optimum-rbln 0.7.4a7__py3-none-any.whl → 0.7.4a9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. optimum/rbln/__version__.py +2 -2
  2. optimum/rbln/configuration_utils.py +46 -2
  3. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +8 -0
  4. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +8 -0
  5. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +8 -0
  6. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +8 -0
  7. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +32 -17
  8. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +19 -15
  9. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +8 -8
  10. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +8 -8
  11. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +8 -8
  12. optimum/rbln/diffusers/modeling_diffusers.py +50 -17
  13. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +2 -0
  14. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +2 -0
  15. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +2 -0
  16. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +2 -0
  17. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +2 -0
  18. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -0
  19. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +2 -0
  20. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py +2 -0
  21. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +2 -0
  22. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -0
  23. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +2 -0
  24. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +2 -0
  25. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +2 -0
  26. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +2 -0
  27. optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +2 -0
  28. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +2 -0
  29. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +2 -0
  30. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +2 -0
  31. optimum/rbln/modeling_base.py +4 -3
  32. optimum/rbln/transformers/models/auto/auto_factory.py +3 -3
  33. optimum/rbln/utils/hub.py +2 -2
  34. optimum/rbln/utils/model_utils.py +4 -4
  35. {optimum_rbln-0.7.4a7.dist-info → optimum_rbln-0.7.4a9.dist-info}/METADATA +2 -2
  36. {optimum_rbln-0.7.4a7.dist-info → optimum_rbln-0.7.4a9.dist-info}/RECORD +38 -38
  37. {optimum_rbln-0.7.4a7.dist-info → optimum_rbln-0.7.4a9.dist-info}/WHEEL +0 -0
  38. {optimum_rbln-0.7.4a7.dist-info → optimum_rbln-0.7.4a9.dist-info}/licenses/LICENSE +0 -0
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.7.4a7'
21
- __version_tuple__ = version_tuple = (0, 7, 4, 'a7')
20
+ __version__ = version = '0.7.4a9'
21
+ __version_tuple__ = version_tuple = (0, 7, 4, 'a9')
@@ -174,6 +174,14 @@ class RBLNAutoConfig:
174
174
  cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
175
175
  return cls(**kwargs)
176
176
 
177
+ @staticmethod
178
+ def load_from_dict(config_dict: Dict[str, Any]) -> "RBLNModelConfig":
179
+ cls_name = config_dict.get("cls_name")
180
+ if cls_name is None:
181
+ raise ValueError("`cls_name` is required.")
182
+ cls = getattr(importlib.import_module("optimum.rbln"), cls_name)
183
+ return cls(**config_dict)
184
+
177
185
  @staticmethod
178
186
  def load(
179
187
  path: str,
@@ -195,8 +203,9 @@ class RBLNAutoConfig:
195
203
  cls, config_file = load_config(path)
196
204
 
197
205
  rbln_keys = [key for key in kwargs.keys() if key.startswith("rbln_")]
198
-
199
206
  rbln_runtime_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in RUNTIME_KEYWORDS}
207
+ rbln_submodule_kwargs = {key[5:]: kwargs.pop(key) for key in rbln_keys if key[5:] in cls.submodules}
208
+
200
209
  rbln_kwargs = {
201
210
  key[5:]: kwargs.pop(key)
202
211
  for key in rbln_keys
@@ -206,6 +215,14 @@ class RBLNAutoConfig:
206
215
  if len(rbln_kwargs) > 0:
207
216
  raise ValueError(f"Cannot set the following arguments: {list(rbln_kwargs.keys())}")
208
217
 
218
+ # Process submodule's rbln_config
219
+ for submodule in cls.submodules:
220
+ if submodule not in config_file:
221
+ raise ValueError(f"Submodule {submodule} not found in rbln_config.json.")
222
+ submodule_config = config_file[submodule]
223
+ submodule_config.update(rbln_submodule_kwargs.pop(submodule, {}))
224
+ config_file[submodule] = RBLNAutoConfig.load_from_dict(submodule_config)
225
+
209
226
  if passed_rbln_config is not None:
210
227
  config_file.update(passed_rbln_config._runtime_options)
211
228
  # TODO(jongho): Reject if the passed_rbln_config has different attributes from the config_file
@@ -435,6 +452,7 @@ class RBLNModelConfig:
435
452
  "activate_profiler",
436
453
  ]
437
454
  submodules: List[str] = []
455
+ subclass_non_save_attributes = []
438
456
 
439
457
  def init_submodule_config(
440
458
  self,
@@ -463,7 +481,11 @@ class RBLNModelConfig:
463
481
  return submodule_config
464
482
 
465
483
  def __setattr__(self, key, value):
466
- if key != "_attributes_map" and key not in self.non_save_attributes:
484
+ if (
485
+ key != "_attributes_map"
486
+ and key not in self.non_save_attributes
487
+ and key not in self.subclass_non_save_attributes
488
+ ):
467
489
  self._attributes_map[key] = value
468
490
 
469
491
  if hasattr(self, "_frozen") and self._frozen:
@@ -706,6 +728,28 @@ class RBLNModelConfig:
706
728
 
707
729
  return rbln_config, kwargs
708
730
 
731
+ def get_default_values_for_original_cls(self, func_name: str, keys: List[str]) -> Dict[str, Any]:
732
+ """
733
+ Get default values for original class attributes from RBLNModelConfig.
734
+
735
+ Args:
736
+ func_name (str): The name of the function to get the default values for.
737
+ keys (List[str]): The keys of the attributes to get.
738
+
739
+ Returns:
740
+ Dict[str, Any]: The default values for the attributes.
741
+ """
742
+ model_cls = self.rbln_model_cls.get_hf_class()
743
+ func = getattr(model_cls, func_name)
744
+ func_signature = inspect.signature(func)
745
+ default_values = {}
746
+ for key in keys:
747
+ if key in func_signature.parameters:
748
+ default_values[key] = func_signature.parameters[key].default
749
+ else:
750
+ raise ValueError(f"Default value for `{key}` is not set for the model class.")
751
+ return default_values
752
+
709
753
  @property
710
754
  def create_runtimes(self):
711
755
  context = ContextRblnConfig.get_current_context()["create_runtimes"]
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNControlNetModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -44,6 +46,8 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
44
46
  ValueError: If batch_size is not a positive integer.
45
47
  """
46
48
  super().__init__(**kwargs)
49
+ self._batch_size_is_specified = batch_size is not None
50
+
47
51
  self.batch_size = batch_size or 1
48
52
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
49
53
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -52,3 +56,7 @@ class RBLNControlNetModelConfig(RBLNModelConfig):
52
56
  self.unet_sample_size = unet_sample_size
53
57
  self.vae_sample_size = vae_sample_size
54
58
  self.text_model_hidden_size = text_model_hidden_size
59
+
60
+ @property
61
+ def batch_size_is_specified(self):
62
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNPriorTransformerConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -36,9 +38,15 @@ class RBLNPriorTransformerConfig(RBLNModelConfig):
36
38
  ValueError: If batch_size is not a positive integer.
37
39
  """
38
40
  super().__init__(**kwargs)
41
+ self._batch_size_is_specified = batch_size is not None
42
+
39
43
  self.batch_size = batch_size or 1
40
44
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
41
45
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
42
46
 
43
47
  self.embedding_dim = embedding_dim
44
48
  self.num_embeddings = num_embeddings
49
+
50
+ @property
51
+ def batch_size_is_specified(self):
52
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -38,6 +40,8 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
38
40
  ValueError: If batch_size is not a positive integer.
39
41
  """
40
42
  super().__init__(**kwargs)
43
+ self._batch_size_is_specified = batch_size is not None
44
+
41
45
  self.batch_size = batch_size or 1
42
46
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
43
47
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -46,3 +50,7 @@ class RBLNSD3Transformer2DModelConfig(RBLNModelConfig):
46
50
  self.sample_size = sample_size
47
51
  if isinstance(self.sample_size, int):
48
52
  self.sample_size = (self.sample_size, self.sample_size)
53
+
54
+ @property
55
+ def batch_size_is_specified(self):
56
+ return self._batch_size_is_specified
@@ -18,6 +18,8 @@ from ....configuration_utils import RBLNModelConfig
18
18
 
