optimum-rbln 0.7.4a5__py3-none-any.whl → 0.7.4a7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,459 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import importlib
16
+ import inspect
17
+ from pathlib import Path
18
+ from typing import TYPE_CHECKING, Any, Callable, Optional, Tuple, Union
19
+
20
+ import rebel
21
+ import torch
22
+ from transformers import (
23
+ AutoModelForVision2Seq,
24
+ Idefics3ForConditionalGeneration,
25
+ Idefics3VisionConfig,
26
+ Idefics3VisionTransformer,
27
+ PretrainedConfig,
28
+ PreTrainedModel,
29
+ )
30
+ from transformers.modeling_outputs import BaseModelOutput
31
+ from transformers.modeling_utils import no_init_weights
32
+ from transformers.models.idefics3.modeling_idefics3 import Idefics3CausalLMOutputWithPast, Idefics3VisionEmbeddings
33
+
34
+ from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
35
+ from ....modeling import RBLNModel
36
+ from ....utils.runtime_utils import RBLNPytorchRuntime
37
+ from ..decoderonly.modeling_decoderonly import (
38
+ RBLNDecoderOnlyOutput,
39
+ )
40
+
41
+
42
+ if TYPE_CHECKING:
43
+ from transformers import (
44
+ AutoFeatureExtractor,
45
+ AutoProcessor,
46
+ AutoTokenizer,
47
+ )
48
+
49
+
50
+ class RBLNRuntimeVisionModel(RBLNPytorchRuntime):
51
+ mandatory_members = ["main_input_name"]
52
+
53
+ def __init__(
54
+ self,
55
+ runtime: rebel.Runtime,
56
+ config: Idefics3VisionConfig,
57
+ **kwargs: Any,
58
+ ) -> None:
59
+ super().__init__(runtime, **kwargs)
60
+ self.patch_size = config.patch_size
61
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
62
+
63
+ def forward(
64
+ self,
65
+ pixel_values,
66
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
67
+ return_dict: Optional[bool] = None,
68
+ **kwargs,
69
+ ):
70
+ batch_size = pixel_values.size(0)
71
+ if patch_attention_mask is None:
72
+ patch_size = self.patch_size
73
+ patch_attention_mask = torch.ones(
74
+ (
75
+ batch_size,
76
+ pixel_values.size(2) // patch_size,
77
+ pixel_values.size(3) // patch_size,
78
+ )
79
+ )
80
+ patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device)
81
+
82
+ hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
83
+
84
+ return super().forward(hidden_states.contiguous())
85
+
86
+
87
+ class RBLNIdefics3VisionTransformer(RBLNModel):
88
+ def __post_init__(self, **kwargs):
89
+ artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
90
+ with no_init_weights():
91
+ self.embeddings = Idefics3VisionEmbeddings(self.config)
92
+ self.embeddings.load_state_dict(artifacts["embeddings"])
93
+ self.model = RBLNRuntimeVisionModel(
94
+ self.model[0], main_input_name="pixel_values", config=self.config, embeddings=self.embeddings
95
+ )
96
+
97
+ @classmethod
98
+ def save_torch_artifacts(
99
+ cls,
100
+ model: "PreTrainedModel",
101
+ save_dir_path: Path,
102
+ subfolder: str,
103
+ rbln_config: RBLNModelConfig,
104
+ ):
105
+ """
106
+ If you are unavoidably running on a CPU rather than an RBLN device,
107
+ store the torch tensor, weight, etc. in this function.
