optimum-rbln 0.7.4a4__py3-none-any.whl → 0.7.4a6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +164 -36
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/configuration_utils.py +772 -0
- optimum/rbln/diffusers/__init__.py +56 -0
- optimum/rbln/diffusers/configurations/__init__.py +30 -0
- optimum/rbln/diffusers/configurations/models/__init__.py +6 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +66 -0
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +54 -0
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +44 -0
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +48 -0
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +66 -0
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +67 -0
- optimum/rbln/diffusers/configurations/pipelines/__init__.py +30 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +221 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +285 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +118 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +143 -0
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +124 -0
- optimum/rbln/diffusers/modeling_diffusers.py +63 -122
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +109 -128
- optimum/rbln/diffusers/models/autoencoders/vae.py +4 -6
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +84 -85
- optimum/rbln/diffusers/models/controlnet.py +55 -70
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +40 -77
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +43 -68
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +110 -113
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +3 -4
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -1
- optimum/rbln/modeling.py +58 -39
- optimum/rbln/modeling_base.py +107 -78
- optimum/rbln/transformers/__init__.py +87 -8
- optimum/rbln/transformers/configuration_alias.py +49 -0
- optimum/rbln/transformers/configuration_generic.py +142 -0
- optimum/rbln/transformers/modeling_generic.py +193 -280
- optimum/rbln/transformers/models/__init__.py +108 -34
- optimum/rbln/transformers/models/auto/auto_factory.py +3 -3
- optimum/rbln/transformers/models/bart/__init__.py +1 -0
- optimum/rbln/transformers/models/bart/configuration_bart.py +24 -0
- optimum/rbln/transformers/models/bart/modeling_bart.py +10 -84
- optimum/rbln/transformers/models/bert/__init__.py +1 -0
- optimum/rbln/transformers/models/bert/configuration_bert.py +31 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +7 -80
- optimum/rbln/transformers/models/clip/__init__.py +6 -0
- optimum/rbln/transformers/models/clip/configuration_clip.py +79 -0
- optimum/rbln/transformers/models/clip/modeling_clip.py +72 -75
- optimum/rbln/transformers/models/decoderonly/__init__.py +1 -0
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +90 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +115 -84
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +282 -216
- optimum/rbln/transformers/models/dpt/__init__.py +1 -0
- optimum/rbln/transformers/models/dpt/configuration_dpt.py +19 -0
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +3 -76
- optimum/rbln/transformers/models/exaone/__init__.py +1 -0
- optimum/rbln/transformers/models/exaone/configuration_exaone.py +19 -0
- optimum/rbln/transformers/models/gemma/__init__.py +1 -0
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +19 -0
- optimum/rbln/transformers/models/gpt2/__init__.py +1 -0
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +19 -0
- optimum/rbln/transformers/models/llama/__init__.py +1 -0
- optimum/rbln/transformers/models/llama/configuration_llama.py +19 -0
- optimum/rbln/transformers/models/llava_next/__init__.py +1 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +46 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +12 -23
- optimum/rbln/transformers/models/midm/__init__.py +1 -0
- optimum/rbln/transformers/models/midm/configuration_midm.py +19 -0