19
19
 
20
20
  class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
21
+ subclass_non_save_attributes = ["_batch_size_is_specified"]
22
+
21
23
  def __init__(
22
24
  self,
23
25
  batch_size: Optional[int] = None,
@@ -49,6 +51,8 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
49
51
  ValueError: If batch_size is not a positive integer.
50
52
  """
51
53
  super().__init__(**kwargs)
54
+ self._batch_size_is_specified = batch_size is not None
55
+
52
56
  self.batch_size = batch_size or 1
53
57
  if not isinstance(self.batch_size, int) or self.batch_size < 0:
54
58
  raise ValueError(f"batch_size must be a positive integer, got {self.batch_size}")
@@ -64,3 +68,7 @@ class RBLNUNet2DConditionModelConfig(RBLNModelConfig):
64
68
  self.sample_size = sample_size
65
69
  if isinstance(sample_size, int):
66
70
  self.sample_size = (sample_size, sample_size)
71
+
72
+ @property
73
+ def batch_size_is_specified(self):
74
+ return self._batch_size_is_specified
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig, RBLNCLIPTextModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNControlNetModelConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "unet", "vae", "controlnet"]
28
24
  _vae_uses_encoder = False
@@ -58,7 +54,7 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
58
54
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
59
55
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
60
56
  Cannot be used together with img_height/img_width.
61
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
57
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
62
58
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
63
59
 
64
60
  Raises:
@@ -79,7 +75,6 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
79
75
  self.unet = self.init_submodule_config(
80
76
  RBLNUNet2DConditionModelConfig,
81
77
  unet,
82
- batch_size=batch_size,
83
78
  sample_size=sample_size,
84
79
  )
85
80
  self.vae = self.init_submodule_config(
@@ -89,14 +84,24 @@ class _RBLNStableDiffusionControlNetPipelineBaseConfig(RBLNModelConfig):
89
84
  uses_encoder=self.__class__._vae_uses_encoder,
90
85
  sample_size=image_size, # image size is equal to sample size in vae
91
86
  )
92
- self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet, batch_size=batch_size)
87
+ self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet)
88
+
89
+ # Get default guidance scale from original class to set UNet and ControlNet batch size
90
+ if guidance_scale is None:
91
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
93
92
 
94
93
  if guidance_scale is not None:
95
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
96
94
  do_classifier_free_guidance = guidance_scale > 1.0
97
95
  if do_classifier_free_guidance:
98
- self.unet.batch_size = self.text_encoder.batch_size * 2
99
- self.controlnet.batch_size = self.text_encoder.batch_size * 2
96
+ if not self.unet.batch_size_is_specified:
97
+ self.unet.batch_size = self.text_encoder.batch_size * 2
98
+ if not self.controlnet.batch_size_is_specified:
99
+ self.controlnet.batch_size = self.text_encoder.batch_size * 2
100
+ else:
101
+ if not self.unet.batch_size_is_specified:
102
+ self.unet.batch_size = self.text_encoder.batch_size
103
+ if not self.controlnet.batch_size_is_specified:
104
+ self.controlnet.batch_size = self.text_encoder.batch_size
100
105
 
101
106
  @property
102
107
  def batch_size(self):
@@ -157,7 +162,7 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
157
162
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
158
163
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
159
164
  Cannot be used together with img_height/img_width.
160
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
165
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
161
166
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
162
167
 
163
168
  Raises:
@@ -181,7 +186,6 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
181
186
  self.unet = self.init_submodule_config(
182
187
  RBLNUNet2DConditionModelConfig,
183
188
  unet,
184
- batch_size=batch_size,
185
189
  sample_size=sample_size,
186
190
  )
187
191
  self.vae = self.init_submodule_config(
@@ -191,14 +195,25 @@ class _RBLNStableDiffusionXLControlNetPipelineBaseConfig(RBLNModelConfig):
191
195
  uses_encoder=self.__class__._vae_uses_encoder,
192
196
  sample_size=image_size, # image size is equal to sample size in vae
193
197
  )
194
- self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet, batch_size=batch_size)
198
+ self.controlnet = self.init_submodule_config(RBLNControlNetModelConfig, controlnet)
195
199
 
196
- if guidance_scale is not None:
197
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
198
- do_classifier_free_guidance = guidance_scale > 1.0
199
- if do_classifier_free_guidance:
200
+ # Get default guidance scale from original class to set UNet and ControlNet batch size
201
+ guidance_scale = (
202
+ guidance_scale
203
+ or self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
204
+ )
205
+
206
+ do_classifier_free_guidance = guidance_scale > 1.0
207
+ if do_classifier_free_guidance:
208
+ if not self.unet.batch_size_is_specified:
200
209
  self.unet.batch_size = self.text_encoder.batch_size * 2
210
+ if not self.controlnet.batch_size_is_specified:
201
211
  self.controlnet.batch_size = self.text_encoder.batch_size * 2
212
+ else:
213
+ if not self.unet.batch_size_is_specified:
214
+ self.unet.batch_size = self.text_encoder.batch_size
215
+ if not self.controlnet.batch_size_is_specified:
216
+ self.controlnet.batch_size = self.text_encoder.batch_size
202
217
 
203
218
  @property
204
219
  def batch_size(self):
@@ -16,14 +16,10 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelWithProjectionConfig, RBLNCLIPVisionModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNUNet2DConditionModelConfig, RBLNVQModelConfig
21
20
  from ..models.configuration_prior_transformer import RBLNPriorTransformerConfig
22
21
 
23
22
 
24
- logger = get_logger(__name__)
25
-
26
-
27
23
  class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
28
24
  submodules = ["unet", "movq"]
29
25
  _movq_uses_encoder = False
@@ -49,7 +45,7 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
49
45
  Initialized as RBLNVQModelConfig if not provided.
50
46
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
51
47
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
52
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
48
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
53
49
  image_size (Optional[Tuple[int, int]]): Dimensions for the generated images.
54
50
  Cannot be used together with img_height/img_width.
55
51
  img_height (Optional[int]): Height of the generated images.
@@ -70,9 +66,7 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
70
66
  if img_height is not None and img_width is not None:
71
67
  image_size = (img_height, img_width)
72
68
 
73
- self.unet = self.init_submodule_config(
74
- RBLNUNet2DConditionModelConfig, unet, batch_size=batch_size, sample_size=sample_size
75
- )
69
+ self.unet = self.init_submodule_config(RBLNUNet2DConditionModelConfig, unet, sample_size=sample_size)
76
70
  self.movq = self.init_submodule_config(
77
71
  RBLNVQModelConfig,
78
72
  movq,
@@ -81,11 +75,16 @@ class _RBLNKandinskyV22PipelineBaseConfig(RBLNModelConfig):
81
75
  uses_encoder=self._movq_uses_encoder,
82
76
  )
83
77
 
84
- if guidance_scale is not None:
85
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
78
+ # Get default guidance scale from original class to set UNet batch size
79
+ if guidance_scale is None:
80
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
81
+
82
+ if not self.unet.batch_size_is_specified:
86
83
  do_classifier_free_guidance = guidance_scale > 1.0
87
84
  if do_classifier_free_guidance:
88
85
  self.unet.batch_size = self.movq.batch_size * 2
86
+ else:
87
+ self.unet.batch_size = self.movq.batch_size
89
88
 