108
+ """
109
+ save_dict = {}
110
+ save_dict["embeddings"] = model.get_input_embeddings().state_dict()
111
+ torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
112
+
113
+ def get_input_embeddings(self):
114
+ return self.embeddings
115
+
116
+ @classmethod
117
+ def wrap_model_if_needed(cls, model: torch.nn.Module, rbln_config: RBLNModelConfig) -> torch.nn.Module:
118
+ class Idefics3VisionTransformerWrapper(torch.nn.Module):
119
+ def __init__(self, model: "Idefics3VisionTransformer"):
120
+ super().__init__()
121
+ self.encoder = model.encoder
122
+ self.post_layernorm = model.post_layernorm
123
+
124
+ def forward(self, hidden_states, patch_attention_mask: Optional[torch.BoolTensor] = None):
125
+ encoder_outputs = self.encoder(
126
+ inputs_embeds=hidden_states,
127
+ attention_mask=patch_attention_mask,
128
+ output_attentions=None,
129
+ output_hidden_states=None,
130
+ return_dict=False,
131
+ )
132
+ last_hidden_state = encoder_outputs[0]
133
+ last_hidden_state = self.post_layernorm(last_hidden_state)
134
+ return last_hidden_state
135
+
136
+ return Idefics3VisionTransformerWrapper(model).eval()
137
+
138
+ @classmethod
139
+ def _update_rbln_config(
140
+ cls,
141
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
142
+ model: Optional["PreTrainedModel"] = None,
143
+ model_config: Optional["PretrainedConfig"] = None,
144
+ rbln_config: Optional[RBLNModelConfig] = None,
145
+ ) -> RBLNModelConfig:
146
+ input_info = [
147
+ (
148
+ "hidden_states",
149
+ [
150
+ # batch_size * num_patches (dependent on image size) -> compile with 1 and use for loop
151
+ 1,
152
+ (model_config.image_size // model_config.patch_size) ** 2,
153
+ model_config.hidden_size,
154
+ ],
155
+ "float32",
156
+ ),
157
+ ]
158
+
159
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
160
+ rbln_config.set_compile_cfgs([rbln_compile_config])
161
+ return rbln_config
162
+
163
+ def forward(
164
+ self,
165
+ pixel_values,
166
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
167
+ return_dict: Optional[bool] = None,
168
+ **kwargs,
169
+ ) -> Union[Tuple, BaseModelOutput]:
170
+ batch_size = pixel_values.shape[0]
171
+ last_hidden_state = []
172
+ for i in range(batch_size):
173
+ if patch_attention_mask is not None:
174
+ batch_attention_mask = patch_attention_mask[i : i + 1,]
175
+ else:
176
+ batch_attention_mask = None
177
+
178
+ batch_hidden_state = self.model(
179
+ pixel_values[i : i + 1,],
180
+ batch_attention_mask,
181
+ return_dict=False,
182
+ )
183
+ last_hidden_state.append(batch_hidden_state)
184
+ last_hidden_state = torch.cat(last_hidden_state, dim=0)
185
+
186
+ if not return_dict:
187
+ return (last_hidden_state,)
188
+ else:
189
+ return BaseModelOutput(last_hidden_state=last_hidden_state)
190
+
191
+
192
+ class RBLNIdefics3ForConditionalGeneration(RBLNModel):
193
+ auto_model_class = AutoModelForVision2Seq
194
+ _rbln_submodules = [{"name": "vision_model"}, {"name": "text_model"}]
195
+ _rbln_submodule_prefix = "model"
196
+
197
+ def __getattr__(self, __name: str) -> Any:
198
+ def redirect(func):
199
+ return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
200
+
201
+ val = getattr(Idefics3ForConditionalGeneration, __name)
202
+
203
+ if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
204
+ return redirect(val)
205
+ return val
206
+
207
+ def can_generate(self):
208
+ return True
209
+
210
+ @classmethod
211
+ def get_pytorch_model(cls, *args, **kwargs):
212
+ model = super().get_pytorch_model(*args, **kwargs)
213
+
214
+ with no_init_weights():
215
+ model_cls_name = model.model.text_model.__class__.__name__
216
+ causal_model_cls_name = model_cls_name.replace("Model", "ForCausalLM")
217
+ causal_model_cls = getattr(importlib.import_module("transformers"), causal_model_cls_name)
218
+ new_text_model = causal_model_cls(model.model.text_model.config)
219
+
220
+ new_text_model.lm_head = model.lm_head
221
+ new_text_model.model = model.model.text_model
222
+ model.model.text_model = new_text_model
223
+ model.lm_head = None
224
+ del model.lm_head
225
+ return model
226
+
227
+ def __post_init__(self, **kwargs):
228
+ self.vision_model = self.rbln_submodules[0]
229
+ self.connector = self.model[0]
230
+ self.text_model = self.rbln_submodules[1]
231
+
232
+ def get_attn_impl(self) -> str:
233
