optimum-rbln 0.7.4a7__py3-none-any.whl → 0.7.4a9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +46 -2
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +8 -0
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +8 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +8 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +8 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +32 -17
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +19 -15
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +8 -8
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +8 -8
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +8 -8
- optimum/rbln/diffusers/modeling_diffusers.py +50 -17
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +2 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +2 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +2 -0
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +2 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +2 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +2 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +2 -0
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +2 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +2 -0
- optimum/rbln/modeling_base.py +4 -3
- optimum/rbln/transformers/models/auto/auto_factory.py +3 -3
- optimum/rbln/utils/hub.py +2 -2
- optimum/rbln/utils/model_utils.py +4 -4
- {optimum_rbln-0.7.4a7.dist-info → optimum_rbln-0.7.4a9.dist-info}/METADATA +2 -2
- {optimum_rbln-0.7.4a7.dist-info → optimum_rbln-0.7.4a9.dist-info}/RECORD +38 -38
- {optimum_rbln-0.7.4a7.dist-info → optimum_rbln-0.7.4a9.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.7.4a7.dist-info → optimum_rbln-0.7.4a9.dist-info}/licenses/LICENSE +0 -0
optimum/rbln/__version__.py
CHANGED
@@ -17,5 +17,5 @@ __version__: str
|
|
17
17
|
__version_tuple__: VERSION_TUPLE
|
18
18
|
version_tuple: VERSION_TUPLE
|
19
19
|
|
20
|
-
__version__ = version = '0.7.
|
21
|
-
__version_tuple__ = version_tuple = (0, 7, 4, '
|
20
|
+
__version__ = version = '0.7.4a9'
|
21
|
+
__version_tuple__ = version_tuple = (0, 7, 4, 'a9')
|
@@ -174,6 +174,14 @@ class RBLNAutoConfig:
|
|
174
174
|
cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
|
175
175
|
return cls(**kwargs)
|
176
176
|
|
177
|
+
@staticmethod
|
178
|
+
def load_from_dict(config_dict: Dict[str, Any]) -> "RBLNModelConfig":
|
179
|
+
cls_name = config_dict.get("cls_name")
|
180
|
+
if cls_name is None:
|
181
|
+
raise ValueError("`cls_name` is required.")
|
182
|
+
cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
|
183
|
+
return cls(**config_dict)
|
184
|
+
|
177
185
|
@staticmethod
|
178
186
|
def load(
|
179
187
|
path: str,
|
@@ -195,8 +203,9 @@ class RBLNAutoConfig:
|
|
195
203
|
cls, config_file = load_config(path)
|
196
204
|
|
197
205
|
rbln_keys = [key for key in kwargs.keys() if key.startswith("rbln_")]
|
198
|
-
|
199
206
|
rbln_runtime_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in RUNTIME_KEYWORDS}
|
207
|
+
rbln_submodule_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in cls.submodules}
|
208
|
+
|
200
209
|
rbln_kwargs = {
|
201
210
|
key[5:]: kwargs.pop(key)
|
202
211
|
for key in rbln_keys
|
@@ -206,6 +215,14 @@ class RBLNAutoConfig:
|
|
206
215
|
if len(rbln_kwargs) > 0:
|
207
216
|
raise ValueError(f"Cannot set the following arguments: {list(rbln_kwargs.keys())}")
|
208
217
|
|
218
|
+
# Process submodule's rbln_config
|
219
|
+
for submodule in cls.submodules:
|
220
|
+
if submodule not in config_file:
|
221
|
+
raise ValueError(f"Submodule {submodule} not found in rbln_config.json.")
|
222
|
+
submodule_config = config_file[submodule]
|
223
|
+
submodule_config.update(rbln_submodule_kwargs.pop(submodule, {}))
|
224
|
+
config_file[submodule] = RBLNAutoConfig.load_from_dict(submodule_config)
|
225
|
+
|
209
226
|
if passed_rbln_config is not None:
|
210
227
|
config_file.update(passed_rbln_config._runtime_options)
|
211
228
|
# TODO(jongho): Reject if the passed_rbln_config has different attributes from the config_file
|
@@ -435,6 +452,7 @@ class RBLNModelConfig:
|
|
435
452
|
"activate_profiler",
|
436
453
|
]
|
437
454
|
submodules: List[str] = []
|
455
|
+
subclass_non_save_attributes = []
|
438
456
|
|
439
457
|
def init_submodule_config(
|
440
458
|
self,
|
@@ -463,7 +481,11 @@ class RBLNModelConfig:
|
|
463
481
|
return submodule_config
|
464
482
|
|
465
483
|
def __setattr__(self, key, value):
|
466
|
-
if
|
484
|
+
if (
|
485
|
+
key != "_attributes_map"
|
486
|
+
and key not in self.non_save_attributes
|
487
|
+
and key not in self.subclass_non_save_attributes
|
488
|
+
):
|
467
489
|
self._attributes_map[key] = value
|
468
490
|
|
469
491
|
if hasattr(self, "_frozen") and self._frozen:
|
@@ -706,6 +728,28 @@ class RBLNModelConfig:
|
|
706
728
|
|
707
729
|
return rbln_config, kwargs
|
708
730
|
|
731
|
+
def get_default_values_for_original_cls(self, func_name: str, keys: List[str]) -> Dict[str, Any]:
|
732
|
+
"""
|
733
|
+
Get default values for original class attributes from RBLNModelConfig.
|
734
|
+
|
735
|
+
Args:
|
736
|
+
func_name (str): The name of the function to get the default values for.
|
737
|
+
keys (List[str]): The keys of the attributes to get.
|
738
|
+
|
739
|
+
Returns:
|
740
|
+
Dict[str, Any]: The default values for the attributes.
|
741
|
+
"""
|
742
|
+
model_cls = self.rbln_model_cls.get_hf_class()
|
743
|
+
func = getattr(model_cls, func_name)
|
744
|
+
func_signature = inspect.signature(func)
|
745
|
+
default_values = {}
|
746
|
+
for key in keys:
|
747
|
+
if key in func_signature.parameters:
|
748
|
+
default_values[key] = func_signature.parameters[key].default
|
749
|
+
else:
|
750
|
+
raise ValueError(f"Default value for `{key}` is not set for the model class.")
|
751
|
+
return default_values
|
752
|
+
|
709
753
|
@property
|
710
754
|
def create_runtimes(self):
|
711
755
|
context = ContextRblnConfig.get_current_context()["create_runtimes"]
|
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
|
|
18
18
|
|
19
19
|
|
20
20
|
class RBLNControlNetModelConfig(RBLNModelConfig):
|
21
|
+
subclass_non_save_attributes = ["_batch_size_is_specified"]
|
22
|
+
|
21
23
|
def __init__(
|
22
24
|
self,
|
23
25
|
batch_size: Optional[int] = None,
|
@@ -44,6 +46,8 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
|
|
44
46
|
ValueError: If batch_size is not a positive integer.
|
45
47
|
"""
|
46
48
|
super().__init__(**kwargs)
|
49
|
+
self._batch_size_is_specified = batch_size is not None
|
50
|
+
|
47
51
|
self.batch_size = batch_size or 1
|
48
52
|
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
49
53
|
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
@@ -52,3 +56,7 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
|
|
52
56
|
self.unet_sample_size = unet_sample_size
|
53
57
|
self.vae_sample_size = vae_sample_size
|
54
58
|
self.text_model_hidden_size = text_model_hidden_size
|
59
|
+
|
60
|
+
@property
|
61
|
+
def batch_size_is_specified(self):
|
62
|
+
return self._batch_size_is_specified
|
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
|
|
18
18
|
|
19
19
|
|
20
20
|
class RBLNPriorTransformerConfig(RBLNModelConfig):
|
21
|
+
subclass_non_save_attributes = ["_batch_size_is_specified"]
|
22
|
+
|
21
23
|
def __init__(
|
22
24
|
self,
|
23
25
|
batch_size: Optional[int] = None,
|
@@ -36,9 +38,15 @@ class RBLNPriorTransformerConfig(RBLNModelConfig):
|
|
36
38
|
ValueError: If batch_size is not a positive integer.