- optimum/rbln/transformers/models/mistral/__init__.py +1 -0
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +19 -0
- optimum/rbln/transformers/models/phi/__init__.py +1 -0
- optimum/rbln/transformers/models/phi/configuration_phi.py +19 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +1 -0
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +68 -0
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +608 -0
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +214 -0
- optimum/rbln/transformers/models/seq2seq/__init__.py +1 -0
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq2.py +66 -0
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +80 -97
- optimum/rbln/transformers/models/t5/__init__.py +1 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +24 -0
- optimum/rbln/transformers/models/t5/modeling_t5.py +22 -150
- optimum/rbln/transformers/models/time_series_transformers/__init__.py +1 -0
- optimum/rbln/transformers/models/time_series_transformers/configuration_time_series_transformer.py +34 -0
- optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py +52 -54
- optimum/rbln/transformers/models/wav2vec2/__init__.py +1 -0
- optimum/rbln/transformers/models/wav2vec2/configuration_wav2vec.py +19 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +9 -72
- optimum/rbln/transformers/models/whisper/__init__.py +1 -0
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +64 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +57 -72
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +1 -0
- optimum/rbln/transformers/models/xlm_roberta/configuration_xlm_roberta.py +19 -0
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +3 -83
- optimum/rbln/utils/runtime_utils.py +33 -2
- optimum/rbln/utils/submodule.py +26 -43
- {optimum_rbln-0.7.4a4.dist-info → optimum_rbln-0.7.4a6.dist-info}/METADATA +1 -1
- optimum_rbln-0.7.4a6.dist-info/RECORD +166 -0
- optimum/rbln/modeling_config.py +0 -310
- optimum_rbln-0.7.4a4.dist-info/RECORD +0 -126
- {optimum_rbln-0.7.4a4.dist-info → optimum_rbln-0.7.4a6.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.7.4a4.dist-info → optimum_rbln-0.7.4a6.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,608 @@
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
from pathlib import Path
|
17
|
+
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
|
18
|
+
|
19
|
+
import torch
|
20
|
+
from transformers import (
|
21
|
+
AutoModelForVision2Seq,
|
22
|
+
PretrainedConfig,
|
23
|
+
PreTrainedModel,
|
24
|
+
Qwen2_5_VLForConditionalGeneration,
|
25
|
+
)
|
26
|
+
from transformers.modeling_utils import no_init_weights
|
27
|
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
|
28
|
+
Qwen2_5_VisionPatchEmbed,
|
29
|
+
Qwen2_5_VisionRotaryEmbedding,
|
30
|
+
Qwen2_5_VisionTransformerPretrainedModel,
|
31
|
+
Qwen2_5_VLRotaryEmbedding,
|
32
|
+
)
|
33
|
+
|
34
|
+
from ....configuration_utils import RBLNCompileConfig
|
35
|
+
from ....modeling import RBLNModel
|
36
|
+
from ....utils.logging import get_logger
|
37
|
+
from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyOutput
|
38
|
+
from .configuration_qwen2_5_vl import (
|
39
|
+
RBLNQwen2_5_VisionTransformerPretrainedModelConfig,
|
40
|
+
)
|
41
|
+
from .qwen2_5_vl_architecture import Qwen2_5_VisionTransformerWrapper, Qwen2_5_VL_LanguageModelWrapper
|
42
|
+
|
43
|
+
|
44
|
+
logger = get_logger(__name__)
|
45
|
+
|
46
|
+
if TYPE_CHECKING:
|
47
|
+
from transformers import (
|
48
|
+
AutoFeatureExtractor,
|
49
|
+
AutoProcessor,
|
50
|
+
AutoTokenizer,
|
51
|
+
PretrainedConfig,
|
52
|
+
)
|
53
|
+
|
54
|
+
|
55
|
+
class RBLNQwen2_5_VisionTransformerPretrainedModel(RBLNModel):
|
56
|
+
auto_model_class = None
|
57
|
+
|
58
|
+
def __post_init__(self, **kwargs):
|
59
|
+
self.transformer = self.model[0]
|
60
|
+
self.max_seq_lens = torch.tensor(sorted(self.rbln_config.max_seq_lens, reverse=False))
|
61
|
+
config = self.config