+ return self.rbln_config.text_model.attn_impl
234
+
235
+ def get_kvcache_num_blocks(self) -> int:
236
+ return self.rbln_config.text_model.kvcache_num_blocks
237
+
238
+ def get_input_embeddings(self):
239
+ return self.text_model.get_input_embeddings()
240
+
241
+ @classmethod
242
+ def wrap_model_if_needed(cls, model, rbln_config):
243
+ return model.model.connector
244
+
245
+ @classmethod
246
+ def _update_rbln_config(
247
+ cls,
248
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
249
+ model: Optional["PreTrainedModel"] = None,
250
+ model_config: Optional["PretrainedConfig"] = None,
251
+ rbln_config: Optional[RBLNModelConfig] = None,
252
+ ) -> RBLNModelConfig:
253
+ input_info = [
254
+ (
255
+ "image_hidden_states",
256
+ [
257
+ # batch_size * num_patches (dependent on image size) -> compile with 1 and use for loop
258
+ 1,
259
+ (model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2,
260
+ model_config.vision_config.hidden_size,
261
+ ],
262
+ "float32",
263
+ ),
264
+ ]
265
+
266
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
267
+ rbln_config.set_compile_cfgs([rbln_compile_config])
268
+
269
+ return rbln_config
270
+
271
+ def prepare_inputs_for_generation(
272
+ self,
273
+ input_ids,
274
+ attention_mask=None,
275
+ inputs_embeds=None,
276
+ cache_position=None,
277
+ pixel_values=None,
278
+ pixel_attention_mask=None,
279
+ image_hidden_states=None,
280
+ generate_idx=None,
281
+ **kwargs,
282
+ ):
283
+ is_prefill_phase = generate_idx is None
284
+ model_inputs = {}
285
+
286
+ if is_prefill_phase:
287
+ generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
288
+ cache_position = None
289
+ pixel_values = pixel_values
290
+ pixel_attention_mask = pixel_attention_mask
291
+ else:
292
+ if inputs_embeds is not None:
293
+ raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
294
+
295
+ pixel_values = None
296
+ pixel_attention_mask = None
297
+ input_ids = input_ids[:, -1:]
298
+ cache_position = generate_idx
299
+ generate_idx = generate_idx + 1
300
+ model_inputs.update({"input_ids": input_ids})
301
+
302
+ if inputs_embeds is not None:
303
+ if self.rbln_config.use_inputs_embeds:
304
+ model_inputs.update({"inputs_embeds": inputs_embeds})
305
+ else:
306
+ raise ValueError(
307
+ "The specifying inputs_embeds is only supported when using a compiled RBLN model with 'rbln_use_inputs_embeds' set to True."
308
+ )
309
+ else:
310
+ model_inputs.update({"input_ids": input_ids})
311
+
312
+ model_inputs.update(
313
+ {
314
+ "attention_mask": attention_mask,
315
+ "pixel_values": pixel_values,
316
+ "pixel_attention_mask": pixel_attention_mask,
317
+ "image_hidden_states": image_hidden_states,
318
+ "cache_position": cache_position,
319
+ "generate_idx": generate_idx,
320
+ }
321
+ )
322
+ return model_inputs
323
+
324
+ def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
325
+ model_kwargs["generate_idx"] = outputs.generate_idx
326
+ return model_kwargs
327
+
328
+ def inputs_merger(
329
+ self,
330
+ input_ids: torch.LongTensor,
331
+ inputs_embeds: Optional[torch.Tensor],
332
+ image_hidden_states: Optional[torch.Tensor],
333
+ ):
334
+ num_images, _, vision_hidden_size = image_hidden_states.shape
335
+ special_image_token_mask = input_ids == self.config.image_token_id
336
+ new_inputs_embeds = inputs_embeds.clone()
337
+ reshaped_image_hidden_states = image_hidden_states.view(-1, vision_hidden_size)
338
+ reshaped_image_hidden_states = reshaped_image_hidden_states.to(inputs_embeds.device, inputs_embeds.dtype)
339
+ new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states
340
+ return new_inputs_embeds
341
+
342
+ def _preprocess_prefill(
343
+ self,
344
+ input_ids: torch.LongTensor = None,
345
+ inputs_embeds: Optional[torch.FloatTensor] = None,
346
+ pixel_values: Optional[torch.FloatTensor] = None,
347
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
348
+ image_hidden_states: Optional[torch.FloatTensor] = None,
349
+ **kwargs,
350
+ ):
351
+ if input_ids is not None:
352
+ batch_size, _ = input_ids.shape
353
+ elif inputs_embeds is not None:
354
+ batch_size, _, _ = inputs_embeds.shape
355
+ else:
356
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
357
+
358
+ if inputs_embeds is not None and input_ids is None:
359
+ raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.")