|
37
39
|
"""
|
38
40
|
super().__init__(**kwargs)
|
41
|
+
self._batch_size_is_specified = batch_size is not None
|
42
|
+
|
39
43
|
self.batch_size = batch_size or 1
|
40
44
|
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
41
45
|
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
42
46
|
|
43
47
|
self.embedding_dim = embedding_dim
|
44
48
|
self.num_embeddings = num_embeddings
|
49
|
+
|
50
|
+
@property
|
51
|
+
def batch_size_is_specified(self):
|
52
|
+
return self._batch_size_is_specified
|
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
|
|
18
18
|
|
19
19
|
|
20
20
|
class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
|
21
|
+
subclass_non_save_attributes = ["_batch_size_is_specified"]
|
22
|
+
|
21
23
|
def __init__(
|
22
24
|
self,
|
23
25
|
batch_size: Optional[int] = None,
|
@@ -38,6 +40,8 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
|
|
38
40
|
ValueError: If batch_size is not a positive integer.
|
39
41
|
"""
|
40
42
|
super().__init__(**kwargs)
|
43
|
+
self._batch_size_is_specified = batch_size is not None
|
44
|
+
|
41
45
|
self.batch_size = batch_size or 1
|
42
46
|
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
43
47
|
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
@@ -46,3 +50,7 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
|
|
46
50
|
self.sample_size = sample_size
|
47
51
|
if isinstance(self.sample_size, int):
|
48
52
|
self.sample_size = (self.sample_size, self.sample_size)
|
53
|
+
|
54
|
+
@property
|
55
|
+
def batch_size_is_specified(self):
|
56
|
+
return self._batch_size_is_specified
|
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
|
|
18
18
|
|
19
19
|
|
20
20
|
class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
|
21
|
+
subclass_non_save_attributes = ["_batch_size_is_specified"]
|
22
|
+
|
21
23
|
def __init__(
|
22
24
|
self,
|
23
25
|
batch_size: Optional[int] = None,
|
@@ -49,6 +51,8 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
|
|
49
51
|
ValueError: If batch_size is not a positive integer.
|
50
52
|
"""
|
51
53
|
super().__init__(**kwargs)
|
54
|
+
self._batch_size_is_specified = batch_size is not None
|
55
|
+
|
52
56
|
self.batch_size = batch_size or 1
|
53
57
|
if not isinstance(self.batch_size, int) or self.batch_size < 0:
|
54
58
|
raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
|
@@ -64,3 +68,7 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
|
|
64
68
|
self.sample_size = sample_size
|
65
69
|
if isinstance(sample_size, int):
|
66
70
|
self.sample_size = (sample_size, sample_size)
|
71
|
+
|
72
|
+
@property
|
73
|
+
def batch_size_is_specified(self):
|
74
|
+
return self._batch_size_is_specified
|
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
|
|
16
16
|
|
17
17
|
from ....configuration_utils import RBLNModelConfig
|
18
18
|
from ....transformers import RBLNCLIPTextModelConfig, RBLNCLIPTextModelWithProjectionConfig
|
19
|
-
from ....utils.logging import get_logger
|
20
19
|
from ..models import RBLNAutoencoderKLConfig, RBLNControlNetModelConfig, RBLNUNet2DConditionModelConfig
|
21
20
|
|
22
21
|
|
23
|
-
logger = get_logger(__name__)
|
24
|
-
|
25
|
-
|
26
22
|
class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
|
27
23
|
submodules = ["text_encoder", "unet", "vae", "controlnet"]
|
28
24
|
_vae_uses_encoder = False
|
@@ -58,7 +54,7 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
|
|
58
54
|
sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
|
59
55
|
image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
|
60
56
|
Cannot be used together with img_height/img_width.
|
61
|
-
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
57
|
+
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
62
58
|
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
63
59
|
|
64
60
|
Raises:
|
@@ -79,7 +75,6 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
|
|
79
75
|
self.unet = self.init_submodule_config(
|
80
76
|
RBLNUNet2DConditionModelConfig,
|
81
77
|
unet,
|
82
|
-
batch_size=batch_size,
|
83
78
|
sample_size=sample_size,
|
84
79
|
)
|
85
80
|
self.vae = self.init_submodule_config(
|
@@ -89,14 +84,24 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
|
|
89
84
|
uses_encoder=self.__class__._vae_uses_encoder,
|
90
85
|
sample_size=image_size, # image size is equal to sample size in vae
|
91
86
|
)
|
92
|
-
self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet
|
87
|
+
self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet)
|
88
|
+
|
89
|
+
# Get default guidance scale from original class to set UNet and ControlNet batch size
|
90
|
+
if guidance_scale is None:
|
91
|
+
guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
|
93
92
|
|
94
93
|
if guidance_scale is not None:
|
95
|
-
logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
|
96
94
|
do_classifier_free_guidance = guidance_scale > 1.0
|
97
95
|
if do_classifier_free_guidance:
|
98
|
-
|
99
|
-
|
96
|
+
if not self.unet.batch_size_is_specified:
|
97
|
+
self.unet.batch_size = self.text_encoder.batch_size * 2
|
98
|
+
if not self.controlnet.batch_size_is_specified:
|
99
|
+
self.controlnet.batch_size = self.text_encoder.batch_size * 2
|
100
|
+
else:
|
101
|
+
if not self.unet.batch_size_is_specified:
|
102
|
+
self.unet.batch_size = self.text_encoder.batch_size
|
103
|
+
if not self.controlnet.batch_size_is_specified:
|
104
|
+
self.controlnet.batch_size = self.text_encoder.batch_size
|
100
105
|
|
101
106
|
@property
|
102
107
|
def batch_size(self):
|
@@ -157,7 +162,7 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
|
|
157
162
|
sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
|
158
163
|
image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
|
159
164
|
Cannot be used together with img_height/img_width.
|
160
|
-
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
165
|
+
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
161
166
|
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
162
167
|
|
163
168
|
Raises:
|
@@ -181,7 +186,6 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
|
|
181
186
|
self.unet = self.init_submodule_config(
|
182
187
|
RBLNUNet2DConditionModelConfig,
|
183
188
|
unet,
|
184
|
-
batch_size=batch_size,
|
185
189
|
sample_size=sample_size,
|
186
190
|
)
|
187
191
|
self.vae = self.init_submodule_config(
|
@@ -191,14 +195,25 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
|
|
191
195
|
uses_encoder=self.__class__._vae_uses_encoder,
|
192
196
|
sample_size=image_size, # image size is equal to sample size in vae
|
193
197
|
)
|
194
|
-
self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet
|
198
|
+
self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet)
|
195
199
|
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
+
# Get default guidance scale from original class to set UNet and ControlNet batch size
|
201
|
+
guidance_scale = (
|
202
|
+
guidance_scale
|
203
|
+
or self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
|
204
|
+
)
|
205
|
+
|
206
|
+
do_classifier_free_guidance = guidance_scale > 1.0
|
207
|
+
if do_classifier_free_guidance:
|
208
|
+
if not self.unet.batch_size_is_specified:
|
200
209
|
self.unet.batch_size = self.text_encoder.batch_size * 2
|
210
|
+
if not self.controlnet.batch_size_is_specified:
|
201
211
|
self.controlnet.batch_size = self.text_encoder.batch_size * 2
|
212
|
+
else:
|
213
|
+
if not self.unet.batch_size_is_specified:
|
214
|
+
self.unet.batch_size = self.text_encoder.batch_size
|
215
|
+
if not self.controlnet.batch_size_is_specified:
|
216
|
+
self.controlnet.batch_size = self.text_encoder.batch_size
|
202
217
|
|
203
218
|
@property
|
204
219
|
def batch_size(self):
|
@@ -16,14 +16,10 @@ from typing import Optional, Tuple
|
|
16
16
|
|
17
17
|
from ....configuration_utils import RBLNModelConfig
|
18
18
|
from ....transformers import RBLNCLIPTextModelWithProjectionConfig, RBLNCLIPVisionModelWithProjectionConfig
|
19
|
-
from ....utils.logging import get_logger
|
20
19
|
from ..models import RBLNUNet2DConditionModelConfig, RBLNVQModelConfig
|
21
20
|
from ..models.configuration_prior_transformer import RBLNPriorTransformerConfig
|
22
21
|
|
23
22
|
|
24
|
-
logger = get_logger(__name__)
|
25
|
-
|
26
|
-
|
27
23
|
class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
|
28
24
|
submodules = ["unet", "movq"]
|
29
25
|
_movq_uses_encoder = False
|
@@ -49,7 +45,7 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
|
|
49
45
|
Initialized as RBLNVQModelConfig if not provided.