|
62
|
+
self.window_size = config.window_size
|
63
|
+
self.patch_size = config.spatial_patch_size
|
64
|
+
self.spatial_merge_size = config.spatial_merge_size
|
65
|
+
self.spatial_merge_unit = config.spatial_merge_size * config.spatial_merge_size
|
66
|
+
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding((config.hidden_size // config.num_heads) // 2)
|
67
|
+
with no_init_weights():
|
68
|
+
self.patch_embed = Qwen2_5_VisionPatchEmbed(
|
69
|
+
patch_size=config.patch_size,
|
70
|
+
temporal_patch_size=config.temporal_patch_size,
|
71
|
+
in_channels=config.in_channels,
|
72
|
+
embed_dim=config.hidden_size,
|
73
|
+
)
|
74
|
+
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
75
|
+
self.patch_embed.load_state_dict(artifacts["patch_embed"])
|
76
|
+
|
77
|
+
@classmethod
|
78
|
+
def save_torch_artifacts(
|
79
|
+
cls,
|
80
|
+
model: "Qwen2_5_VLForConditionalGeneration",
|
81
|
+
save_dir_path: Path,
|
82
|
+
subfolder: str,
|
83
|
+
rbln_config: RBLNQwen2_5_VisionTransformerPretrainedModelConfig,
|
84
|
+
):
|
85
|
+
save_dict = {}
|
86
|
+
save_dict["patch_embed"] = model.patch_embed.state_dict()
|
87
|
+
torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
|
88
|
+
|
89
|
+
@classmethod
|
90
|
+
def wrap_model_if_needed(
|
91
|
+
cls, model: "PreTrainedModel", rbln_config: RBLNQwen2_5_VisionTransformerPretrainedModelConfig
|
92
|
+
):
|
93
|
+
return Qwen2_5_VisionTransformerWrapper(model).eval()
|
94
|
+
|
95
|
+
def __getattr__(self, __name: str) -> Any:
|
96
|
+
def redirect(func):
|
97
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
98
|
+
|
99
|
+
val = getattr(Qwen2_5_VisionTransformerPretrainedModel, __name)
|
100
|
+
|
101
|
+
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
102
|
+
return redirect(val)
|
103
|
+
return val
|
104
|
+
|
105
|
+
@classmethod
|
106
|
+
def _update_rbln_config(
|
107
|
+
cls,
|
108
|
+
preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
|
109
|
+
model: Optional["PreTrainedModel"] = None,
|
110
|
+
model_config: "PretrainedConfig" = None,
|
111
|
+
rbln_config: Optional[RBLNQwen2_5_VisionTransformerPretrainedModelConfig] = None,
|
112
|
+
) -> RBLNQwen2_5_VisionTransformerPretrainedModelConfig:
|
113
|
+
window_size = getattr(model_config, "window_size")
|
114
|
+
patch_size = getattr(model_config, "patch_size")
|
115
|
+
hidden_size = getattr(model_config, "hidden_size")
|
116
|
+
num_heads = getattr(model_config, "num_heads")
|
117
|
+
head_dim = hidden_size // num_heads
|
118
|
+
window_seq_len = (window_size // patch_size) ** 2
|
119
|
+
|
120
|
+
input_infos = []
|
121
|
+
for max_seq_len in rbln_config.max_seq_lens:
|
122
|
+
if max_seq_len % window_seq_len > 0:
|
123
|
+
raise ValueError(
|
124
|
+
f"max_seq_len ({max_seq_len}) must be a multiple of window_seq_len ({window_seq_len})."
|
125
|
+
)
|
126
|
+
|
127
|
+
input_info = [
|
128
|
+
("hidden_states", [max_seq_len, hidden_size], "float32"),
|
129
|
+
("full_attn_masks", [1, 1, max_seq_len, max_seq_len], "float32"),
|
130
|
+
(
|
131
|
+
"window_attn_masks",
|
132
|
+
[max_seq_len // window_seq_len, 1, window_seq_len, window_seq_len],
|
133
|
+
"float32",
|
134
|
+
),
|
135
|
+
(
|
136
|
+
"cos",
|
137
|
+
[1, 1, max_seq_len, head_dim],
|
138
|
+
"float32",
|
139
|
+
),
|
140
|
+
(
|
141
|
+
"sin",
|
142
|
+
[1, 1, max_seq_len, head_dim],
|
143
|
+
"float32",
|
144
|
+
),
|
145
|
+
]
|
146
|
+
input_infos.append(input_info)
|
147
|
+
|
148
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_infos)
|
149
|
+
rbln_config.set_compile_cfgs([rbln_compile_config])
|
150
|
+
|
151
|
+
return rbln_config
|
152
|
+
|
153
|
+
@staticmethod
|
154
|
+
def _pad_for_window_attn_layers(
|
155
|
+
window_indice: List[int],
|
156
|
+
hidden_states: torch.Tensor,
|
157
|
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
158
|
+
window_seq_len: int,
|
159
|
+
max_seq_len: int,
|
160
|
+
):
|
161