90
89
  @property
91
90
  def batch_size(self):
@@ -136,7 +135,7 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
136
135
  prior (Optional[RBLNPriorTransformerConfig]): Configuration for the prior transformer component.
137
136
  Initialized as RBLNPriorTransformerConfig if not provided.
138
137
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
139
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
138
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
140
139
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
141
140
 
142
141
  Note:
@@ -151,13 +150,18 @@ class RBLNKandinskyV22PriorPipelineConfig(RBLNModelConfig):
151
150
  RBLNCLIPVisionModelWithProjectionConfig, image_encoder, batch_size=batch_size
152
151
  )
153
152
 
154
- self.prior = self.init_submodule_config(RBLNPriorTransformerConfig, prior, batch_size=batch_size)
153
+ self.prior = self.init_submodule_config(RBLNPriorTransformerConfig, prior)
154
+
155
+ # Get default guidance scale from original class to set UNet batch size
156
+ if guidance_scale is None:
157
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
155
158
 
156
- if guidance_scale is not None:
157
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
159
+ if not self.prior.batch_size_is_specified:
158
160
  do_classifier_free_guidance = guidance_scale > 1.0
159
161
  if do_classifier_free_guidance:
160
162
  self.prior.batch_size = self.text_encoder.batch_size * 2
163
+ else:
164
+ self.prior.batch_size = self.text_encoder.batch_size
161
165
 
162
166
  @property
163
167
  def batch_size(self):
@@ -208,7 +212,7 @@ class _RBLNKandinskyV22CombinedPipelineBaseConfig(RBLNModelConfig):
208
212
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
209
213
  img_height (Optional[int]): Height of the generated images.
210
214
  img_width (Optional[int]): Width of the generated images.
211
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
215
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
212
216
  prior_prior (Optional[RBLNPriorTransformerConfig]): Direct configuration for the prior transformer.
213
217
  Used if prior_pipe is not provided.
214
218
  prior_image_encoder (Optional[RBLNCLIPVisionModelWithProjectionConfig]): Direct configuration for the image encoder.
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "unet", "vae"]
28
24
  _vae_uses_encoder = False
@@ -55,7 +51,7 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
55
51
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
56
52
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
57
53
  Cannot be used together with img_height/img_width.
58
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
54
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
59
55
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
60
56
 
61
57
  Raises:
@@ -76,7 +72,6 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
76
72
  self.unet = self.init_submodule_config(
77
73
  RBLNUNet2DConditionModelConfig,
78
74
  unet,
79
- batch_size=batch_size,
80
75
  sample_size=sample_size,
81
76
  )
82
77
  self.vae = self.init_submodule_config(
@@ -87,11 +82,16 @@ class _RBLNStableDiffusionPipelineBaseConfig(RBLNModelConfig):
87
82
  sample_size=image_size, # image size is equal to sample size in vae
88
83
  )
89
84
 
90
- if guidance_scale is not None:
91
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
85
+ # Get default guidance scale from original class to set UNet batch size
86
+ if guidance_scale is None:
87
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
88
+
89
+ if not self.unet.batch_size_is_specified:
92
90
  do_classifier_free_guidance = guidance_scale > 1.0
93
91
  if do_classifier_free_guidance:
94
92
  self.unet.batch_size = self.text_encoder.batch_size * 2
93
+ else:
94
+ self.unet.batch_size = self.text_encoder.batch_size
95
95
 
96
96
  @property
97
97
  def batch_size(self):
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelWithProjectionConfig, RBLNT5EncoderModelConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNSD3Transformer2DModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["transformer", "text_encoder", "text_encoder_2", "text_encoder_3", "vae"]
28
24
  _vae_uses_encoder = False
@@ -63,7 +59,7 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
63
59
  batch_size (Optional[int]): Batch size for inference, applied to all submodules.
64
60
  img_height (Optional[int]): Height of the generated images.
65
61
  img_width (Optional[int]): Width of the generated images.
66
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
62
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
67
63
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
68
64
 
69
65
  Raises:
@@ -97,7 +93,6 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
97
93
  self.transformer = self.init_submodule_config(
98
94
  RBLNSD3Transformer2DModelConfig,
99
95
  transformer,
100
- batch_size=batch_size,
101
96
  sample_size=sample_size,
102
97
  )
103
98
  self.vae = self.init_submodule_config(
@@ -108,11 +103,16 @@ class _RBLNStableDiffusion3PipelineBaseConfig(RBLNModelConfig):
108
103
  sample_size=image_size,
109
104
  )
110
105
 
111
- if guidance_scale is not None:
112
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
106
+ # Get default guidance scale from original class to set Transformer batch size
107
+ if guidance_scale is None:
108
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
109
+
110
+ if not self.transformer.batch_size_is_specified:
113
111
  do_classifier_free_guidance = guidance_scale > 1.0
114
112
  if do_classifier_free_guidance:
115
113
  self.transformer.batch_size = self.text_encoder.batch_size * 2
114
+ else:
115
+ self.transformer.batch_size = self.text_encoder.batch_size
116
116
 
117
117
  @property
118
118
  def max_seq_len(self):
@@ -16,13 +16,9 @@ from typing import Optional, Tuple
16
16
 
17
17
  from ....configuration_utils import RBLNModelConfig
18
18
  from ....transformers import RBLNCLIPTextModelConfig, RBLNCLIPTextModelWithProjectionConfig
19
- from ....utils.logging import get_logger
20
19
  from ..models import RBLNAutoencoderKLConfig, RBLNUNet2DConditionModelConfig
21
20
 
22
21
 
23
- logger = get_logger(__name__)
24
-
25
-
26
22
  class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
27
23
  submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
28
24
  _vae_uses_encoder = False
@@ -58,7 +54,7 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
58
54
  sample_size (Optional[Tuple[int, int]]): Spatial dimensions for the UNet model.
59
55
  image_size (Optional[Tuple[int, int]]): Alternative way to specify image dimensions.
60
56
  Cannot be used together with img_height/img_width.
61
- guidance_scale (Optional[float]): Scale for classifier-free guidance. Deprecated parameter.
57
+ guidance_scale (Optional[float]): Scale for classifier-free guidance.
62
58
  **kwargs: Additional arguments passed to the parent RBLNModelConfig.
63
59
 
64
60
  Raises:
@@ -82,7 +78,6 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
82
78
  self.unet = self.init_submodule_config(
83
79
  RBLNUNet2DConditionModelConfig,
84
80
  unet,
85
- batch_size=batch_size,
86
81
  sample_size=sample_size,
87
82
  )
88
83
  self.vae = self.init_submodule_config(
@@ -93,11 +88,16 @@ class _RBLNStableDiffusionXLPipelineBaseConfig(RBLNModelConfig):
93
88
  sample_size=image_size, # image size is equal to sample size in vae
94
89
  )
95
90
 
96
- if guidance_scale is not None:
97
- logger.warning("Specifying `guidance_scale` is deprecated. It will be removed in a future version.")
91
+ # Get default guidance scale from original class to set UNet batch size
92
+ if guidance_scale is None:
93
+ guidance_scale = self.get_default_values_for_original_cls("__call__", ["guidance_scale"])["guidance_scale"]
94
+
95
+ if not self.unet.batch_size_is_specified:
98
96
  do_classifier_free_guidance = guidance_scale > 1.0
99
97
  if do_classifier_free_guidance:
100
98
  self.unet.batch_size = self.text_encoder.batch_size * 2
99
+ else:
100
+ self.unet.batch_size = self.text_encoder.batch_size
101
101
 
102
102
  @property
103
103
  def batch_size(self):
@@ -21,8 +21,6 @@ import torch
21
21
 
