optimum-rbln 0.7.4a2__py3-none-any.whl → 0.7.4a4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. optimum/rbln/__version__.py +1 -1
  2. optimum/rbln/modeling.py +8 -1
  3. optimum/rbln/modeling_base.py +0 -5
  4. optimum/rbln/ops/__init__.py +3 -7
  5. optimum/rbln/ops/attn.py +271 -207
  6. optimum/rbln/ops/flash_attn.py +161 -67
  7. optimum/rbln/ops/kv_cache_update.py +4 -40
  8. optimum/rbln/transformers/models/bart/__init__.py +1 -0
  9. optimum/rbln/transformers/models/decoderonly/__init__.py +10 -0
  10. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +80 -94
  11. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +17 -13
  12. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +12 -21
  13. optimum/rbln/transformers/models/t5/__init__.py +1 -0
  14. optimum/rbln/transformers/models/t5/modeling_t5.py +3 -37
  15. optimum/rbln/transformers/models/t5/t5_architecture.py +3 -4
  16. optimum/rbln/transformers/models/time_series_transformers/__init__.py +1 -0
  17. optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py +12 -22
  18. optimum/rbln/transformers/models/whisper/__init__.py +1 -0
  19. optimum/rbln/transformers/models/whisper/modeling_whisper.py +0 -1
  20. optimum/rbln/transformers/models/whisper/whisper_architecture.py +20 -32
  21. {optimum_rbln-0.7.4a2.dist-info → optimum_rbln-0.7.4a4.dist-info}/METADATA +1 -1
  22. {optimum_rbln-0.7.4a2.dist-info → optimum_rbln-0.7.4a4.dist-info}/RECORD +24 -24
  23. {optimum_rbln-0.7.4a2.dist-info → optimum_rbln-0.7.4a4.dist-info}/WHEEL +0 -0
  24. {optimum_rbln-0.7.4a2.dist-info → optimum_rbln-0.7.4a4.dist-info}/licenses/LICENSE +0 -0
@@ -12,4 +12,5 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
+ from ....ops import paged_add_softmax_attn_decode
15
16
  from .modeling_t5 import RBLNT5EncoderModel, RBLNT5ForConditionalGeneration
@@ -36,50 +36,19 @@ from .t5_architecture import T5Wrapper
36
36
  logger = get_logger()
37
37
 
38
38
  if TYPE_CHECKING:
39
- from rebel import Runtime
40
39
  from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PreTrainedModel
41
40
 
42
41
 
43
42
  class RBLNRuntimeModel(RBLNPytorchRuntime):
44
- def __init__(
45
- self,
46
- runtime: "Runtime",
47
- max_seq_len: int,
48
- **kwargs: Any,
49
- ) -> None:
50
- super().__init__(runtime, **kwargs)
51
- self.max_seq_len = max_seq_len
52
-
53
- def _prepare_inputs(
54
- self,
55
- input_ids: torch.LongTensor,
56
- attention_mask: torch.LongTensor,
57
- ):
58
- input_len = input_ids.shape[-1]
59
- pad_len = None
60
- if input_len > self.max_seq_len:
61
- raise ValueError(f"Error input_len({input_len}) exceed max_seq_len({self.max_seq_len}).")
62
- elif input_len < self.max_seq_len and input_len > 0:
63
- pad_len = self.max_seq_len - input_len
64
- logger.warning(
65
- f"Warning: The input was padded with {pad_len} tokens to meet the compiled model's requirements. "
66
- "For optimal performance, consider recompiling with a shorter 'rbln_max_seq_len'."
67
- )
68
- input_ids = torch.nn.functional.pad(input_ids, (0, pad_len))
69
- attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_len), value=0)
70
-
71
- return input_ids, attention_mask, pad_len
72
-
73
43
  def forward(
74
44
  self,
75
45
  input_ids: torch.LongTensor,
76
- attention_mask: torch.LongTensor,
46
+ attention_mask: torch.FloatTensor,
77
47
  head_mask: torch.FloatTensor,
78
48
  inputs_embeds: torch.FloatTensor,
79
49
  **kwargs,
80
50
  ):
81
- input_ids, attention_mask, pad_len = self._prepare_inputs(input_ids, attention_mask)
82
- logits = super().forward(
51
+ return super().forward(
83
52
  input_ids,
84
53
  attention_mask,
85
54
  head_mask,
@@ -87,8 +56,6 @@ class RBLNRuntimeModel(RBLNPytorchRuntime):
87
56
  **kwargs,
88
57
  )
89
58
 
90
- return logits[:, :-pad_len, :] if pad_len is not None else logits
91
-
92
59
 
93
60
  class T5EncoderWrapper(torch.nn.Module):
94
61
  def __init__(self, model: "T5EncoderModel") -> None:
@@ -105,8 +72,7 @@ class RBLNT5EncoderModel(RBLNModel):
105
72
  rbln_model_input_names = ["input_ids", "attention_mask"]
106
73
 
107
74
  def __post_init__(self, **kwargs):
108
- max_seq_len = self.rbln_config.model_cfg["max_seq_len"]
109
- self.model = RBLNRuntimeModel(runtime=self.model[0], max_seq_len=max_seq_len)
75
+ self.model = RBLNRuntimeModel(runtime=self.model[0])
110
76
 
111
77
  @classmethod
112
78
  def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
@@ -18,7 +18,6 @@ import torch
18
18
  from torch import nn
19
19
  from transformers.utils import logging
20
20
 
21
- from ....ops import register_rbln_custom_paged_add_softmax_attention
22
21
  from ..seq2seq.seq2seq_architecture import (
23
22
  Seq2SeqDecoder,
24
23
  Seq2SeqDecoderLayer,
@@ -55,7 +54,6 @@ class T5EncoderWrapper(Seq2SeqEncoderWrapper):
55
54
 