|
+
# Padding for Window Attention
|
162
|
+
padded_hidden_state = []
|
163
|
+
padded_cos = []
|
164
|
+
padded_sin = []
|
165
|
+
window_valid_lengths = []
|
166
|
+
for i in range(len(window_indice) - 1):
|
167
|
+
start, end = window_indice[i], window_indice[i + 1]
|
168
|
+
segment = hidden_states[start:end]
|
169
|
+
cos_segment = position_embeddings[0][start:end]
|
170
|
+
sin_segment = position_embeddings[1][start:end]
|
171
|
+
segment_len = end - start
|
172
|
+
|
173
|
+
if segment_len < window_seq_len:
|
174
|
+
padding_size = window_seq_len - segment_len
|
175
|
+
padding = torch.zeros(
|
176
|
+
padding_size,
|
177
|
+
segment.shape[-1],
|
178
|
+
dtype=segment.dtype,
|
179
|
+
)
|
180
|
+
padding_pos = torch.zeros(
|
181
|
+
padding_size,
|
182
|
+
cos_segment.shape[-1],
|
183
|
+
dtype=cos_segment.dtype,
|
184
|
+
)
|
185
|
+
padded_segment = torch.cat([segment, padding], dim=0)
|
186
|
+
padded_cos_segment = torch.cat([cos_segment, padding_pos], dim=0)
|
187
|
+
padded_sin_segment = torch.cat([sin_segment, padding_pos], dim=0)
|
188
|
+
else:
|
189
|
+
padded_segment = segment
|
190
|
+
padded_cos_segment = cos_segment
|
191
|
+
padded_sin_segment = sin_segment
|
192
|
+
padded_hidden_state.append(padded_segment)
|
193
|
+
window_valid_lengths.append(segment_len)
|
194
|
+
padded_cos.append(padded_cos_segment)
|
195
|
+
padded_sin.append(padded_sin_segment)
|
196
|
+
hidden_state_padded = torch.cat(padded_hidden_state)
|
197
|
+
cos_padded = torch.cat(padded_cos, dim=0)
|
198
|
+
sin_padded = torch.cat(padded_sin, dim=0)
|
199
|
+
|
200
|
+
window_attn_masks = torch.ones(
|
201
|
+
max_seq_len // window_seq_len,
|
202
|
+
1,
|
203
|
+
window_seq_len,
|
204
|
+
window_seq_len,
|
205
|
+
dtype=torch.float32,
|
206
|
+
)
|
207
|
+
for i, valid_len in enumerate(window_valid_lengths):
|
208
|
+
if valid_len < window_seq_len:
|
209
|
+
window_attn_masks[i, :, valid_len:, :] = 0
|
210
|
+
window_attn_masks[i, :, :, valid_len:] = 0
|
211
|
+
|
212
|
+
return hidden_state_padded, cos_padded, sin_padded, window_attn_masks, window_valid_lengths
|
213
|
+
|
214
|
+
@staticmethod
|
215
|
+
def _pad_for_full_attn_layers(
|
216
|
+
hidden_state_padded, cos_padded, sin_padded, max_seq_len, window_valid_lengths, window_seq_len
|
217
|
+
):
|
218
|
+
if hidden_state_padded.shape[0] < max_seq_len:
|
219
|
+
full_padding_size = max_seq_len - hidden_state_padded.shape[0]
|
220
|
+
full_padding_hidden = torch.zeros(
|
221
|
+
full_padding_size,
|
222
|
+
hidden_state_padded.shape[-1],
|
223
|
+
dtype=hidden_state_padded.dtype,
|
224
|
+
)
|
225
|
+
hidden_state_full_padded = torch.cat([hidden_state_padded, full_padding_hidden], dim=0) # [5120, 1280]
|
226
|
+
full_padding_pos = torch.zeros(
|
227
|
+
full_padding_size,
|
228
|
+
cos_padded.shape[-1],
|
229
|
+
dtype=cos_padded.dtype,
|
230
|
+
)
|
231
|
+
cos_full_padded = torch.cat([cos_padded, full_padding_pos], dim=0)
|
232
|
+
sin_full_padded = torch.cat([sin_padded, full_padding_pos], dim=0)
|
233
|
+
window_valid_lengths.extend([0] * (max_seq_len // window_seq_len - len(window_valid_lengths)))
|
234
|
+
else:
|
235
|
+
hidden_state_full_padded = hidden_state_padded
|
236
|
+
cos_full_padded = cos_padded
|
237
|
+
sin_full_padded = sin_padded
|
238
|
+
|
239
|
+
full_attn_masks = torch.ones(
|
240
|
+
1,
|
241
|
+
1,
|
242
|
+
max_seq_len,
|
243
|
+
max_seq_len,
|
244
|
+
dtype=torch.float32,
|
245
|
+
)
|
246
|
+
for i, valid_len in enumerate(window_valid_lengths):
|
247
|
+
start = i * window_seq_len
|
248
|
+
end = start + window_seq_len
|
249
|
+
full_attn_masks[:, :, start + valid_len : end, :] = 0
|
250
|
+
full_attn_masks[:, :, :, start + valid_len : end] = 0
|
251
|
+
|
252
|
+
return hidden_state_full_padded, cos_full_padded, sin_full_padded, full_attn_masks
|
253
|
+
|
254
|
+
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
|
255
|
+
hidden_states = self.patch_embed(hidden_states)