22
22
  from ..configuration_utils import ContextRblnConfig, RBLNModelConfig
23
23
  from ..modeling import RBLNModel
24
-
25
- # from ..transformers import RBLNCLIPTextModelConfig
26
24
  from ..utils.decorator_utils import remove_compile_time_kwargs
27
25
  from ..utils.logging import get_logger
28
26
 
@@ -47,17 +45,11 @@ class RBLNDiffusionMixin:
47
45
 
48
46
  1. Create a new pipeline class that inherits from both this mixin and the original StableDiffusionPipeline.
49
47
  2. Define the required _submodules class variable listing the components to be compiled.
50
- 3. If needed, implement get_default_rbln_config for custom configuration of submodules.
51
48
 
52
49
  Example:
53
50
  ```python
54
51
  class RBLNStableDiffusionPipeline(RBLNDiffusionMixin, StableDiffusionPipeline):
55
52
  _submodules = ["text_encoder", "unet", "vae"]
56
-
57
- @classmethod
58
- def get_default_rbln_config(cls, model, submodule_name, rbln_config):
59
- # Configuration for other submodules...
60
- pass
61
53
  ```
62
54
 
63
55
  Class Variables:
@@ -76,14 +68,7 @@ class RBLNDiffusionMixin:
76
68
  _submodules = []
77
69
  _prefix = {}
78
70
  _rbln_config_class = None
79
-
80
- @classmethod
81
- def is_img2img_pipeline(cls):
82
- return "Img2Img" in cls.__name__
83
-
84
- @classmethod
85
- def is_inpaint_pipeline(cls):
86
- return "Inpaint" in cls.__name__
71
+ _hf_class = None
87
72
 
88
73
  @staticmethod
89
74
  def _maybe_apply_and_fuse_lora(
@@ -139,6 +124,14 @@ class RBLNDiffusionMixin:
139
124
  )
140
125
  return cls._rbln_config_class
141
126
 
127
+ @classmethod
128
+ def get_hf_class(cls):
129
+ if cls._hf_class is None:
130
+ hf_cls_name = cls.__name__[4:]
131
+ library = importlib.import_module("diffusers")
132
+ cls._hf_class = getattr(library, hf_cls_name, None)
133
+ return cls._hf_class
134
+
142
135
  @classmethod
143
136
  def from_pretrained(
144
137
  cls,
@@ -151,7 +144,47 @@ class RBLNDiffusionMixin:
151
144
  lora_weights_names: Optional[Union[str, List[str]]] = None,
152
145
  lora_scales: Optional[Union[float, List[float]]] = None,
153
146
  **kwargs,
154
- ) -> RBLNModel:
147
+ ) -> "RBLNDiffusionMixin":
148
+ """
149
+ Load a pretrained diffusion pipeline from a model checkpoint, with optional compilation for RBLN NPUs.
150
+
151
+ This method has two distinct operating modes:
152
+ - When `export=True`: Takes a PyTorch-based diffusion model, compiles it for RBLN NPUs, and loads the compiled model
153
+ - When `export=False`: Loads an already compiled RBLN model from `model_id` without recompilation
154
+
155
+ It supports various diffusion pipelines including Stable Diffusion, Kandinsky, ControlNet, and other diffusers-based models.
156
+
157
+ Args:
158
+ model_id (`str`):
159
+ The model ID or path to the pretrained model to load. Can be either:
160
+ - A model ID from the HuggingFace Hub
161
+ - A local path to a saved model directory
162
+ export (`bool`, *optional*, defaults to `False`):
163
+ If True, takes a PyTorch model from `model_id` and compiles it for RBLN NPU execution.
164
+ If False, loads an already compiled RBLN model from `model_id` without recompilation.
165
+ model_save_dir (`os.PathLike`, *optional*):
166
+ Directory to save the compiled model artifacts. Only used when `export=True`.
167
+ If not provided and `export=True`, a temporary directory is used.
168
+ rbln_config (`Dict[str, Any]`, *optional*, defaults to `{}`):
169
+ Configuration options for RBLN compilation. Can include settings for specific submodules
170
+ such as `text_encoder`, `unet`, and `vae`. Configuration can be tailored to the specific
171
+ pipeline being compiled.
172
+ lora_ids (`str` or `List[str]`, *optional*):
173
+ LoRA adapter ID(s) to load and apply before compilation. LoRA weights are fused
174
+ into the model weights during compilation. Only used when `export=True`.
175
+ lora_weights_names (`str` or `List[str]`, *optional*):
176
+ Names of specific LoRA weight files to load, corresponding to lora_ids. Only used when `export=True`.
177
+ lora_scales (`float` or `List[float]`, *optional*):
178
+ Scaling factor(s) to apply to the LoRA adapter(s). Only used when `export=True`.
179
+ **kwargs:
180
+ Additional arguments to pass to the underlying diffusion pipeline constructor or the
181
+ RBLN compilation process. These may include parameters specific to individual submodules
182
+ or the particular diffusion pipeline being used.
183
+
184
+ Returns:
185
+ `RBLNDiffusionMixin`: A compiled or loaded diffusion pipeline that can be used for inference on RBLN NPU.
186
+ The returned object is an instance of the class that called this method, inheriting from RBLNDiffusionMixin.
187
+ """
155
188
  rbln_config, kwargs = cls.get_rbln_config_class().initialize_from_kwargs(rbln_config, **kwargs)
156
189
 
157
190
  if export:
@@ -39,6 +39,7 @@ from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
39
39
 
40
40
  from ....utils.decorator_utils import remove_compile_time_kwargs
41
41
  from ....utils.logging import get_logger
42
+ from ...configurations import RBLNStableDiffusionControlNetPipelineConfig
42
43
  from ...modeling_diffusers import RBLNDiffusionMixin
43
44
  from ...models import RBLNControlNetModel
44
45
  from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
@@ -49,6 +50,7 @@ logger = get_logger(__name__)
49
50
 
50
51
  class RBLNStableDiffusionControlNetPipeline(RBLNDiffusionMixin, StableDiffusionControlNetPipeline):
51
52
  original_class = StableDiffusionControlNetPipeline
53
+ _rbln_config_class = RBLNStableDiffusionControlNetPipelineConfig
52
54
  _submodules = ["text_encoder", "unet", "vae", "controlnet"]
53
55
 
54
56
  # Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet.py
@@ -37,6 +37,7 @@ from diffusers.utils import deprecate, logging
37
37
  from diffusers.utils.torch_utils import is_compiled_module
38
38
 
39
39
  from ....utils.decorator_utils import remove_compile_time_kwargs
40
+ from ...configurations import RBLNStableDiffusionControlNetImg2ImgPipelineConfig
40
41
  from ...modeling_diffusers import RBLNDiffusionMixin
41
42
  from ...models import RBLNControlNetModel
42
43
  from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
@@ -48,6 +49,7 @@ logger = logging.get_logger(__name__)
48
49
  class RBLNStableDiffusionControlNetImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionControlNetImg2ImgPipeline):
49
50
  original_class = StableDiffusionControlNetImg2ImgPipeline
50
51
  _submodules = ["text_encoder", "unet", "vae", "controlnet"]
52
+ _rbln_config_class = RBLNStableDiffusionControlNetImg2ImgPipelineConfig
51
53
 
52
54
  # Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet_img2img.py
53
55
  def check_inputs(
@@ -37,6 +37,7 @@ from diffusers.utils import deprecate, logging
37
37
  from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
38
38
 
39
39
  from ....utils.decorator_utils import remove_compile_time_kwargs
40
+ from ...configurations import RBLNStableDiffusionXLControlNetPipelineConfig
40
41
  from ...modeling_diffusers import RBLNDiffusionMixin
41
42
  from ...models import RBLNControlNetModel
42
43
  from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
@@ -47,6 +48,7 @@ logger = logging.get_logger(__name__)
47
48
 