|
50
46
|
sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
|
51
47
|
batch_size (Optional[int]): Batch size for inference, applied to all submodules.
|
52
|
-
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
48
|
+
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
53
49
|
image_size (Optional[Tuple[int, int]]): Dimensions for the generated images.
|
54
50
|
Cannot be used together with img_height/img_width.
|
55
51
|
img_height (Optional[int]): Height of the generated images.
|
@@ -70,9 +66,7 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
|
|
70
66
|
if img_height is not None and img_width is not None:
|
71
67
|
image_size = (img_height, img_width)
|
72
68
|
|
73
|
-
self.unet = self.init_submodule_config(
|
74
|
-
RBLNUNet2DConditionModelConfig, unet, batch_size=batch_size, sample_size=sample_size
|
75
|
-
)
|
69
|
+
self.unet = self.init_submodule_config(RBLNUNet2DConditionModelConfig, unet, sample_size=sample_size)
|
76
70
|
self.movq = self.init_submodule_config(
|
77
71
|
RBLNVQModelConfig,
|
78
72
|
movq,
|
@@ -81,11 +75,16 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
|
|
81
75
|
uses_encoder=self._movq_uses_encoder,
|
82
76
|
)
|
83
77
|
|
84
|
-
|
85
|
-
|
78
|
+
# Get default guidance scale from original class to set UNet batch size
|
79
|
+
if guidance_scale is None:
|
80
|
+
guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
|
81
|
+
|
82
|
+
if not self.unet.batch_size_is_specified:
|
86
83
|
do_classifier_free_guidance = guidance_scale > 1.0
|
87
84
|
if do_classifier_free_guidance:
|
88
85
|
self.unet.batch_size = self.movq.batch_size * 2
|
86
|
+
else:
|
87
|
+
self.unet.batch_size = self.movq.batch_size
|
89
88
|
|
90
89
|
@property
|
91
90
|
def batch_size(self):
|
@@ -136,7 +135,7 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
|
|
136
135
|
prior (Optional[RBLNPriorTransformerConfig]): Configuration for the prior transformer component.
|
137
136
|
Initialized as RBLNPriorTransformerConfig if not provided.
|
138
137
|
batch_size (Optional[int]): Batch size for inference, applied to all submodules.
|
139
|
-
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
138
|
+
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
140
139
|
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
141
140
|
|
142
141
|
Note:
|
@@ -151,13 +150,18 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
|
|
151
150
|
RBLNCLIPVisionModelWithProjectionConfig, image_encoder, batch_size=batch_size
|
152
151
|
)
|
153
152
|
|
154
|
-
self.prior = self.init_submodule_config(RBLNPriorTransformerConfig, prior
|
153
|
+
self.prior = self.init_submodule_config(RBLNPriorTransformerConfig, prior)
|
154
|
+
|
155
|
+
# Get default guidance scale from original class to set UNet batch size
|
156
|
+
if guidance_scale is None:
|
157
|
+
guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
|
155
158
|
|
156
|
-
if
|
157
|
-
logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
|
159
|
+
if not self.prior.batch_size_is_specified:
|
158
160
|
do_classifier_free_guidance = guidance_scale > 1.0
|
159
161
|
if do_classifier_free_guidance:
|
160
162
|
self.prior.batch_size = self.text_encoder.batch_size * 2
|
163
|
+
else:
|
164
|
+
self.prior.batch_size = self.text_encoder.batch_size
|
161
165
|
|
162
166
|
@property
|
163
167
|
def batch_size(self):
|
@@ -208,7 +212,7 @@ class _RBLNKandinskyV22CombinedPipelineBaseConfig(RBLNModelConfig):
|
|
208
212
|
batch_size (Optional[int]): Batch size for inference, applied to all submodules.
|
209
213
|
img_height (Optional[int]): Height of the generated images.
|
210
214
|
img_width (Optional[int]): Width of the generated images.
|
211
|
-
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
215
|
+
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
212
216
|
prior_prior (Optional[RBLNPriorTransformerConfig]): Direct configuration for the prior transformer.
|
213
217
|
Used if prior_pipe is not provided.
|
214
218
|
prior_image_encoder (Optional[RBLNCLIPVisionModelWithProjectionConfig]): Direct configuration for the image encoder.
|
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
|
|
16
16
|
|
17
17
|
from ....configuration_utils import RBLNModelConfig
|
18
18
|
from ....transformers import RBLNCLIPTextModelConfig
|
19
|
-
from ....utils.logging import get_logger
|
20
19
|
from ..models import RBLNAutoencoderKLConfig, RBLNUNet2DConditionModelConfig
|
21
20
|
|
22
21
|
|
23
|
-
logger = get_logger(__name__)
|
24
|
-
|
25
|
-
|
26
22
|
class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
|
27
23
|
submodules = ["text_encoder", "unet", "vae"]
|
28
24
|
_vae_uses_encoder = False
|
@@ -55,7 +51,7 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
|
|
55
51
|
sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
|
56
52
|
image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
|
57
53
|
Cannot be used together with img_height/img_width.
|
58
|
-
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
54
|
+
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
59
55
|
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
60
56
|
|
61
57
|
Raises:
|
@@ -76,7 +72,6 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
|
|
76
72
|
self.unet = self.init_submodule_config(
|
77
73
|
RBLNUNet2DConditionModelConfig,
|
78
74
|
unet,
|
79
|
-
batch_size=batch_size,
|
80
75
|
sample_size=sample_size,
|
81
76
|
)
|
82
77
|
self.vae = self.init_submodule_config(
|
@@ -87,11 +82,16 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
|
|
87
82
|
sample_size=image_size, # image size is equal to sample size in vae
|
88
83
|
)
|
89
84
|
|
90
|
-
|
91
|
-
|
85
|
+
# Get default guidance scale from original class to set UNet batch size
|
86
|
+
if guidance_scale is None:
|
87
|
+
guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
|
88
|
+
|
89
|
+
if not self.unet.batch_size_is_specified:
|
92
90
|
do_classifier_free_guidance = guidance_scale > 1.0
|
93
91
|
if do_classifier_free_guidance:
|
94
92
|
self.unet.batch_size = self.text_encoder.batch_size * 2
|
93
|
+
else:
|
94
|
+
self.unet.batch_size = self.text_encoder.batch_size
|
95
95
|
|
96
96
|
@property
|
97
97
|
def batch_size(self):
|
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
|
|
16
16
|
|
17
17
|
from ....configuration_utils import RBLNModelConfig
|
18
18
|
from ....transformers import RBLNCLIPTextModelWithProjectionConfig, RBLNT5EncoderModelConfig
|
19
|
-
from ....utils.logging import get_logger
|
20
19
|
from ..models import RBLNAutoencoderKLConfig, RBLNSD3Transformer2DModelConfig
|
21
20
|
|
22
21
|
|
23
|
-
logger = get_logger(__name__)
|
24
|
-
|
25
|
-
|
26
22
|
class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
|
27
23
|
submodules = ["transformer", "text_encoder", "text_encoder_2", "text_encoder_3", "vae"]
|
28
24
|
_vae_uses_encoder = False
|
@@ -63,7 +59,7 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
|
|
63
59
|
batch_size (Optional[int]): Batch size for inference, applied to all submodules.
|
64
60
|
img_height (Optional[int]): Height of the generated images.
|
65
61
|
img_width (Optional[int]): Width of the generated images.