|
256
|
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
257
|
+
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
|
258
|
+
cu_window_seqlens = torch.tensor(
|
259
|
+
cu_window_seqlens,
|
260
|
+
dtype=torch.int32,
|
261
|
+
)
|
262
|
+
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
|
263
|
+
|
264
|
+
seq_len, _ = hidden_states.size()
|
265
|
+
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
266
|
+
hidden_states = hidden_states[window_index, :, :]
|
267
|
+
hidden_states = hidden_states.reshape(seq_len, -1)
|
268
|
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
269
|
+
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
|
270
|
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
|
271
|
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
272
|
+
position_embeddings = (emb.cos(), emb.sin())
|
273
|
+
|
274
|
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
275
|
+
dim=0,
|
276
|
+
dtype=torch.int32,
|
277
|
+
)
|
278
|
+
cu_seqlens = torch.nn.functional.pad(cu_seqlens, (1, 0), value=0)
|
279
|
+
|
280
|
+
num_images = len(cu_seqlens) - 1
|
281
|
+
cu_window_seqlens = cu_window_seqlens.tolist()
|
282
|
+
window_seq_len = (self.window_size // self.patch_size) ** 2
|
283
|
+
|
284
|
+
output_hidden_states = []
|
285
|
+
|
286
|
+
# Process each image in the sequence
|
287
|
+
for i in range(num_images):
|
288
|
+
image_s, image_e = cu_seqlens[i], cu_seqlens[i + 1]
|
289
|
+
window_indice = cu_window_seqlens[cu_window_seqlens.index(image_s) : cu_window_seqlens.index(image_e) + 1]
|
290
|
+
|
291
|
+
# Select the nearest higher max_seq_len from the available compiled models.
|
292
|
+
window_padded_len = len(window_indice) * window_seq_len
|
293
|
+
try:
|
294
|
+
ws_index = torch.searchsorted(self.max_seq_lens, window_padded_len).item()
|
295
|
+
max_seq_len = self.max_seq_lens[ws_index]
|
296
|
+
except Exception:
|
297
|
+
raise ValueError(
|
298
|
+
f"Required seq_len({window_padded_len}) is larger than available max_seq_lens({self.max_seq_lens.tolist()})."
|
299
|
+
)
|
300
|
+
|
301
|
+
# Padding for Window Attention Layers
|
302
|
+
hidden_state_padded, cos_padded, sin_padded, window_attn_masks, window_valid_lengths = (
|
303
|
+
self._pad_for_window_attn_layers(
|
304
|
+
window_indice, hidden_states, position_embeddings, window_seq_len, max_seq_len
|
305
|
+
)
|
306
|
+
)
|
307
|
+
|
308
|
+
# Padding for Full Attention Layers
|
309
|
+
hidden_state_full_padded, cos_full_padded, sin_full_padded, full_attn_masks = (
|
310
|
+
self._pad_for_full_attn_layers(
|
311
|
+
hidden_state_padded, cos_padded, sin_padded, max_seq_len, window_valid_lengths, window_seq_len
|
312
|
+
)
|
313
|
+
)
|
314
|
+
|
315
|
+
# RBLN run with the compiled model
|
316
|
+
output = self.transformer(
|
317
|
+
hidden_state_full_padded,
|
318
|
+
full_attn_masks,
|
319
|
+
window_attn_masks,
|
320
|
+
cos_full_padded[None, None, :, :],
|
321
|
+
sin_full_padded[None, None, :, :],
|
322
|
+
)
|
323
|
+
|
324
|
+
# Depadding
|
325
|
+
depadded_output = []
|
326
|
+
for i, valid_len in enumerate(window_valid_lengths):
|
327
|
+
start = i * (window_seq_len // self.spatial_merge_unit)
|
328
|
+
end = start + (valid_len // self.spatial_merge_unit)
|
329
|
+
depadded_output.append(output[start:end])
|
330
|
+
output = torch.cat(depadded_output, dim=0)
|
331
|
+
|
332
|
+
output_hidden_states.append(output)
|
333
|
+
hidden_states = torch.cat(output_hidden_states)
|
334
|
+
reverse_indices = torch.argsort(window_index)
|
335
|
+
hidden_states = hidden_states[reverse_indices, :]
|
336
|
+
|
337
|
+
return hidden_states
|
338
|
+
|
339
|
+
|
340
|
+
class RBLNQwen2_5_VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
|
341
|
+
auto_model_class = AutoModelForVision2Seq
|
342
|
+
_rbln_submodules = [
|
343
|
+
{"name": "visual"},
|
344
|
+
]
|
345
|
+
_decoder_wrapper_cls = Qwen2_5_VL_LanguageModelWrapper