48
49
  class RBLNStableDiffusionXLControlNetPipeline(RBLNDiffusionMixin, StableDiffusionXLControlNetPipeline):
49
50
  original_class = StableDiffusionXLControlNetPipeline
51
+ _rbln_config_class = RBLNStableDiffusionXLControlNetPipelineConfig
50
52
  _submodules = ["text_encoder", "text_encoder_2", "unet", "vae", "controlnet"]
51
53
 
52
54
  # Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.py
@@ -37,6 +37,7 @@ from diffusers.utils import deprecate, logging
37
37
  from diffusers.utils.torch_utils import is_compiled_module
38
38
 
39
39
  from ....utils.decorator_utils import remove_compile_time_kwargs
40
+ from ...configurations import RBLNStableDiffusionXLControlNetImg2ImgPipelineConfig
40
41
  from ...modeling_diffusers import RBLNDiffusionMixin
41
42
  from ...models import RBLNControlNetModel
42
43
  from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
@@ -47,6 +48,7 @@ logger = logging.get_logger(__name__)
47
48
 
48
49
  class RBLNStableDiffusionXLControlNetImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionXLControlNetImg2ImgPipeline):
49
50
  original_class = StableDiffusionXLControlNetImg2ImgPipeline
51
+ _rbln_config_class = RBLNStableDiffusionXLControlNetImg2ImgPipelineConfig
50
52
  _submodules = ["text_encoder", "text_encoder_2", "unet", "vae", "controlnet"]
51
53
 
52
54
  # Almost copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl_img2img.py
@@ -14,11 +14,13 @@
14
14
 
15
15
  from diffusers import KandinskyV22Pipeline
16
16
 
17
+ from ...configurations import RBLNKandinskyV22PipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNKandinskyV22Pipeline(RBLNDiffusionMixin, KandinskyV22Pipeline):
21
22
  original_class = KandinskyV22Pipeline
23
+ _rbln_config_class = RBLNKandinskyV22PipelineConfig
22
24
  _submodules = ["unet", "movq"]
23
25
 
24
26
  def get_compiled_image_size(self):
@@ -29,6 +29,7 @@ from transformers import (
29
29
  CLIPVisionModelWithProjection,
30
30
  )
31
31
 
32
+ from ...configurations import RBLNKandinskyV22CombinedPipelineConfig
32
33
  from ...modeling_diffusers import RBLNDiffusionMixin
33
34
  from .pipeline_kandinsky2_2 import RBLNKandinskyV22Pipeline
34
35
  from .pipeline_kandinsky2_2_img2img import RBLNKandinskyV22Img2ImgPipeline
@@ -38,6 +39,7 @@ from .pipeline_kandinsky2_2_prior import RBLNKandinskyV22PriorPipeline
38
39
 
39
40
  class RBLNKandinskyV22CombinedPipeline(RBLNDiffusionMixin, KandinskyV22CombinedPipeline):
40
41
  original_class = KandinskyV22CombinedPipeline
42
+ _rbln_config_class = RBLNKandinskyV22CombinedPipelineConfig
41
43
  _connected_classes = {"prior_pipe": RBLNKandinskyV22PriorPipeline, "decoder_pipe": RBLNKandinskyV22Pipeline}
42
44
  _submodules = ["prior_image_encoder", "prior_text_encoder", "prior_prior", "unet", "movq"]
43
45
  _prefix = {"prior_pipe": "prior_"}
@@ -14,11 +14,13 @@
14
14
 
15
15
  from diffusers import KandinskyV22Img2ImgPipeline
16
16
 
17
+ from ...configurations import RBLNKandinskyV22Img2ImgPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNKandinskyV22Img2ImgPipeline(RBLNDiffusionMixin, KandinskyV22Img2ImgPipeline):
21
22
  original_class = KandinskyV22Img2ImgPipeline
23
+ _rbln_config_class = RBLNKandinskyV22Img2ImgPipelineConfig
22
24
  _submodules = ["unet", "movq"]
23
25
 
24
26
  def get_compiled_image_size(self):
@@ -14,11 +14,13 @@
14
14
 
15
15
  from diffusers import KandinskyV22InpaintPipeline
16
16
 
17
+ from ...configurations import RBLNKandinskyV22InpaintPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNKandinskyV22InpaintPipeline(RBLNDiffusionMixin, KandinskyV22InpaintPipeline):
21
22
  original_class = KandinskyV22InpaintPipeline
23
+ _rbln_config_class = RBLNKandinskyV22InpaintPipelineConfig
22
24
  _submodules = ["unet", "movq"]
23
25
 
24
26
  def get_compiled_image_size(self):
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import KandinskyV22PriorPipeline
16
16
 
17
+ from ...configurations import RBLNKandinskyV22PriorPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNKandinskyV22PriorPipeline(RBLNDiffusionMixin, KandinskyV22PriorPipeline):
21
22
  original_class = KandinskyV22PriorPipeline
23
+ _rbln_config_class = RBLNKandinskyV22PriorPipelineConfig
22
24
  _submodules = ["text_encoder", "image_encoder", "prior"]
@@ -15,9 +15,11 @@
15
15
 
16
16
  from diffusers import StableDiffusionPipeline
17
17
 
18
+ from ...configurations import RBLNStableDiffusionPipelineConfig
18
19
  from ...modeling_diffusers import RBLNDiffusionMixin
19
20
 
20
21
 
21
22
  class RBLNStableDiffusionPipeline(RBLNDiffusionMixin, StableDiffusionPipeline):
22
23
  original_class = StableDiffusionPipeline
24
+ _rbln_config_class = RBLNStableDiffusionPipelineConfig
23
25
  _submodules = ["vae", "text_encoder", "unet"]
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import StableDiffusionImg2ImgPipeline
16
16
 
17
+ from ...configurations import RBLNStableDiffusionImg2ImgPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNStableDiffusionImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionImg2ImgPipeline):
21
22
  original_class = StableDiffusionImg2ImgPipeline
23
+ _rbln_config_class = RBLNStableDiffusionImg2ImgPipelineConfig
22
24
  _submodules = ["text_encoder", "unet", "vae"]
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import StableDiffusionInpaintPipeline
16
16
 
17
+ from ...configurations import RBLNStableDiffusionInpaintPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNStableDiffusionInpaintPipeline(RBLNDiffusionMixin, StableDiffusionInpaintPipeline):
21
22
  original_class = StableDiffusionInpaintPipeline
23
+ _rbln_config_class = RBLNStableDiffusionInpaintPipelineConfig
22
24
  _submodules = ["text_encoder", "unet", "vae"]
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import StableDiffusion3Pipeline
16
16
 
17
+ from ...configurations import RBLNStableDiffusion3PipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNStableDiffusion3Pipeline(RBLNDiffusionMixin, StableDiffusion3Pipeline):
21
22
  original_class = StableDiffusion3Pipeline
23
+ _rbln_config_class = RBLNStableDiffusion3PipelineConfig
22
24
  _submodules = ["transformer", "text_encoder_3", "text_encoder", "text_encoder_2", "vae"]
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import StableDiffusion3Img2ImgPipeline
16
16
 
17
+ from ...configurations import RBLNStableDiffusion3Img2ImgPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNStableDiffusion3Img2ImgPipeline(RBLNDiffusionMixin, StableDiffusion3Img2ImgPipeline):
21
22
  original_class = StableDiffusion3Img2ImgPipeline
23
+ _rbln_config_class = RBLNStableDiffusion3Img2ImgPipelineConfig
22
24
  _submodules = ["transformer", "text_encoder_3", "text_encoder", "text_encoder_2", "vae"]
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import StableDiffusion3InpaintPipeline
16
16
 