|
66
|
-
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
62
|
+
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
67
63
|
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
68
64
|
|
69
65
|
Raises:
|
@@ -97,7 +93,6 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
|
|
97
93
|
self.transformer = self.init_submodule_config(
|
98
94
|
RBLNSD3Transformer2DModelConfig,
|
99
95
|
transformer,
|
100
|
-
batch_size=batch_size,
|
101
96
|
sample_size=sample_size,
|
102
97
|
)
|
103
98
|
self.vae = self.init_submodule_config(
|
@@ -108,11 +103,16 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
|
|
108
103
|
sample_size=image_size,
|
109
104
|
)
|
110
105
|
|
111
|
-
|
112
|
-
|
106
|
+
# Get default guidance scale from original class to set Transformer batch size
|
107
|
+
if guidance_scale is None:
|
108
|
+
guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
|
109
|
+
|
110
|
+
if not self.transformer.batch_size_is_specified:
|
113
111
|
do_classifier_free_guidance = guidance_scale > 1.0
|
114
112
|
if do_classifier_free_guidance:
|
115
113
|
self.transformer.batch_size = self.text_encoder.batch_size * 2
|
114
|
+
else:
|
115
|
+
self.transformer.batch_size = self.text_encoder.batch_size
|
116
116
|
|
117
117
|
@property
|
118
118
|
def max_seq_len(self):
|
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
|
|
16
16
|
|
17
17
|
from ....configuration_utils import RBLNModelConfig
|
18
18
|
from ....transformers import RBLNCLIPTextModelConfig, RBLNCLIPTextModelWithProjectionConfig
|
19
|
-
from ....utils.logging import get_logger
|
20
19
|
from ..models import RBLNAutoencoderKLConfig, RBLNUNet2DConditionModelConfig
|
21
20
|
|
22
21
|
|
23
|
-
logger = get_logger(__name__)
|
24
|
-
|
25
|
-
|
26
22
|
class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
|
27
23
|
submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
|
28
24
|
_vae_uses_encoder = False
|
@@ -58,7 +54,7 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
|
|
58
54
|
sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
|
59
55
|
image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
|
60
56
|
Cannot be used together with img_height/img_width.
|
61
|
-
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
57
|
+
guidance_scale (Optional[float]): Scale for classifier-free guidance.
|
62
58
|
**kwargs: Additional arguments passed to the parent RBLNModelConfig.
|
63
59
|
|
64
60
|
Raises:
|
@@ -82,7 +78,6 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
|
|
82
78
|
self.unet = self.init_submodule_config(
|
83
79
|
RBLNUNet2DConditionModelConfig,
|
84
80
|
unet,
|
85
|
-
batch_size=batch_size,
|
86
81
|
sample_size=sample_size,
|
87
82
|
)
|
88
83
|
self.vae = self.init_submodule_config(
|
@@ -93,11 +88,16 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
|
|
93
88
|
sample_size=image_size, # image size is equal to sample size in vae
|
94
89
|
)
|
95
90
|
|
96
|
-
|
97
|
-
|
91
|
+
# Get default guidance scale from original class to set UNet batch size
|
92
|
+
if guidance_scale is None:
|
93
|
+
guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
|
94
|
+
|
95
|
+
if not self.unet.batch_size_is_specified:
|
98
96
|
do_classifier_free_guidance = guidance_scale > 1.0
|
99
97
|
if do_classifier_free_guidance:
|
100
98
|
self.unet.batch_size = self.text_encoder.batch_size * 2
|
99
|
+
else:
|
100
|
+
self.unet.batch_size = self.text_encoder.batch_size
|
101
101
|
|
102
102
|
@property
|
103
103
|
def batch_size(self):
|
@@ -21,8 +21,6 @@ import torch
|
|
21
21
|
|
22
22
|
from ..configuration_utils import ContextRblnConfig, RBLNModelConfig
|
23
23
|
from ..modeling import RBLNModel
|
24
|
-
|
25
|
-
# from ..transformers import RBLNCLIPTextModelConfig
|
26
24
|
from ..utils.decorator_utils import remove_compile_time_kwargs
|
27
25
|
from ..utils.logging import get_logger
|
28
26
|
|
@@ -47,17 +45,11 @@ class RBLNDiffusionMixin:
|
|
47
45
|
|
48
46
|
1. Create a new pipeline class that inherits from both this mixin and the original StableDiffusionPipeline.
|
49
47
|
2. Define the required _submodules class variable listing the components to be compiled.
|
50
|
-
3. If needed, implement get_default_rbln_config for custom configuration of submodules.
|
51
48
|
|
52
49
|
Example:
|
53
50
|
```python
|
54
51
|
class RBLNStableDiffusionPipeline(RBLNDiffusionMixin, StableDiffusionPipeline):
|
55
52
|
_submodules = ["text_encoder", "unet", "vae"]
|
56
|
-
|
57
|
-
@classmethod
|
58
|
-
def get_default_rbln_config(cls, model, submodule_name, rbln_config):
|
59
|
-
# Configuration for other submodules...
|
60
|
-
pass
|
61
53
|
```
|
62
54
|
|
63
55
|
Class Variables:
|
@@ -76,14 +68,7 @@ class RBLNDiffusionMixin:
|
|
76
68
|
_submodules = []
|
77
69
|
_prefix = {}
|
78
70
|
_rbln_config_class = None
|
79
|
-
|
80
|
-
@classmethod
|
81
|
-
def is_img2img_pipeline(cls):
|
82
|
-
return "Img2Img" in cls.__name__
|
83
|
-
|
84
|
-
@classmethod
|
85
|
-
def is_inpaint_pipeline(cls):
|
86
|
-
return "Inpaint" in cls.__name__
|
71
|
+
_hf_class = None
|
87
72
|
|
88
73
|
@staticmethod
|
89
74
|
def _maybe_apply_and_fuse_lora(
|
@@ -139,6 +124,14 @@ class RBLNDiffusionMixin:
|
|
139
124
|
)
|
140
125
|
return cls._rbln_config_class
|
141
126
|
|
127
|
+
@classmethod
|
128
|
+
def get_hf_class(cls):
|
129
|
+
if cls._hf_class is None:
|
130
|
+
hf_cls_name = cls.__name__[4:]
|
131
|
+
library = importlib.import_module("diffusers")
|
132
|
+
cls._hf_class = getattr(library, hf_cls_name, None)
|
133
|
+
return cls._hf_class
|
134
|
+
|
142
135
|
@classmethod
|
143
136
|
def from_pretrained(
|
144
137
|
cls,
|
@@ -151,7 +144,47 @@ class RBLNDiffusionMixin:
|
|
151
144
|
lora_weights_names: Optional[Union[str, List[str]]] = None,
|
152
145
|
lora_scales: Optional[Union[float, List[float]]] = None,
|
153
146
|
**kwargs,
|
154
|
-
) ->
|
147
|
+
) -> "RBLNDiffusionMixin":
|
148
|
+
"""
|
149
|
+
Load a pretrained diffusion pipeline from a model checkpoint, with optional compilation for RBLN NPUs.
|
150
|
+
|
151
|
+
This method has two distinct operating modes:
|
152
|
+
- When `export=True`: Takes a PyTorch-based diffusion model, compiles it for RBLN NPUs, and loads the compiled model
|
153
|
+
- When `export=False`: Loads an already compiled RBLN model from `model_id` without recompilation
|
154
|
+
|
155
|
+
It supports various diffusion pipelines including Stable Diffusion, Kandinsky, ControlNet, and other diffusers-based models.
|
156
|
+
|
157
|
+
Args:
|
158
|
+
model_id (`str`):
|
159
|
+
The model ID or path to the pretrained model to load. Can be either:
|
160
|
+
- A model ID from the HuggingFace Hub
|
161
|
+
- A local path to a saved model directory
|
162
|
+
export (`bool`, *optional*, defaults to `False`):
|
163
|
+
If True, takes a PyTorch model from `model_id` and compiles it for RBLN NPU execution.
|
164
|
+
If False, loads an already compiled RBLN model from `model_id` without recompilation.
|
165
|
+
model_save_dir (`os.PathLike`, *optional*):
|
166
|
+
Directory to save the compiled model artifacts. Only used when `export=True`.
|
167
|
+
If not provided and `export=True`, a temporary directory is used.