360
+
361
+ if inputs_embeds is None:
362
+ inputs_embeds = self.get_input_embeddings()(input_ids).to(self.device)
363
+
364
+ if pixel_values is not None and image_hidden_states is not None:
365
+ raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
366
+
367
+ elif pixel_values is not None:
368
+ batch_size, num_images, num_channels, height, width = pixel_values.shape
369
+ pixel_values = pixel_values.to(dtype=self.dtype)
370
+ pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
371
+
372
+ nb_values_per_image = pixel_values.shape[1:].numel()
373
+ real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
374
+ pixel_values = pixel_values[real_images_inds].contiguous()
375
+
376
+ if pixel_attention_mask is None:
377
+ pixel_attention_mask = torch.ones(
378
+ size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
379
+ dtype=torch.bool,
380
+ device=pixel_values.device,
381
+ )
382
+ else:
383
+ pixel_attention_mask = pixel_attention_mask.view(
384
+ batch_size * num_images, *pixel_attention_mask.shape[2:]
385
+ )
386
+ pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
387
+
388
+ patch_size = self.config.vision_config.patch_size
389
+ patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
390
+ patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
391
+ patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
392
+
393
+ image_hidden_states = self.vision_model(
394
+ pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, return_dict=True
395
+ ).last_hidden_state
396
+
397
+ connector_outputs = []
398
+ for i in range(image_hidden_states.shape[0]):
399
+ connector_outputs.append(self.connector(image_hidden_states[i : i + 1,]))
400
+ image_hidden_states = torch.cat(connector_outputs, dim=0)
401
+
402
+ elif image_hidden_states is not None:
403
+ image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
404
+
405
+ if inputs_embeds is not None and image_hidden_states is not None:
406
+ inputs_embeds = self.inputs_merger(
407
+ input_ids=input_ids,
408
+ inputs_embeds=inputs_embeds,
409
+ image_hidden_states=image_hidden_states,
410
+ )
411
+
412
+ return inputs_embeds
413
+
414
+ def forward(
415
+ self,
416
+ input_ids: torch.LongTensor = None,
417
+ attention_mask: Optional[torch.Tensor] = None,
418
+ inputs_embeds: Optional[torch.FloatTensor] = None,
419
+ pixel_values: Optional[torch.FloatTensor] = None,
420
+ pixel_attention_mask: Optional[torch.BoolTensor] = None,
421
+ image_hidden_states: Optional[torch.FloatTensor] = None,
422
+ cache_position: torch.Tensor = None,
423
+ generate_idx: Optional[torch.Tensor] = None,
424
+ **kwargs,
425
+ ) -> Union[Tuple, Idefics3CausalLMOutputWithPast]:
426
+ # Prefill
427
+ if cache_position is None:
428
+ inputs_embeds = self._preprocess_prefill(
429
+ input_ids, inputs_embeds, pixel_values, pixel_attention_mask, image_hidden_states
430
+ )
431
+ logits = []
432
+ inputs = inputs_embeds if inputs_embeds is not None else input_ids
433
+ batch_size = inputs.shape[0]
434
+
435
+ for b_idx in range(batch_size):
436
+ cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
437
+ logit = self.text_model.prefill_decoder(
438
+ input_ids=inputs[b_idx : b_idx + 1] if inputs_embeds is None else None,
439
+ inputs_embeds=inputs[b_idx : b_idx + 1] if inputs_embeds is not None else None,
440
+ attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
441
+ cache_position=cache_position,
442
+ batch_idx=b_idx,
443
+ )
444
+ logits.append(logit)
445
+
446
+ logits = torch.cat(logits, dim=0)