|
346
|
+
_use_rotary_emb = False
|
347
|
+
|
348
|
+
def __post_init__(self, **kwargs):
|
349
|
+
super().__post_init__(**kwargs)
|
350
|
+
self.visual = self.rbln_submodules[0]
|
351
|
+
self.mrope_section = self.config.rope_scaling["mrope_section"]
|
352
|
+
self.rotary_emb = Qwen2_5_VLRotaryEmbedding(self.config)
|
353
|
+
self.rope_deltas = torch.zeros(self.rbln_config.batch_size)
|
354
|
+
|
355
|
+
def can_generate(self):
|
356
|
+
return True
|
357
|
+
|
358
|
+
@classmethod
|
359
|
+
def update_kwargs(cls, kwargs):
|
360
|
+
kwargs.update(
|
361
|
+
{
|
362
|
+
"_attn_implementation": "eager",
|
363
|
+
}
|
364
|
+
)
|
365
|
+
return super().update_kwargs(kwargs)
|
366
|
+
|
367
|
+
@classmethod
|
368
|
+
def get_input_info(
|
369
|
+
cls,
|
370
|
+
batch_size: int,
|
371
|
+
query_length: int,
|
372
|
+
use_inputs_embeds: bool,
|
373
|
+
use_attention_mask: bool,
|
374
|
+
max_seq_len: int,
|
375
|
+
kvcache_block_size: int,
|
376
|
+
kvcache_num_blocks: int,
|
377
|
+
num_key_value_heads: int,
|
378
|
+
num_hidden_layers: int,
|
379
|
+
hidden_size: int,
|
380
|
+
head_dim: int,
|
381
|
+
):
|
382
|
+
input_info = super().get_input_info(
|
383
|
+
batch_size,
|
384
|
+
query_length,
|
385
|
+
use_inputs_embeds,
|
386
|
+
use_attention_mask,
|
387
|
+
max_seq_len,
|
388
|
+
kvcache_block_size,
|
389
|
+
kvcache_num_blocks,
|
390
|
+
num_key_value_heads,
|
391
|
+
num_hidden_layers,
|
392
|
+
hidden_size,
|
393
|
+
head_dim,
|
394
|
+
)
|
395
|
+
pos_idx = 5 if query_length > 1 else 4
|
396
|
+
pos_idx = pos_idx if use_attention_mask else pos_idx - 1
|
397
|
+
input_info.insert(pos_idx, ("position_emb", [2, batch_size, 1, query_length, head_dim], "float32"))
|
398
|
+
|
399
|
+
return input_info
|
400
|
+
|
401
|
+
def prepare_inputs_for_generation(
|
402
|
+
self,
|
403
|
+
input_ids: torch.LongTensor,
|
404
|
+
generate_idx: Optional[torch.Tensor] = None,
|
405
|
+
attention_mask: Optional[torch.LongTensor] = None,
|
406
|
+
inputs_embeds: Optional[torch.Tensor] = None,
|
407
|
+
pixel_values=None,
|
408
|
+
pixel_values_videos=None,
|
409
|
+
image_grid_thw=None,
|
410
|
+
video_grid_thw=None,
|
411
|
+
second_per_grid_ts=None,
|
412
|
+
**kwargs,
|
413
|
+
):
|
414
|
+
model_inputs = {}
|
415
|
+
is_prefill_phase = generate_idx is None
|
416
|
+
|
417
|
+
if is_prefill_phase:
|
418
|
+
generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
|
419
|
+
cache_position = None
|
420
|
+
model_inputs.update({"input_ids": input_ids})
|
421
|
+
else:
|
422
|
+
if inputs_embeds is not None:
|
423
|
+
raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
|
424
|
+
|
425
|
+
input_ids = input_ids[:, -1:]
|
426
|
+
cache_position = generate_idx
|
427
|
+
generate_idx = generate_idx + 1
|
428
|
+
model_inputs.update({"input_ids": input_ids})
|
429
|
+
|
430
|
+
model_inputs.update(
|
431
|
+
{
|
432
|
+
"attention_mask": attention_mask,
|
433
|
+
"cache_position": cache_position,
|
434
|
+
"generate_idx": generate_idx,
|
435
|
+
"pixel_values": pixel_values,
|
436
|
+
"pixel_values_videos": pixel_values_videos,
|
437
|
+
"image_grid_thw": image_grid_thw,
|
438
|
+
"video_grid_thw": video_grid_thw,
|
439
|
+
"second_per_grid_ts": second_per_grid_ts,
|
440
|
+
}
|
441
|
+
)
|
442
|
+
|
443
|
+
return model_inputs
|
444
|
+
|
445
|
+
def _get_position_embeddings(self, hidden_states, position_ids):
|
446
|
+
cos, sin = self.rotary_emb(hidden_states, position_ids)
|
447
|
+
mrope_section = self.mrope_section * 2
|
448
|
+
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
|
449
|
+
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
|
450
|
+
return torch.stack([cos, sin])
|
451
|
+
|
452
|
+
def _preprocess_prefill(
|
453
|
+
self,
|
454
|
+
input_ids: torch.LongTensor = None,
|
455
|
+
attention_mask: torch.Tensor = None,
|
456
|
+
pixel_values: torch.Tensor = None,
|
457
|
+
pixel_values_videos: torch.FloatTensor = None,