|
168
|
+
rbln_config (`Dict[str, Any]`, *optional*, defaults to `{}`):
|
169
|
+
Configuration options for RBLN compilation. Can include settings for specific submodules
|
170
|
+
such as `text_encoder`, `unet`, and `vae`. Configuration can be tailored to the specific
|
171
|
+
pipeline being compiled.
|
172
|
+
lora_ids (`str` or `List[str]`, *optional*):
|
173
|
+
LoRA adapter ID(s) to load and apply before compilation. LoRA weights are fused
|
174
|
+
into the model weights during compilation. Only used when `export=True`.
|
175
|
+
lora_weights_names (`str` or `List[str]`, *optional*):
|
176
|
+
Names of specific LoRA weight files to load, corresponding to lora_ids. Only used when `export=True`.
|
177
|
+
lora_scales (`float` or `List[float]`, *optional*):
|
178
|
+
Scaling factor(s) to apply to the LoRA adapter(s). Only used when `export=True`.
|
179
|
+
**kwargs:
|
180
|
+
Additional arguments to pass to the underlying diffusion pipeline constructor or the
|
181
|
+
RBLN compilation process. These may include parameters specific to individual submodules
|
182
|
+
or the particular diffusion pipeline being used.
|
183
|
+
|
184
|
+
Returns:
|
185
|
+
`RBLNDiffusionMixin`: A compiled or loaded diffusion pipeline that can be used for inference on RBLN NPU.
|
186
|
+
The returned object is an instance of the class that called this method, inheriting from RBLNDiffusionMixin.
|
187
|
+
"""
|
155
188
|
rbln_config, kwargs = cls.get_rbln_config_class().initialize_from_kwargs(rbln_config, **kwargs)
|
156
189
|
|
157
190
|
if export:
|
@@ -39,6 +39,7 @@ from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
|
39
39
|
|
40
40
|
from ....utils.decorator_utils import remove_compile_time_kwargs
|
41
41
|
from ....utils.logging import get_logger
|
42
|
+
from ...configurations import RBLNStableDiffusionControlNetPipelineConfig
|
42
43
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
43
44
|
from ...models import RBLNControlNetModel
|
44
45
|
from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
|
@@ -49,6 +50,7 @@ logger = get_logger(__name__)
|
|
49
50
|
|
50
51
|
class RBLNStableDiffusionControlNetPipeline(RBLNDiffusionMixin, StableDiffusionControlNetPipeline):
|
51
52
|
original_class = StableDiffusionControlNetPipeline
|
53
|
+
_rbln_config_class = RBLNStableDiffusionControlNetPipelineConfig
|
52
54
|
_submodules = ["text_encoder", "unet", "vae", "controlnet"]
|
53
55
|
|
54
56
|
# Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet.py
|
@@ -37,6 +37,7 @@ from diffusers.utils import deprecate, logging
|
|
37
37
|
from diffusers.utils.torch_utils import is_compiled_module
|
38
38
|
|
39
39
|
from ....utils.decorator_utils import remove_compile_time_kwargs
|
40
|
+
from ...configurations import RBLNStableDiffusionControlNetImg2ImgPipelineConfig
|
40
41
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
41
42
|
from ...models import RBLNControlNetModel
|
42
43
|
from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
|
@@ -48,6 +49,7 @@ logger = logging.get_logger(__name__)
|
|
48
49
|
class RBLNStableDiffusionControlNetImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionControlNetImg2ImgPipeline):
|
49
50
|
original_class = StableDiffusionControlNetImg2ImgPipeline
|
50
51
|
_submodules = ["text_encoder", "unet", "vae", "controlnet"]
|
52
|
+
_rbln_config_class = RBLNStableDiffusionControlNetImg2ImgPipelineConfig
|
51
53
|
|
52
54
|
# Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet_img2img.py
|
53
55
|
def check_inputs(
|
@@ -37,6 +37,7 @@ from diffusers.utils import deprecate, logging
|
|
37
37
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
38
38
|
|
39
39
|
from ....utils.decorator_utils import remove_compile_time_kwargs
|
40
|
+
from ...configurations import RBLNStableDiffusionXLControlNetPipelineConfig
|
40
41
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
41
42
|
from ...models import RBLNControlNetModel
|
42
43
|
from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
|
@@ -47,6 +48,7 @@ logger = logging.get_logger(__name__)
|
|
47
48
|
|
48
49
|
class RBLNStableDiffusionXLControlNetPipeline(RBLNDiffusionMixin, StableDiffusionXLControlNetPipeline):
|
49
50
|
original_class = StableDiffusionXLControlNetPipeline
|
51
|
+
_rbln_config_class = RBLNStableDiffusionXLControlNetPipelineConfig
|
50
52
|
_submodules = ["text_encoder", "text_encoder_2", "unet", "vae", "controlnet"]
|
51
53
|
|
52
54
|
# Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.py
|
@@ -37,6 +37,7 @@ from diffusers.utils import deprecate, logging
|
|
37
37
|
from diffusers.utils.torch_utils import is_compiled_module
|
38
38
|
|
39
39
|
from ....utils.decorator_utils import remove_compile_time_kwargs
|
40
|
+
from ...configurations import RBLNStableDiffusionXLControlNetImg2ImgPipelineConfig
|
40
41
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
41
42
|
from ...models import RBLNControlNetModel
|
42
43
|
from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
|
@@ -47,6 +48,7 @@ logger = logging.get_logger(__name__)
|
|
47
48
|
|
48
49
|
class RBLNStableDiffusionXLControlNetImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionXLControlNetImg2ImgPipeline):
|
49
50
|
original_class = StableDiffusionXLControlNetImg2ImgPipeline
|
51
|
+
_rbln_config_class = RBLNStableDiffusionXLControlNetImg2ImgPipelineConfig
|
50
52
|
_submodules = ["text_encoder", "text_encoder_2", "unet", "vae", "controlnet"]
|
51
53
|
|
52
54
|
# Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl_img2img.py
|
@@ -14,11 +14,13 @@
|
|
14
14
|
|
15
15
|
from diffusers import KandinskyV22Pipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNKandinskyV22PipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNKandinskyV22Pipeline(RBLNDiffusionMixin, KandinskyV22Pipeline):
|
21
22
|
original_class = KandinskyV22Pipeline
|
23
|
+
_rbln_config_class = RBLNKandinskyV22PipelineConfig
|
22
24
|
_submodules = ["unet", "movq"]
|
23
25
|
|
24
26
|
def get_compiled_image_size(self):
|
@@ -29,6 +29,7 @@ from transformers import (
|
|
29
29
|
CLIPVisionModelWithProjection,
|
30
30
|
)
|
31
31
|
|
32
|
+
from ...configurations import RBLNKandinskyV22CombinedPipelineConfig
|
32
33
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
33
34
|
from .pipeline_kandinsky2_2 import RBLNKandinskyV22Pipeline
|
34
35
|
from .pipeline_kandinsky2_2_img2img import RBLNKandinskyV22Img2ImgPipeline
|
@@ -38,6 +39,7 @@ from .pipeline_kandinsky2_2_prior import RBLNKandinskyV22PriorPipeline
|
|
38
39
|
|
39
40
|
class RBLNKandinskyV22CombinedPipeline(RBLNDiffusionMixin, KandinskyV22CombinedPipeline):
|
40
41
|
original_class = KandinskyV22CombinedPipeline
|
42
|
+
_rbln_config_class = RBLNKandinskyV22CombinedPipelineConfig
|
41
43
|
_connected_classes = {"prior_pipe": RBLNKandinskyV22PriorPipeline, "decoder_pipe": RBLNKandinskyV22Pipeline}
|
42
44
|
_submodules = ["prior_image_encoder", "prior_text_encoder", "prior_prior", "unet", "movq"]
|
43
45
|
_prefix = {"prior_pipe": "prior_"}
|
@@ -14,11 +14,13 @@
|
|
14
14
|
|
15
15
|
from diffusers import KandinskyV22Img2ImgPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNKandinskyV22Img2ImgPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNKandinskyV22Img2ImgPipeline(RBLNDiffusionMixin, KandinskyV22Img2ImgPipeline):
|
21
22
|
original_class = KandinskyV22Img2ImgPipeline
|
23
|
+
_rbln_config_class = RBLNKandinskyV22Img2ImgPipelineConfig
|
22
24
|
_submodules = ["unet", "movq"]
|
23
25
|
|
24
26
|
def get_compiled_image_size(self):
|
@@ -14,11 +14,13 @@
|
|
14
14
|
|
15
15
|
