBLNControlNetModel(RBLNModel):
222
222
  f"Mismatch between ControlNet's runtime batch size ({sample_batch_size}) and compiled batch size ({compiled_batch_size}). "
223
223
  "This may be caused by the 'guidance_scale' parameter, which doubles the runtime batch size of ControlNet in Stable Diffusion. "
224
224
  "Adjust the batch size of ControlNet during compilation to match the runtime batch size.\n\n"
225
- "For details, see: https://docs.rbln.ai/software/optimum/model_api.html#stable-diffusion"
225
+ "For details, see: https://docs.rbln.ai/software/optimum/model_api/diffusers/pipelines/controlnet.html#important-batch-size-configuration-for-guidance-scale"
226
226
  )
227
227
 
228
228
  added_cond_kwargs = {} if added_cond_kwargs is None else added_cond_kwargs
@@ -161,7 +161,7 @@ class RBLNSD3Transformer2DModel(RBLNModel):
161
161
  f"Mismatch between transformer's runtime batch size ({sample_batch_size}) and compiled batch size ({compiled_batch_size}). "
162
162
  "This may be caused by the 'guidance scale' parameter, which doubles the runtime batch size in Stable Diffusion. "
163
163
  "Adjust the batch size of transformer during compilation.\n\n"
164
- "For details, see: https://docs.rbln.ai/software/optimum/model_api.html#stable-diffusion"
164
+ "For details, see: https://docs.rbln.ai/software/optimum/model_api/diffusers/pipelines/stable_diffusion_3.html#important-batch-size-configuration-for-guidance-scale"
165
165
  )
166
166
 
167
167
  return super().forward(
@@ -346,7 +346,7 @@ class RBLNUNet2DConditionModel(RBLNModel):
346
346
  f"Mismatch between UNet's runtime batch size ({sample_batch_size}) and compiled batch size ({compiled_batch_size}). "
347
347
  "This may be caused by the 'guidance scale' parameter, which doubles the runtime batch size of UNet in Stable Diffusion. "
348
348
  "Adjust the batch size of UNet during compilation to match the runtime batch size.\n\n"
349
- "For details, see: https://docs.rbln.ai/software/optimum/model_api.html#stable-diffusion"
349
+ "For details, see: https://docs.rbln.ai/software/optimum/model_api/diffusers/pipelines/stable_diffusion.html#important-batch-size-configuration-for-guidance-scale"
350
350
  )
351
351
 
352
352
  added_cond_kwargs = {} if added_cond_kwargs is None else added_cond_kwargs
@@ -39,6 +39,7 @@ from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
39
39
 
40
40
  from ....utils.decorator_utils import remove_compile_time_kwargs
41
41
  from ....utils.logging import get_logger
42
+ from ...configurations import RBLNStableDiffusionControlNetPipelineConfig
42
43
  from ...modeling_diffusers import RBLNDiffusionMixin
43
44
  from ...models import RBLNControlNetModel
44
45
  from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
@@ -49,6 +50,7 @@ logger = get_logger(__name__)
49
50
 
50
51
  class RBLNStableDiffusionControlNetPipeline(RBLNDiffusionMixin, StableDiffusionControlNetPipeline):
51
52
  original_class = StableDiffusionControlNetPipeline
53
+ _rbln_config_class = RBLNStableDiffusionControlNetPipelineConfig
52
54
  _submodules = ["text_encoder", "unet", "vae", "controlnet"]
53
55
 
54
56
  # Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet.py
@@ -37,6 +37,7 @@ from diffusers.utils import deprecate, logging
37
37
  from diffusers.utils.torch_utils import is_compiled_module
38
38
 
39
39
  from ....utils.decorator_utils import remove_compile_time_kwargs
40
+ from ...configurations import RBLNStableDiffusionControlNetImg2ImgPipelineConfig
40
41
  from ...modeling_diffusers import RBLNDiffusionMixin
41
42
  from ...models import RBLNControlNetModel
42
43
  from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
@@ -48,6 +49,7 @@ logger = logging.get_logger(__name__)
48
49
  class RBLNStableDiffusionControlNetImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionControlNetImg2ImgPipeline):
49
50
  original_class = StableDiffusionControlNetImg2ImgPipeline
50
51
  _submodules = ["text_encoder", "unet", "vae", "controlnet"]
52
+ _rbln_config_class = RBLNStableDiffusionControlNetImg2ImgPipelineConfig
51
53
 
52
54
  # Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet_img2img.py
53
55
  def check_inputs(