|
458
|
+
image_grid_thw: torch.LongTensor = None,
|
459
|
+
video_grid_thw: torch.LongTensor = None,
|
460
|
+
second_per_grid_ts: torch.Tensor = None,
|
461
|
+
):
|
462
|
+
batch_size = input_ids.shape[0]
|
463
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
464
|
+
|
465
|
+
if pixel_values is not None:
|
466
|
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
467
|
+
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
468
|
+
n_image_features = image_embeds.shape[0]
|
469
|
+
if n_image_tokens != n_image_features:
|
470
|
+
raise ValueError(
|
471
|
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
472
|
+
)
|
473
|
+
|
474
|
+
mask = input_ids == self.config.image_token_id
|
475
|
+
mask_unsqueezed = mask.unsqueeze(-1)
|
476
|
+
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
|
477
|
+
|
478
|
+
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
479
|
+
inputs_embeds = inputs_embeds.masked_scatter(mask_expanded, image_embeds)
|
480
|
+
|
481
|
+
if pixel_values_videos is not None:
|
482
|
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
483
|
+
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
484
|
+
n_video_features = video_embeds.shape[0]
|
485
|
+
if n_video_tokens != n_video_features:
|
486
|
+
raise ValueError(
|
487
|
+
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
488
|
+
)
|
489
|
+
|
490
|
+
mask = input_ids == self.config.video_token_id
|
491
|
+
mask_unsqueezed = mask.unsqueeze(-1)
|
492
|
+
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
|
493
|
+
inputs_embeds = inputs_embeds.masked_scatter(mask_expanded, video_embeds)
|
494
|
+
|
495
|
+
max_inputs_len = input_ids.shape[1]
|
496
|
+
|
497
|
+
head_dim = getattr(self.config, "head_dim", None) or self.config.hidden_size // self.config.num_attention_heads
|
498
|
+
all_position_embeds = torch.zeros(2, batch_size, 1, max_inputs_len, head_dim)
|
499
|
+
all_rope_deltas = []
|
500
|
+
|
501
|
+
image_token_id = self.config.image_token_id
|
502
|
+
video_token_id = self.config.video_token_id
|
503
|
+
vision_start_token_id = self.config.vision_start_token_id
|
504
|
+
image_idx, video_idx = 0, 0
|
505
|
+
|
506
|
+
for b_idx in range(batch_size):
|
507
|
+
input_id = input_ids[b_idx : b_idx + 1][:, attention_mask[b_idx].bool()]
|
508
|
+
vision_start_indices = torch.argwhere(input_id == vision_start_token_id).squeeze(1)
|
509
|
+
vision_tokens = input_id[0][vision_start_indices + 1]
|
510
|
+
image_nums = (vision_tokens == image_token_id).sum()
|
511
|
+
video_nums = (vision_tokens == video_token_id).sum()
|
512
|
+
position_ids, rope_deltas = self.get_rope_index(
|
513
|
+
input_id,
|
514
|
+
image_grid_thw[image_idx : image_idx + image_nums] if image_grid_thw is not None else None,
|
515
|
+
video_grid_thw[video_idx : video_idx + video_nums] if video_grid_thw is not None else None,
|
516
|
+
second_per_grid_ts[video_idx : video_idx + video_nums] if second_per_grid_ts is not None else None,
|
517
|
+
)
|
518
|
+
image_idx += image_nums
|
519
|
+
video_idx += video_nums
|
520
|
+
|
521
|
+
position_embed = self._get_position_embeddings(inputs_embeds, position_ids)
|
522
|
+
mask_indices = torch.nonzero(attention_mask[b_idx], as_tuple=True)[0]
|
523
|
+
all_position_embeds[:, b_idx : b_idx + 1].index_copy_(dim=-2, index=mask_indices, source=position_embed)
|
524
|
+
all_rope_deltas.append(rope_deltas)
|
525
|
+
|
526
|
+
rope_deltas = torch.stack(all_rope_deltas)
|
527
|
+
|
528
|
+
return inputs_embeds, all_position_embeds, rope_deltas
|
529
|
+
|
530
|
+
def _preprocess_decoder(
|
531
|
+
self,
|
532
|
+
input_ids: torch.LongTensor = None,
|
533
|
+
cache_position: torch.LongTensor = None,
|
534
|
+
):
|
535
|
+
if self.rbln_config.batch_size != cache_position.shape[0]:
|
536
|
+
raise RuntimeError(
|
537
|
+
f"Cache position size mismatch: got {cache_position.shape[0]}, expected {self.rbln_config.batch_size}."