from diffusers import KandinskyV22InpaintPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNKandinskyV22InpaintPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNKandinskyV22InpaintPipeline(RBLNDiffusionMixin, KandinskyV22InpaintPipeline):
|
21
22
|
original_class = KandinskyV22InpaintPipeline
|
23
|
+
_rbln_config_class = RBLNKandinskyV22InpaintPipelineConfig
|
22
24
|
_submodules = ["unet", "movq"]
|
23
25
|
|
24
26
|
def get_compiled_image_size(self):
|
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import KandinskyV22PriorPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNKandinskyV22PriorPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNKandinskyV22PriorPipeline(RBLNDiffusionMixin, KandinskyV22PriorPipeline):
|
21
22
|
original_class = KandinskyV22PriorPipeline
|
23
|
+
_rbln_config_class = RBLNKandinskyV22PriorPipelineConfig
|
22
24
|
_submodules = ["text_encoder", "image_encoder", "prior"]
|
@@ -15,9 +15,11 @@
|
|
15
15
|
|
16
16
|
from diffusers import StableDiffusionPipeline
|
17
17
|
|
18
|
+
from ...configurations import RBLNStableDiffusionPipelineConfig
|
18
19
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
19
20
|
|
20
21
|
|
21
22
|
class RBLNStableDiffusionPipeline(RBLNDiffusionMixin, StableDiffusionPipeline):
|
22
23
|
original_class = StableDiffusionPipeline
|
24
|
+
_rbln_config_class = RBLNStableDiffusionPipelineConfig
|
23
25
|
_submodules = ["vae", "text_encoder", "unet"]
|
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import StableDiffusionImg2ImgPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNStableDiffusionImg2ImgPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNStableDiffusionImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionImg2ImgPipeline):
|
21
22
|
original_class = StableDiffusionImg2ImgPipeline
|
23
|
+
_rbln_config_class = RBLNStableDiffusionImg2ImgPipelineConfig
|
22
24
|
_submodules = ["text_encoder", "unet", "vae"]
|
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import StableDiffusionInpaintPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNStableDiffusionInpaintPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNStableDiffusionInpaintPipeline(RBLNDiffusionMixin, StableDiffusionInpaintPipeline):
|
21
22
|
original_class = StableDiffusionInpaintPipeline
|
23
|
+
_rbln_config_class = RBLNStableDiffusionInpaintPipelineConfig
|
22
24
|
_submodules = ["text_encoder", "unet", "vae"]
|
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import StableDiffusion3Pipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNStableDiffusion3PipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNStableDiffusion3Pipeline(RBLNDiffusionMixin, StableDiffusion3Pipeline):
|
21
22
|
original_class = StableDiffusion3Pipeline
|
23
|
+
_rbln_config_class = RBLNStableDiffusion3PipelineConfig
|
22
24
|
_submodules = ["transformer", "text_encoder_3", "text_encoder", "text_encoder_2", "vae"]
|
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import StableDiffusion3Img2ImgPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNStableDiffusion3Img2ImgPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNStableDiffusion3Img2ImgPipeline(RBLNDiffusionMixin, StableDiffusion3Img2ImgPipeline):
|
21
22
|
original_class = StableDiffusion3Img2ImgPipeline
|
23
|
+
_rbln_config_class = RBLNStableDiffusion3Img2ImgPipelineConfig
|
22
24
|
_submodules = ["transformer", "text_encoder_3", "text_encoder", "text_encoder_2", "vae"]
|
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import StableDiffusion3InpaintPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNStableDiffusion3InpaintPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNStableDiffusion3InpaintPipeline(RBLNDiffusionMixin, StableDiffusion3InpaintPipeline):
|
21
22
|
original_class = StableDiffusion3InpaintPipeline
|
23
|
+
_rbln_config_class = RBLNStableDiffusion3InpaintPipelineConfig
|
22
24
|
_submodules = ["transformer", "text_encoder_3", "text_encoder", "text_encoder_2", "vae"]
|
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import StableDiffusionXLPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNStableDiffusionXLPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNStableDiffusionXLPipeline(RBLNDiffusionMixin, StableDiffusionXLPipeline):
|
21
22
|
original_class = StableDiffusionXLPipeline
|
23
|
+
_rbln_config_class = RBLNStableDiffusionXLPipelineConfig
|
22
24
|
_submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
|
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py
CHANGED
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import StableDiffusionXLImg2ImgPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNStableDiffusionXLImg2ImgPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNStableDiffusionXLImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionXLImg2ImgPipeline):
|
21
22
|
original_class = StableDiffusionXLImg2ImgPipeline
|
23
|
+
_rbln_config_class = RBLNStableDiffusionXLImg2ImgPipelineConfig
|
22
24
|
_submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
|
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py
CHANGED
@@ -14,9 +14,11 @@
|
|
14
14
|
|
15
15
|
from diffusers import StableDiffusionXLInpaintPipeline
|
16
16
|
|
17
|
+
from ...configurations import RBLNStableDiffusionXLInpaintPipelineConfig
|
17
18
|
from ...modeling_diffusers import RBLNDiffusionMixin
|
18
19
|
|
19
20
|
|
20
21
|
class RBLNStableDiffusionXLInpaintPipeline(RBLNDiffusionMixin, StableDiffusionXLInpaintPipeline):
|
21
22
|
original_class = StableDiffusionXLInpaintPipeline
|
23
|
+
_rbln_config_class = RBLNStableDiffusionXLInpaintPipelineConfig
|
22
24
|
_submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
|
optimum/rbln/modeling_base.py
CHANGED
@@ -216,6 +216,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
216
216
|
if isinstance(rbln_config, dict):
|
217
217
|
rbln_config_as_kwargs = {f"rbln_{key}": value for key, value in rbln_config.items()}
|
218
218
|
kwargs.update(rbln_config_as_kwargs)
|
219
|
+
rbln_config = None
|
219
220
|
elif isinstance(rbln_config, RBLNModelConfig) and rbln_config.rbln_model_cls_name != cls.__name__:
|
220
221
|
raise ValueError(
|
221
222
|
f"Cannot use the passed rbln_config. Its model class name ({rbln_config.rbln_model_cls_name}) "
|
@@ -392,13 +393,13 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
392
393
|
@classmethod
|
393
394
|
def get_hf_class(cls):
|
394
395
|
"""
|
395
|
-
Lazily loads and caches the corresponding
|
396
|
+
Lazily loads and caches the corresponding HuggingFace model class.
|
396
397
|
Removes 'RBLN' prefix from the class name to get the original class name
|
397
398
|
(e.g., RBLNLlamaForCausalLM -> LlamaForCausalLM) and imports it from
|
398
399
|
the transformers/diffusers module.
|
399
400
|
|
400
401
|
Returns:
|
401
|
-
type: The original
|
402
|
+
type: The original HuggingFace model class
|
402
403
|
"""
|
403
404
|
if cls._hf_class is None:
|
404
405
|
hf_cls_name = cls.__name__[4:]
|
@@ -478,7 +479,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
|
|
478
479
|
save_directory (`Union[str, Path]`):
|
479
480
|
Directory where to save the model file.
|
480
481
|
push_to_hub (`bool`, *optional*, defaults to `False`):
|
481
|
-
Whether or not to push your model to the
|
482
|
+
Whether or not to push your model to the HuggingFace model hub after saving it.
|
482
483
|
|
483
484
|
"""
|
484
485
|
if os.path.isfile(save_directory):
|
@@ -48,7 +48,7 @@ class _BaseAutoModelClass:
|
|
48
48
|
|
49
49
|
Args:
|
50
50
|
pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
|
51
|
-
export (bool): Whether to infer the class based on
|
51
|
+
export (bool): Whether to infer the class based on HuggingFace (HF) architecture.