17
+ from ...configurations import RBLNStableDiffusion3InpaintPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNStableDiffusion3InpaintPipeline(RBLNDiffusionMixin, StableDiffusion3InpaintPipeline):
21
22
  original_class = StableDiffusion3InpaintPipeline
23
+ _rbln_config_class = RBLNStableDiffusion3InpaintPipelineConfig
22
24
  _submodules = ["transformer", "text_encoder_3", "text_encoder", "text_encoder_2", "vae"]
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import StableDiffusionXLPipeline
16
16
 
17
+ from ...configurations import RBLNStableDiffusionXLPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNStableDiffusionXLPipeline(RBLNDiffusionMixin, StableDiffusionXLPipeline):
21
22
  original_class = StableDiffusionXLPipeline
23
+ _rbln_config_class = RBLNStableDiffusionXLPipelineConfig
22
24
  _submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import StableDiffusionXLImg2ImgPipeline
16
16
 
17
+ from ...configurations import RBLNStableDiffusionXLImg2ImgPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNStableDiffusionXLImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionXLImg2ImgPipeline):
21
22
  original_class = StableDiffusionXLImg2ImgPipeline
23
+ _rbln_config_class = RBLNStableDiffusionXLImg2ImgPipelineConfig
22
24
  _submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
@@ -14,9 +14,11 @@
14
14
 
15
15
  from diffusers import StableDiffusionXLInpaintPipeline
16
16
 
17
+ from ...configurations import RBLNStableDiffusionXLInpaintPipelineConfig
17
18
  from ...modeling_diffusers import RBLNDiffusionMixin
18
19
 
19
20
 
20
21
  class RBLNStableDiffusionXLInpaintPipeline(RBLNDiffusionMixin, StableDiffusionXLInpaintPipeline):
21
22
  original_class = StableDiffusionXLInpaintPipeline
23
+ _rbln_config_class = RBLNStableDiffusionXLInpaintPipelineConfig
22
24
  _submodules = ["text_encoder", "text_encoder_2", "unet", "vae"]
@@ -216,6 +216,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
216
216
  if isinstance(rbln_config, dict):
217
217
  rbln_config_as_kwargs = {f"rbln_{key}": value for key, value in rbln_config.items()}
218
218
  kwargs.update(rbln_config_as_kwargs)
219
+ rbln_config = None
219
220
  elif isinstance(rbln_config, RBLNModelConfig) and rbln_config.rbln_model_cls_name != cls.__name__:
220
221
  raise ValueError(
221
222
  f"Cannot use the passed rbln_config. Its model class name ({rbln_config.rbln_model_cls_name}) "
@@ -392,13 +393,13 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
392
393
  @classmethod
393
394
  def get_hf_class(cls):
394
395
  """
395
- Lazily loads and caches the corresponding Hugging Face model class.
396
+ Lazily loads and caches the corresponding HuggingFace model class.
396
397
  Removes 'RBLN' prefix from the class name to get the original class name
397
398
  (e.g., RBLNLlamaForCausalLM -> LlamaForCausalLM) and imports it from
398
399
  the transformers/diffusers module.
399
400
 
400
401
  Returns:
401
- type: The original Hugging Face model class
402
+ type: The original HuggingFace model class
402
403
  """
403
404
  if cls._hf_class is None:
404
405
  hf_cls_name = cls.__name__[4:]
@@ -478,7 +479,7 @@ class RBLNBaseModel(SubModulesMixin, PushToHubMixin, PreTrainedModel):
478
479
  save_directory (`Union[str, Path]`):
479
480
  Directory where to save the model file.
480
481
  push_to_hub (`bool`, *optional*, defaults to `False`):
481
- Whether or not to push your model to the Hugging Face model hub after saving it.
482
+ Whether or not to push your model to the HuggingFace model hub after saving it.
482
483
 
483
484
  """
484
485
  if os.path.isfile(save_directory):
@@ -48,7 +48,7 @@ class _BaseAutoModelClass:
48
48
 
49
49
  Args:
50
50
  pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
51
- export (bool): Whether to infer the class based on Hugging Face (HF) architecture.
51
+ export (bool): Whether to infer the class based on HuggingFace (HF) architecture.
52
52
  kwargs: Additional arguments for configuration and loading.
53
53
 
54
54
  Returns:
@@ -86,14 +86,14 @@ class _BaseAutoModelClass:
86
86
  **kwargs,
87
87
  ):
88
88
  """
89
- Infer the Hugging Face model class based on the configuration or model name.
89
+ Infer the HuggingFace model class based on the configuration or model name.
90
90
 
91
91
  Args:
92
92
  pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
93
93
  kwargs: Additional arguments for configuration and loading.
94
94
 
95
95
  Returns:
96
- PretrainedModel: The inferred Hugging Face model class.
96
+ PretrainedModel: The inferred HuggingFace model class.
97
97
  """
98
98
 
99
99
  # Try to load configuration if provided or retrieve it from the model ID
optimum/rbln/utils/hub.py CHANGED
@@ -63,7 +63,7 @@ def pull_compiled_model_from_hub(
63
63
  force_download: bool,
64
64
  local_files_only: bool,
65
65
  ) -> Path:
66
- """Pull model files from the Hugging Face Hub."""
66
+ """Pull model files from the HuggingFace Hub."""
67
67
  huggingface_token = _get_huggingface_token(use_auth_token)
68
68
  repo_files = list(
69
69
  map(
@@ -119,4 +119,4 @@ def _get_huggingface_token(use_auth_token: Union[bool, str]) -> str:
119
119
  elif use_auth_token:
120
120
  return HfFolder.get_token()
121
121
  else:
122
- raise ValueError("`use_auth_token` must be provided to interact with the Hugging Face Hub.")
122
+ raise ValueError("`use_auth_token` must be provided to interact with the HuggingFace Hub.")
@@ -18,10 +18,10 @@ RBLN_PREFIX = "RBLN"
18
18
 
19
19
  def convert_hf_to_rbln_model_name(hf_model_name: str):
20
20
  """
21
- Convert Hugging Face model name to RBLN model name.
21
+ Convert HuggingFace model name to RBLN model name.
22
22
 
23
23
  Args:
24
- hf_model_name (str): The Hugging Face model name.
24
+ hf_model_name (str): The HuggingFace model name.
25
25
 
26
26
  Returns:
27
27
  str: The corresponding RBLN model name.
@@ -31,13 +31,13 @@ def convert_hf_to_rbln_model_name(hf_model_name: str):
31
31
 
32
32
  def convert_rbln_to_hf_model_name(rbln_model_name: str):
33
33
  """
34
- Convert RBLN model name to Hugging Face model name.
34
+ Convert RBLN model name to HuggingFace model name.
35
35
 
36
36
  Args:
37
37
  rbln_model_name (str): The RBLN model name.
38
38
 
39
39
  Returns:
40
- str: The corresponding Hugging Face model name.
40
+ str: The corresponding HuggingFace model name.
41
41
  """
42
42
 