|
538
|
+
)
|
539
|
+
|
540
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
541
|
+
position_embeds = []
|
542
|
+
for b_idx in range(self.rbln_config.batch_size):
|
543
|
+
delta = cache_position[b_idx] + self.rope_deltas[b_idx]
|
544
|
+
position_ids = torch.arange(1).view(1, -1)
|
545
|
+
position_ids = position_ids.add(delta)
|
546
|
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
547
|
+
position_embed = self._get_position_embeddings(torch.zeros(1, dtype=torch.float32), position_ids)
|
548
|
+
position_embeds.append(position_embed)
|
549
|
+
|
550
|
+
position_embeds = torch.cat(position_embeds, dim=1)
|
551
|
+
|
552
|
+
return inputs_embeds, position_embeds
|
553
|
+
|
554
|
+
def forward(
|
555
|
+
self,
|
556
|
+
input_ids: Optional[torch.LongTensor] = None,
|
557
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
558
|
+
attention_mask: Optional[torch.Tensor] = None,
|
559
|
+
pixel_values: Optional[torch.Tensor] = None,
|
560
|
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
561
|
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
562
|
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
563
|
+
cache_position: Optional[torch.LongTensor] = None,
|
564
|
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
565
|
+
generate_idx: torch.Tensor = None,
|
566
|
+
**kwargs,
|
567
|
+
) -> RBLNDecoderOnlyOutput:
|
568
|
+
# Prefill
|
569
|
+
if cache_position is None:
|
570
|
+
inputs_embeds, position_embed, rope_deltas = self._preprocess_prefill(
|
571
|
+
input_ids,
|
572
|
+
attention_mask,
|
573
|
+
pixel_values,
|
574
|
+
pixel_values_videos,
|
575
|
+
image_grid_thw,
|
576
|
+
video_grid_thw,
|
577
|
+
second_per_grid_ts,
|
578
|
+
)
|
579
|
+
|
580
|
+
self.rope_deltas = rope_deltas
|
581
|
+
batch_size = inputs_embeds.shape[0]
|
582
|
+
|
583
|
+
logits = []
|
584
|
+
for b_idx in range(batch_size):
|
585
|
+
cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
|
586
|
+
|
587
|
+
logit = self.prefill_decoder(
|
588
|
+
inputs_embeds=inputs_embeds[b_idx : b_idx + 1],
|
589
|
+
attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
|
590
|
+
cache_position=cache_position,
|
591
|
+
batch_idx=b_idx,
|
592
|
+
position_embed=position_embed[:, b_idx : b_idx + 1],
|
593
|
+
)
|
594
|
+
logits.append(logit)
|
595
|
+
logits = torch.cat(logits, dim=0)
|
596
|
+
# Decoder
|
597
|
+
else:
|
598
|
+
inputs_embeds, position_embed = self._preprocess_decoder(input_ids, cache_position)
|
599
|
+
logits = self.decoder(
|
600
|
+
inputs_embeds=inputs_embeds,
|
601
|
+
cache_position=cache_position,
|
602
|
+
position_embed=position_embed,
|
603
|
+
)
|
604
|
+
|
605
|
+
return RBLNDecoderOnlyOutput(
|
606
|
+
logits=logits,
|
607
|
+
generate_idx=generate_idx,
|
608
|
+
)
|