|
52
52
|
kwargs: Additional arguments for configuration and loading.
|
53
53
|
|
54
54
|
Returns:
|
@@ -86,14 +86,14 @@ class _BaseAutoModelClass:
|
|
86
86
|
**kwargs,
|
87
87
|
):
|
88
88
|
"""
|
89
|
-
Infer the
|
89
|
+
Infer the HuggingFace model class based on the configuration or model name.
|
90
90
|
|
91
91
|
Args:
|
92
92
|
pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
|
93
93
|
kwargs: Additional arguments for configuration and loading.
|
94
94
|
|
95
95
|
Returns:
|
96
|
-
PretrainedModel: The inferred
|
96
|
+
PretrainedModel: The inferred HuggingFace model class.
|
97
97
|
"""
|
98
98
|
|
99
99
|
# Try to load configuration if provided or retrieve it from the model ID
|
optimum/rbln/utils/hub.py
CHANGED
@@ -63,7 +63,7 @@ def pull_compiled_model_from_hub(
|
|
63
63
|
force_download: bool,
|
64
64
|
local_files_only: bool,
|
65
65
|
) -> Path:
|
66
|
-
"""Pull model files from the
|
66
|
+
"""Pull model files from the HuggingFace Hub."""
|
67
67
|
huggingface_token = _get_huggingface_token(use_auth_token)
|
68
68
|
repo_files = list(
|
69
69
|
map(
|
@@ -119,4 +119,4 @@ def _get_huggingface_token(use_auth_token: Union[bool, str]) -> str:
|
|
119
119
|
elif use_auth_token:
|
120
120
|
return HfFolder.get_token()
|
121
121
|
else:
|
122
|
-
raise ValueError("`use_auth_token` must be provided to interact with the
|
122
|
+
raise ValueError("`use_auth_token` must be provided to interact with the HuggingFace Hub.")
|
@@ -18,10 +18,10 @@ RBLN_PREFIX = "RBLN"
|
|
18
18
|
|
19
19
|
def convert_hf_to_rbln_model_name(hf_model_name: str):
|
20
20
|
"""
|
21
|
-
Convert
|
21
|
+
Convert HuggingFace model name to RBLN model name.
|
22
22
|
|
23
23
|
Args:
|
24
|
-
hf_model_name (str): The
|
24
|
+
hf_model_name (str): The HuggingFace model name.
|
25
25
|
|
26
26
|
Returns:
|
27
27
|
str: The corresponding RBLN model name.
|
@@ -31,13 +31,13 @@ def convert_hf_to_rbln_model_name(hf_model_name: str):
|
|
31
31
|
|
32
32
|
def convert_rbln_to_hf_model_name(rbln_model_name: str):
|
33
33
|
"""
|
34
|
-
Convert RBLN model name to
|
34
|
+
Convert RBLN model name to HuggingFace model name.
|
35
35
|
|
36
36
|
Args:
|
37
37
|
rbln_model_name (str): The RBLN model name.
|
38
38
|
|
39
39
|
Returns:
|
40
|
-
str: The corresponding
|
40
|
+
str: The corresponding HuggingFace model name.
|
41
41
|
"""
|
42
42
|
|
43
43
|
return rbln_model_name.removeprefix(RBLN_PREFIX)
|
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: optimum-rbln
|
3
|
-
Version: 0.7.
|
4
|
-
Summary: Optimum RBLN is the interface between the
|
3
|
+
Version: 0.7.4a9
|
4
|
+
Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
7
7
|
Project-URL: Repository, https://github.com/rebellions-sw/optimum-rbln
|
@@ -1,24 +1,24 @@
|
|
1
1
|
optimum/rbln/__init__.py,sha256=c2whRR6XkelNLlH1MwAKYMoaBEhmGxSQFrhfKS1JC-I,13186
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
3
|
-
optimum/rbln/configuration_utils.py,sha256=
|
2
|
+
optimum/rbln/__version__.py,sha256=GuANUTgAHXrhQ4V27YBqp-zK5jY_U9soaBj4Ef2cU3A,519
|
3
|
+
optimum/rbln/configuration_utils.py,sha256=rOXG9_ptYwzLlDIebd-CoiT3i6xaZl5IVPplLIrUyoE,31106
|
4
4
|
optimum/rbln/modeling.py,sha256=qDXB69Oq0jx9hfONebDiSNe2_DgKYhnAGLTbGAtwYVw,9677
|
5
|
-
optimum/rbln/modeling_base.py,sha256=
|
5
|
+
optimum/rbln/modeling_base.py,sha256=iQKw2IORu1cN6sOK0xeBVrhatt-ZPeinT_v6l2FnGRw,24173
|
6
6
|
optimum/rbln/diffusers/__init__.py,sha256=XL6oKPHbPCV6IVCw3fu0-M9mD2KO_x6unx5kJdAtpVY,6180
|
7
|
-
optimum/rbln/diffusers/modeling_diffusers.py,sha256=
|
7
|
+
optimum/rbln/diffusers/modeling_diffusers.py,sha256=bPyP5RMbOFLb2DfEAuLVp7hTuQWJvWid7El72wGmFrY,19535
|
8
8
|
optimum/rbln/diffusers/configurations/__init__.py,sha256=Sk_sQVTuTl01RVgYViWknQSLmulxKaISS0w-oPdNoBQ,1164
|
9
9
|
optimum/rbln/diffusers/configurations/models/__init__.py,sha256=P3vif5I4wYeol50jzHCZ1ttujuEFZSYJPzUdSF6_jsU,407
|
10
10
|
optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=61QHgb_tVF6lxvy6vBxst2TjnebeKQy3rKHOOOc6e68,2952
|
11
|
-
optimum/rbln/diffusers/configurations/models/configuration_controlnet.py,sha256=
|
12
|
-
optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py,sha256=
|
13
|
-
optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py,sha256=
|
14
|
-
optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py,sha256=
|
11
|
+
optimum/rbln/diffusers/configurations/models/configuration_controlnet.py,sha256=qyhhrv-rgHl-IDIGf66rghMsfdMyW5xKjWGsEXs8wOc,2551
|
12
|
+
optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py,sha256=JA0ECp6UbXJNypJUEMaJPyY0k2pfVPCVcqp_BH2h0H0,1952
|
13
|
+
optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py,sha256=nQ8Q2wZixKwiM7Xye4-_dJS2HDY94cyxglStYUzssxc,2306
|
14
|
+
optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py,sha256=c-1xAFgA1st8djLXkLeXtctcFp1MqZZYZp3Phqn1Wxo,3366
|
15
15
|
optimum/rbln/diffusers/configurations/models/configuration_vq_model.py,sha256=su4Ceok4Wx4m1hKp5YEM3zigrlTmj3NIs9X7aAKOeWg,2980
|
16
16
|
optimum/rbln/diffusers/configurations/pipelines/__init__.py,sha256=HJlu5lRZJWy4nYjBw3-ed93Pfb5QQmUbCJZKDW1bGH4,1160
|
17
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=
|
18
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=
|
19
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=
|
20
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=
|
21
|
-
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=
|
17
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=G9e2fxVmQ2JD-0iWrRe4jjCTtj9ZysI8oM_dWohtMO8,11044
|
18
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=u26JzBCgGnc581up4y3XXyFX5lqAsKGF0IyDRGdYPp8,12746
|
19
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=cE5BHI2sy3PCz0kfhQic611feGwavb7wtpx04MPR6us,4992
|
20
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=54NTvVur7RADGgjGwO33s76dgKQ4zVNvmFl68rQFapw,6370
|
21
|
+
optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=H0hqsqpAfqb9gBIK5KsfUf9gX9cTnggK9Nt2aqfzeIM,5528
|
22
22
|
optimum/rbln/diffusers/models/__init__.py,sha256=mkCvJyH1KcwrsUvYSq_bVC79oOfyqtBSFDyPS1_48wA,1478
|
23
23
|
optimum/rbln/diffusers/models/controlnet.py,sha256=m2hHKrom1ladsDO4bTSZ7o_bIRrLRpzv7XBI2BlesxY,10224
|
24
24
|
optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=dg17ZTUsiqTcbIaEE4fqew9uRbao0diQ21PXvRKIqKg,679
|
@@ -33,28 +33,28 @@ optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=bFFidMPZ2JgZf5tQ
|
|
33
33
|
optimum/rbln/diffusers/pipelines/__init__.py,sha256=5KLZ5LrpMzBya2e_3_PvEoPwG24U8JMexfw_ygZREKc,3140
|
34
34
|
optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
|
35
35
|
optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=Cv__E0Boc6TSOIv8TdXVE821zIiPG4MVI_lnaGSqquk,4102
|
36
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=
|
37
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=
|
38
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=
|
39
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=
|
36
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=_yblap0kjOpk-cJ6LuD5vL4G7BEnJISy1EP-QiU0I5w,35330
|
37
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=GtnjUPTicLI5IAMlFi8zm4c3BvvAhgD7_H1_3fOfnzw,33821
|
38
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=M97KwwgMVZlebc2V98Ll0MIhQm00uzQaET-Dcl6CX7Q,44902
|
39
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=QIn3pGtKZupsZZNXwNdRRpldvLIuSrd1GQ2GpziNMfI,46245
|
40
40
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py,sha256=I4YQq2HfA3xONbWsdJ870IEJPyLWeCDDG-UCJsu9YO8,1035
|
41
|
-
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py,sha256=
|
42
|
-
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=
|
43
|
-
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py,sha256=
|
44
|
-
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py,sha256=
|
45
|
-
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py,sha256=
|
41
|
+
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py,sha256=fxE1NSinavs__ljMyKr_kz2xQzVftQyf0YInx9tt4og,1021
|
42
|
+
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=pUFs83YWKGN4tfgOW9qWBjUQc7wK3fvyEdXJqLdf_5Q,7153
|
43
|
+
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py,sha256=6AGh3OOzsGJ-f-yDyMp9TyGxrl7lfEqUt5JIlyI_aAU,1063
|
44
|
+
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py,sha256=KzFeKxaltdGpllswtl3HT79jLpX1qLMjT7QN7wiMPDI,1063
|
45
|
+
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py,sha256=HrYRkIuw0H4Q0BEpRAIQNkmQfJRTpkhy9Hj0gvrSUBQ,1001
|
46
46
|
optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py,sha256=gz6CbP4T6w8XH3PIGRIJXTmKFsChJIkwcAEAsiR5Ydg,830
|
47
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=
|
48
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=
|
49
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py,sha256=
|
47
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=XxZd9_Est8QxSECm0q-2AkfnGn1Hz5Mr2AadtZtsefw,1000
|
48
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=6VWT2ssqz00d_l9Wotep-YFbzK8Ykh1_AhTwTPY34GI,1041
|
49
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py,sha256=M6rXEIcp5oORHZlDT41OL6CAlxLYaMFATcjyxjGTG64,1041
|
50
50
|
optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py,sha256=Hh-JePj7nBsm81ioqdt8gfpS_I0sEHBinsAOEdraUno,839
|
51
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py,sha256=
|
52
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py,sha256=
|
53
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py,sha256=
|
51
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py,sha256=bcgW4YO_BwK7TE3ovlOOZo_JDq2Ae0jCyS42F3ibHRM,1048
|
52
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py,sha256=SSf53dBcEeVNsYoIvmerbWmmahBQ9LT-0jyy7x1C8rA,1090
|
53
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py,sha256=EBOoOAADiAvxRCRGGHQnue6UvULzh37a1snibD8Xsss,1090
|
54
54
|
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=9iIMZYvpWEiLRrMEduhwVTE5IUix61OSLj7kd1e1FzY,845
|
55
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=
|
56
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=
|
57
|
-
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py,sha256=
|
55
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=9GQIzBSgBae2kE9esGycg7WqNwO8TGF5c97rMx9934Y,1029
|
56
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=BtzoyVd6Np5BPu3-OyXjbVMM8tl2ARF3HeFZab9NLXU,1071
|
57
|
+
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py,sha256=7_ezUBCaH24e25VS19vrhJHBvmEOFnBpgfslpjL6aT4,1071
|
58
58
|
optimum/rbln/ops/__init__.py,sha256=rSz6mfC0aGbNYjMaNSsOZSPYxPRenW8DWbNpAkjTfAc,703
|
59
59
|
optimum/rbln/ops/attn.py,sha256=x02yFLk7FcONFqfow0ROmVy9fmxo5Pw0SPCiDY3AZNg,9012
|
60
60
|
optimum/rbln/ops/flash_attn.py,sha256=NmCqUdMTzgJ4sbYGj8IWXJEsLWvbuCMponR01w5DK6w,4121
|
@@ -68,7 +68,7 @@ optimum/rbln/transformers/modeling_generic.py,sha256=nT_lytAILkYtwBVJKxXg0dxmh0U
|
|
68
68
|
optimum/rbln/transformers/modeling_rope_utils.py,sha256=3zwkhYUyTZhxCJUSmwCc88iiY1TppRWEY9ShwUqNB2k,14293
|
69
69
|
optimum/rbln/transformers/models/__init__.py,sha256=72eMPN5UYGJ9P5gnJ2yi25cGdX1jV7viTOKmsX2OqBg,7221
|
70
70
|
optimum/rbln/transformers/models/auto/__init__.py,sha256=GvGbb3ZpMv-h6euXeZ42jSizoOfrL2O1uvpAnfKxYEo,1034
|
71
|
-
optimum/rbln/transformers/models/auto/auto_factory.py,sha256=
|
71
|
+
optimum/rbln/transformers/models/auto/auto_factory.py,sha256=Uf5rCUoxec2qhIAwbAeZNZN4NIMFaLurSB1EdI79lwA,7044
|
72
72
|
optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Un9qoqdy3dO8JBza_bTJF_6_fRVNM9QisihSgTRFI-o,3933
|
73
73
|
optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
|
74
74
|
optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=Oo-Cdne7igKEex8wwP-gztKJHgs5GLHQjK1oc3IZIDE,5801
|
@@ -156,14 +156,14 @@ optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
|
|
156
156
|
optimum/rbln/transformers/utils/rbln_quantization.py,sha256=gwBVHf97sQgPNmGa0wq87E8mPyrtXYhMnO4X4sKp3c8,7639
|
157
157
|
optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
|
158
158
|
optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
|
159
|
-
optimum/rbln/utils/hub.py,sha256=
|
159
|
+
optimum/rbln/utils/hub.py,sha256=Z_R9Ic9VAew8bUmlaAlxZf5JGMDBivHvvFRI557pILY,4196
|
160
160
|
optimum/rbln/utils/import_utils.py,sha256=uMldLJmDVMj5uHvxBfb96uV29bfGEDvlksLY26GOHAs,4389
|
161
161
|
optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
|
162
|
-
optimum/rbln/utils/model_utils.py,sha256=
|
162
|
+
optimum/rbln/utils/model_utils.py,sha256=V2kFpUe2aqVzLwbpztD8JOVFQqRHncvIWwJbgnUPr4E,1274
|
163
163
|
optimum/rbln/utils/runtime_utils.py,sha256=LoKNK3AQNV_BSScstIZWjICkJf265MnUgy360BOocVI,5454
|
164
164
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
165
165
|
optimum/rbln/utils/submodule.py,sha256=TtcH3OLctFd2Dosc-zNMGZ8xOXKKUfE91dLQ1v09E8Q,4636
|
166
|
-
optimum_rbln-0.7.
|
167
|
-
optimum_rbln-0.7.
|
168
|
-
optimum_rbln-0.7.
|
169
|
-
optimum_rbln-0.7.
|
166
|
+
optimum_rbln-0.7.4a9.dist-info/METADATA,sha256=s2GSC8Y7NFqtsFxZFbkYzQdMRBuyzA6zjKeON7ov8G0,5299
|
167
|
+
optimum_rbln-0.7.4a9.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
168
|
+
optimum_rbln-0.7.4a9.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
169
|
+
optimum_rbln-0.7.4a9.dist-info/RECORD,,
|
File without changes
|
File without changes
|