43
43
  return rbln_model_name.removeprefix(RBLN_PREFIX)
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.7.4a7
4
- Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
3
+ Version: 0.7.4a9
4
+ Summary: Optimum RBLN is the interface between the HuggingFace Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
7
7
  Project-URL: Repository, https://github.com/rebellions-sw/optimum-rbln
@@ -1,24 +1,24 @@
1
1
  optimum/rbln/__init__.py,sha256=c2whRR6XkelNLlH1MwAKYMoaBEhmGxSQFrhfKS1JC-I,13186
2
- optimum/rbln/__version__.py,sha256=ExpymO8GOd28EzUaHV6rNr0B3jcFOOGB0YXiUm3i25Y,519
3
- optimum/rbln/configuration_utils.py,sha256=1IX8AHmQbnJvhNm3yD6ZJABP7Oi40WvVSNlThty-ASk,29167
2
+ optimum/rbln/__version__.py,sha256=GuANUTgAHXrhQ4V27YBqp-zK5jY_U9soaBj4Ef2cU3A,519
3
+ optimum/rbln/configuration_utils.py,sha256=rOXG9_ptYwzLlDIebd-CoiT3i6xaZl5IVPplLIrUyoE,31106
4
4
  optimum/rbln/modeling.py,sha256=qDXB69Oq0jx9hfONebDiSNe2_DgKYhnAGLTbGAtwYVw,9677
5
- optimum/rbln/modeling_base.py,sha256=3JQhXDh_Rz1f6bMNxgFk-Xd-lQcAVeh-q1KVO0ijSaA,24141
5
+ optimum/rbln/modeling_base.py,sha256=iQKw2IORu1cN6sOK0xeBVrhatt-ZPeinT_v6l2FnGRw,24173
6
6
  optimum/rbln/diffusers/__init__.py,sha256=XL6oKPHbPCV6IVCw3fu0-M9mD2KO_x6unx5kJdAtpVY,6180
7
- optimum/rbln/diffusers/modeling_diffusers.py,sha256=mOP352aYok7DQIQj1dKq1uTZwIkjmUIm-pmtlu6rIUI,16987
7
+ optimum/rbln/diffusers/modeling_diffusers.py,sha256=bPyP5RMbOFLb2DfEAuLVp7hTuQWJvWid7El72wGmFrY,19535
8
8
  optimum/rbln/diffusers/configurations/__init__.py,sha256=Sk_sQVTuTl01RVgYViWknQSLmulxKaISS0w-oPdNoBQ,1164
9
9
  optimum/rbln/diffusers/configurations/models/__init__.py,sha256=P3vif5I4wYeol50jzHCZ1ttujuEFZSYJPzUdSF6_jsU,407
10
10
  optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py,sha256=61QHgb_tVF6lxvy6vBxst2TjnebeKQy3rKHOOOc6e68,2952
11
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py,sha256=JTLIKZo7Obo66-hwVwPKACCv7UtCvvaDhBGmQz7hHhk,2323
12
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py,sha256=yq6WYKFcTyNMi4yqX50wxY5Q8e-vsbpAerN8Oc-RCtA,1724
13
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py,sha256=WXHfSn-fI5ptQLt-OkqmFAK7iPXHu3rNjbjjCjgzUjI,2078
14
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py,sha256=fuqVxPKfesP9SZAMI5vJDVoE069Kz2j3Yb448qrh3GE,3138
11
+ optimum/rbln/diffusers/configurations/models/configuration_controlnet.py,sha256=qyhhrv-rgHl-IDIGf66rghMsfdMyW5xKjWGsEXs8wOc,2551
12
+ optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py,sha256=JA0ECp6UbXJNypJUEMaJPyY0k2pfVPCVcqp_BH2h0H0,1952
13
+ optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py,sha256=nQ8Q2wZixKwiM7Xye4-_dJS2HDY94cyxglStYUzssxc,2306
14
+ optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py,sha256=c-1xAFgA1st8djLXkLeXtctcFp1MqZZYZp3Phqn1Wxo,3366
15
15
  optimum/rbln/diffusers/configurations/models/configuration_vq_model.py,sha256=su4Ceok4Wx4m1hKp5YEM3zigrlTmj3NIs9X7aAKOeWg,2980
16
16
  optimum/rbln/diffusers/configurations/pipelines/__init__.py,sha256=HJlu5lRZJWy4nYjBw3-ed93Pfb5QQmUbCJZKDW1bGH4,1160
17
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=Fc4cMw-CB0ET1W-skt5Pc58ab3mKTeisKFBLjTLcHuU,10229
18
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=SS3MZh74TdeTUCfv8aP1J3eY4BA-76swjE_B5oHbBP4,12519
19
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=sgKgY238_K_NxAcFpTCe18JcYUhyoX5jaKChDgTHlcM,4902
20
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=ugA-_zfFWjDy8rs5n1B4DMed6ZM704lrl_cqZBO8liI,6259
21
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=Svu7bejmY1gPFNI0t08NzWj9hTleSDtaspcVPdJk9oE,5438
17
+ optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py,sha256=G9e2fxVmQ2JD-0iWrRe4jjCTtj9ZysI8oM_dWohtMO8,11044
18
+ optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py,sha256=u26JzBCgGnc581up4y3XXyFX5lqAsKGF0IyDRGdYPp8,12746
19
+ optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py,sha256=cE5BHI2sy3PCz0kfhQic611feGwavb7wtpx04MPR6us,4992
20
+ optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py,sha256=54NTvVur7RADGgjGwO33s76dgKQ4zVNvmFl68rQFapw,6370
21
+ optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py,sha256=H0hqsqpAfqb9gBIK5KsfUf9gX9cTnggK9Nt2aqfzeIM,5528
22
22
  optimum/rbln/diffusers/models/__init__.py,sha256=mkCvJyH1KcwrsUvYSq_bVC79oOfyqtBSFDyPS1_48wA,1478
23
23
  optimum/rbln/diffusers/models/controlnet.py,sha256=m2hHKrom1ladsDO4bTSZ7o_bIRrLRpzv7XBI2BlesxY,10224
24
24
  optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=dg17ZTUsiqTcbIaEE4fqew9uRbao0diQ21PXvRKIqKg,679
@@ -33,28 +33,28 @@ optimum/rbln/diffusers/models/unets/unet_2d_condition.py,sha256=bFFidMPZ2JgZf5tQ
33
33
  optimum/rbln/diffusers/pipelines/__init__.py,sha256=5KLZ5LrpMzBya2e_3_PvEoPwG24U8JMexfw_ygZREKc,3140
34
34
  optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=n1Ef22TSeax-kENi_d8K6wGGHSNEo9QkUeygELHgcao,983
35
35
  optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=Cv__E0Boc6TSOIv8TdXVE821zIiPG4MVI_lnaGSqquk,4102
36
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=dGdw5cwJLS4CLv6IHskk5ZCcPgS7UDuHKbfOZ8ojNUs,35187
37
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=7xCiXrH4ToCTHohVGFXqO7_f9G8HShYaHgZxoMZARkQ,33664
38
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=Gzt2wg4dgFg0TV3Bu0cs8Xru3wVrxWUxxgciwZ-QKLE,44755
39
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=RfwxNX_zQWFtvvFQJ5bt3qtHbdYdQV_3XLHm9WYCKOs,46084
36
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=_yblap0kjOpk-cJ6LuD5vL4G7BEnJISy1EP-QiU0I5w,35330
37
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=GtnjUPTicLI5IAMlFi8zm4c3BvvAhgD7_H1_3fOfnzw,33821
38
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=M97KwwgMVZlebc2V98Ll0MIhQm00uzQaET-Dcl6CX7Q,44902
39
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=QIn3pGtKZupsZZNXwNdRRpldvLIuSrd1GQ2GpziNMfI,46245
40
40
  optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py,sha256=I4YQq2HfA3xONbWsdJ870IEJPyLWeCDDG-UCJsu9YO8,1035
41
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py,sha256=aNFGOjth8tDvPrjYLbRWrkHr6p-8AFgcQx1Qay1fw70,904
42
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=BVXOpdrezWVTCibpuAMu9KkD5oEQUY00cSqm6dFbTnk,7020
43
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py,sha256=fEs-WgJqWs5zvuCkKb7MuZokH9Mi6q-0DOEKxzfWxzo,932