447
+
448
+ # Decoder
449
+ else:
450
+ logits = self.text_model.decoder(
451
+ input_ids=input_ids,
452
+ inputs_embeds=inputs_embeds,
453
+ cache_position=cache_position,
454
+ )
455
+
456
+ return RBLNDecoderOnlyOutput(
457
+ logits=logits,
458
+ generate_idx=generate_idx,
459
+ )
@@ -157,6 +157,12 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
157
157
  self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
158
158
  return super().__post_init__(**kwargs)
159
159
 
160
+ def get_attn_impl(self) -> str:
161
+ return self.rbln_config.language_model.attn_impl
162
+
163
+ def get_kvcache_num_blocks(self) -> int:
164
+ return self.rbln_config.language_model.kvcache_num_blocks
165
+
160
166
  def get_input_embeddings(self):
161
167
  return self.language_model.get_input_embeddings()
162
168
 
@@ -0,0 +1,19 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_qwen2_5_vl import (
16
+ RBLNQwen2_5_VisionTransformerPretrainedModelConfig,
17
+ RBLNQwen2_5_VLForConditionalGenerationConfig,
18
+ )
19
+ from .modeling_qwen2_5_vl import RBLNQwen2_5_VisionTransformerPretrainedModel, RBLNQwen2_5_VLForConditionalGeneration
@@ -0,0 +1,68 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import List, Optional, Union
16
+
17
+ from ....configuration_utils import RBLNModelConfig
18
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
19
+
20
+
21
+ class RBLNQwen2_5_VLForConditionalGenerationConfig(RBLNDecoderOnlyModelForCausalLMConfig):
22
+ submodules = ["visual"]
23
+
24
+ def __init__(
25
+ self,
26
+ visual: Optional[RBLNModelConfig] = None,
27
+ use_inputs_embeds: bool = True,
28
+ **kwargs,
29
+ ):
30
+ super().__init__(use_inputs_embeds=use_inputs_embeds, **kwargs)
31
+ if not self.use_inputs_embeds:
32
+ raise ValueError(
33
+ "RBLNQwen2_5_VLForConditionalGenerationConfig does not allow `use_inputs_embeds` to be set to False, "
34
+ "as RBLNQwen2_5_VLForConditionalGeneration accepts only `inputs_embeds` as input."
35
+ )
36
+ self.visual = visual
37
+
38
+
39
+ class RBLNQwen2_5_VisionTransformerPretrainedModelConfig(RBLNModelConfig):
40
+ def __init__(self, max_seq_lens: Union[int, List[int]] = None, **kwargs):
41
+ """
42
+ Args:
43
+ max_seq_lens (Optional[Union[int, List[int]]]): Maximum sequence lengths for Vision
44
+ Transformer attention. Can be an integer or list of integers, each indicating
45
+ the number of patches in a sequence for an image or video. For example, an image
46
+ of 224x196 pixels with patch size 14 and window size 112 has its width padded to
47
+ 224, forming a 224x224 image. This yields 256 patches [(224/14) * (224/14)], so
48
+ `max_seq_len` must be at least 256. For window-based attention, `max_seq_len`
49
+ must be a multiple of `(window_size / patch_size)^2`, e.g., (112/14)^2 = 64,
50
+ making 256 (64 * 4) valid. RBLN optimization runs inference per image or video
51
+ frame, so set `max_seq_len` to match the maximum expected resolution to reduce
52
+ computation. If not provided, a `ValueError` is raised.
53
+ **kwargs: Additional arguments passed to the parent RBLNModelConfig.
54
+
55
+ Raises:
56
+ ValueError: If batch_size is not a positive integer.
57
+ """
58
+ super().__init__(**kwargs)
59
+
60
+ if max_seq_lens is not None:
61
+ if isinstance(max_seq_lens, int):
62
+ max_seq_lens = [max_seq_lens]
63
+ elif isinstance(max_seq_lens, list):
64
+ max_seq_lens.sort(reverse=True)
65
+ else:
66
+ raise ValueError("'max_seq_lens' must be specified.")
67
+
68
+ self.max_seq_lens = max_seq_lens