44
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py,sha256=Ad2ZYCXaMiYpB0mz-8X1CGhILxrVbt7rRIXt6IPwYBM,932
45
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py,sha256=Mf7tzrXetwCgt7LuXfkX-CX1hltLgNZdwF9bHxAbDJM,874
41
+ optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py,sha256=fxE1NSinavs__ljMyKr_kz2xQzVftQyf0YInx9tt4og,1021
42
+ optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=pUFs83YWKGN4tfgOW9qWBjUQc7wK3fvyEdXJqLdf_5Q,7153
43
+ optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py,sha256=6AGh3OOzsGJ-f-yDyMp9TyGxrl7lfEqUt5JIlyI_aAU,1063
44
+ optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py,sha256=KzFeKxaltdGpllswtl3HT79jLpX1qLMjT7QN7wiMPDI,1063
45
+ optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py,sha256=HrYRkIuw0H4Q0BEpRAIQNkmQfJRTpkhy9Hj0gvrSUBQ,1001
46
46
  optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py,sha256=gz6CbP4T6w8XH3PIGRIJXTmKFsChJIkwcAEAsiR5Ydg,830
47
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=lSpEzYkMpasG2TpFdgpP3dnGvmYocEwQIs_GT17M47g,877
48
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=qU7wN2gFUjFImuB6CGDY2SC4aZw4VhaRKu92eA_Fa08,904
49
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py,sha256=7vbbgopnRN1C6lIUDsF99dhFNoJ9P3taJZK8FZpHwrM,904
47
+ optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=XxZd9_Est8QxSECm0q-2AkfnGn1Hz5Mr2AadtZtsefw,1000
48
+ optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=6VWT2ssqz00d_l9Wotep-YFbzK8Ykh1_AhTwTPY34GI,1041
49
+ optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py,sha256=M6rXEIcp5oORHZlDT41OL6CAlxLYaMFATcjyxjGTG64,1041
50
50
  optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py,sha256=Hh-JePj7nBsm81ioqdt8gfpS_I0sEHBinsAOEdraUno,839
51
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py,sha256=e3bY7BJtQLnQXg_qdm92oNkWxyjfp8czQmqPaCDe7TA,923
52
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py,sha256=Ru8r5iw_lYtk2fM5NUEULQPL_tUtrgZqHMH9NDYxpyU,951
53
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py,sha256=6RM9S_Lj66WErKu_kvuYpPi4WbFKL6V6GhjjMLUAFQE,951
51
+ optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py,sha256=bcgW4YO_BwK7TE3ovlOOZo_JDq2Ae0jCyS42F3ibHRM,1048
52
+ optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py,sha256=SSf53dBcEeVNsYoIvmerbWmmahBQ9LT-0jyy7x1C8rA,1090
53
+ optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py,sha256=EBOoOAADiAvxRCRGGHQnue6UvULzh37a1snibD8Xsss,1090
54
54
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=9iIMZYvpWEiLRrMEduhwVTE5IUix61OSLj7kd1e1FzY,845
55
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=OvB5bxX6HUiqJeIc3uukuEmUXYEx1pTqGNOtdG2l1m8,902
56
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=3aB1Rw-OgKytQOHwOaShbEvq_XVHPOGvsGm8pstEmKU,930
57
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py,sha256=MzVP1wscaO1sUIiBIPJqG6zuGyez9VUbA42-JSIm-mk,930
55
+ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=9GQIzBSgBae2kE9esGycg7WqNwO8TGF5c97rMx9934Y,1029
56
+ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=BtzoyVd6Np5BPu3-OyXjbVMM8tl2ARF3HeFZab9NLXU,1071
57
+ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py,sha256=7_ezUBCaH24e25VS19vrhJHBvmEOFnBpgfslpjL6aT4,1071
58
58
  optimum/rbln/ops/__init__.py,sha256=rSz6mfC0aGbNYjMaNSsOZSPYxPRenW8DWbNpAkjTfAc,703
59
59
  optimum/rbln/ops/attn.py,sha256=x02yFLk7FcONFqfow0ROmVy9fmxo5Pw0SPCiDY3AZNg,9012
60
60
  optimum/rbln/ops/flash_attn.py,sha256=NmCqUdMTzgJ4sbYGj8IWXJEsLWvbuCMponR01w5DK6w,4121
@@ -68,7 +68,7 @@ optimum/rbln/transformers/modeling_generic.py,sha256=nT_lytAILkYtwBVJKxXg0dxmh0U
68
68
  optimum/rbln/transformers/modeling_rope_utils.py,sha256=3zwkhYUyTZhxCJUSmwCc88iiY1TppRWEY9ShwUqNB2k,14293
69
69
  optimum/rbln/transformers/models/__init__.py,sha256=72eMPN5UYGJ9P5gnJ2yi25cGdX1jV7viTOKmsX2OqBg,7221
70
70
  optimum/rbln/transformers/models/auto/__init__.py,sha256=GvGbb3ZpMv-h6euXeZ42jSizoOfrL2O1uvpAnfKxYEo,1034
71
- optimum/rbln/transformers/models/auto/auto_factory.py,sha256=jS33v5H6AY7yHZMAQPq94MBLer2wpb33IVMYcb1w57A,7047
71
+ optimum/rbln/transformers/models/auto/auto_factory.py,sha256=Uf5rCUoxec2qhIAwbAeZNZN4NIMFaLurSB1EdI79lwA,7044
72
72
  optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Un9qoqdy3dO8JBza_bTJF_6_fRVNM9QisihSgTRFI-o,3933
73
73
  optimum/rbln/transformers/models/bart/__init__.py,sha256=fVo-gZEmJ0yxkIxEX6ciuRAGgXNyuvaXE2s88bhbjAE,830
74
74
  optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=Oo-Cdne7igKEex8wwP-gztKJHgs5GLHQjK1oc3IZIDE,5801
@@ -156,14 +156,14 @@ optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
156
156
  optimum/rbln/transformers/utils/rbln_quantization.py,sha256=gwBVHf97sQgPNmGa0wq87E8mPyrtXYhMnO4X4sKp3c8,7639
157
157
  optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
158
158
  optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
159
- optimum/rbln/utils/hub.py,sha256=bNmOJGEO9Jfux4Cg8Xli-898I4mxk20KuwQOhP0Zs1U,4198
159
+ optimum/rbln/utils/hub.py,sha256=Z_R9Ic9VAew8bUmlaAlxZf5JGMDBivHvvFRI557pILY,4196
160
160
  optimum/rbln/utils/import_utils.py,sha256=uMldLJmDVMj5uHvxBfb96uV29bfGEDvlksLY26GOHAs,4389
161
161
  optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
162
- optimum/rbln/utils/model_utils.py,sha256=DfD_Z2qvZHqcddXqnzTM1AN8khanj3-DXK2lJvVxDvs,1278
162
+ optimum/rbln/utils/model_utils.py,sha256=V2kFpUe2aqVzLwbpztD8JOVFQqRHncvIWwJbgnUPr4E,1274
163
163
  optimum/rbln/utils/runtime_utils.py,sha256=LoKNK3AQNV_BSScstIZWjICkJf265MnUgy360BOocVI,5454
164
164
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
165
165
  optimum/rbln/utils/submodule.py,sha256=TtcH3OLctFd2Dosc-zNMGZ8xOXKKUfE91dLQ1v09E8Q,4636
166
- optimum_rbln-0.7.4a7.dist-info/METADATA,sha256=QEd-nMYyV2VO40XhrSwZwApvFaWXp9MZ3RI_MFBX8z8,5300
167
- optimum_rbln-0.7.4a7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
168
- optimum_rbln-0.7.4a7.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
169
- optimum_rbln-0.7.4a7.dist-info/RECORD,,
166
+ optimum_rbln-0.7.4a9.dist-info/METADATA,sha256=s2GSC8Y7NFqtsFxZFbkYzQdMRBuyzA6zjKeON7ov8G0,5299
167
+ optimum_rbln-0.7.4a9.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
168
+ optimum_rbln-0.7.4a9.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
169
+ optimum_rbln-0.7.4a9.dist-info/RECORD,,