56
55
  class T5DecoderWrapper(Seq2SeqDecoderWrapper):
57
56
  def __post_init__(self, model, dec_max_seq_len: int = None):
58
- register_rbln_custom_paged_add_softmax_attention()
59
57
  self.num_layers = self.config.num_layers
60
58
  self.conditional_generation = self.convert_to_rbln_conditional_generation(model, dec_max_seq_len)
61
59
 
@@ -78,11 +76,12 @@ class T5DecoderWrapper(Seq2SeqDecoderWrapper):
78
76
  encoder_attention_mask,
79
77
  cache_position,
80
78
  block_tables,
81
- cross_kv_cache,
82
- *self_kv_cache,
79
+ *kv_cache,
83
80
  ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor]]:
84
81
  self_past_key_values = ()
85
82
  cross_past_key_values = ()
83
+ self_kv_cache = kv_cache[self.num_layers * 2 :]
84
+ cross_kv_cache = kv_cache[: self.num_layers * 2]
86
85
 
87
86
  for i in range(0, self.num_layers * 2, 2):
88
87
  self_past_key_values = self_past_key_values + ((self_kv_cache[i], self_kv_cache[i + 1]),)
@@ -21,4 +21,5 @@
21
21
  # copied, modified, or distributed without prior written permission
22
22
  # from Rebellions Inc.
23
23
 
24
+ from ....ops import paged_add_softmax_attn_decode, rbln_cache_update
24
25
  from .modeling_time_series_transformers import RBLNTimeSeriesTransformerForPrediction
@@ -25,25 +25,16 @@ from typing import Optional, Tuple, Union
25
25
 
26
26
  import torch
27
27
  from torch import nn
28
- from transformers.modeling_attn_mask_utils import (
29
- _prepare_4d_causal_attention_mask,
30
- )
31
- from transformers.modeling_outputs import (
32
- BaseModelOutput,
33
- Seq2SeqLMOutput,
34
- )
28
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
29
+ from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
35
30
  from transformers.utils import logging
36
31
 
37
- from ....ops import register_rbln_custom_cache_update, register_rbln_custom_paged_add_softmax_attention
38
-
39
32
 
40
33
  logger = logging.get_logger(__name__)
41
34
 
42
35
 
43
36
  class TimeSeriesTransformersWrapper:
44
37
  def __init__(self, model, num_parallel_samples):
45
- register_rbln_custom_cache_update()
46
- register_rbln_custom_paged_add_softmax_attention()
47
38
  self.encoder = TimeSeriesTransformersEncoderWrapper(model)
48
39
  self.decoder = TimeSeriesTransformersDecoderWrapper(model, num_parallel_samples)
49
40
 
@@ -181,7 +172,6 @@ class TimeSeriesTransformersDecoder(nn.Module):
181
172
  hidden_states = decoder_layer(
182
173
  hidden_states,
183
174
  attention_mask=attention_mask,
184
- # encoder_attention_mask=encoder_attention_mask,
185
175
  self_past_key_value=self_past_key_value,
186
176
  cross_past_key_value=cross_past_key_value,
187
177
  cache_position=cache_position,
@@ -285,16 +275,16 @@ class TimeSeriesTransformersSelfAttention(TimeSeriesTransformersAttention):
285
275
 
286
276
  block_size = past_key_value[0].shape[-2]
287
277
  attn_output = torch.ops.rbln_custom_ops.paged_add_softmax_attn_decode(
288
- query_states,
289
- key_states,
290
- value_states,
291
- attention_mask.unsqueeze(2),
292
- past_key_value[0].view(1, bsz * self.num_heads, 1, -1, self.head_dim),
293
- past_key_value[1].view(1, bsz * self.num_heads, 1, -1, self.head_dim),
294
- cache_position.expand(bsz, 1),
295
- torch.tensor(1.0, dtype=torch.float32), # scale
296
- block_tables,
297
- block_size,
278
+ q=query_states,
279
+ k=key_states,
280
+ v=value_states,
281
+ mask=attention_mask.unsqueeze(2),
282
+ kcache=past_key_value[0].view(1, bsz * self.num_heads, 1, -1, self.head_dim),
283
+ vcache=past_key_value[1].view(1, bsz * self.num_heads, 1, -1, self.head_dim),
284
+ seq=cache_position.expand(bsz, 1),
285
+ scale=torch.tensor(1.0, dtype=torch.float32), # scale
286
+ block_table=block_tables,
287
+ block_size=block_size,
298
288
  )
299
289
 
300
290
  attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
@@ -12,4 +12,5 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
+ from ....ops import paged_add_softmax_attn_decode
15
16
  from .modeling_whisper import RBLNWhisperForConditionalGeneration
@@ -140,7 +140,6 @@ class RBLNWhisperForConditionalGeneration(RBLNModel, RBLNWhisperGenerationMixin)
140
140
  # input_stride = self.model.encoder.conv1.stride[0] * self.model.encoder.conv2.stride[0]
141
141
  self.model = WhisperModel(self.config)
142
142
  self.pad_token_id = self.config.pad_token_id
143
- self.generation_config.forced_decoder_ids = None
144
143
 
145
144
  def can_generate(self):
146
145
  return True
@@ -16,25 +16,15 @@ from typing import Optional, Tuple, Union
16
16
 
17
17
  import torch
18
18
  from torch import nn
19
- from transformers.modeling_outputs import (
20
- BaseModelOutput,
21
- Seq2SeqLMOutput,
22
- )
19
+ from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
23
20
  from transformers.utils import logging
24
21
 
25
- from ....ops import (
26
- register_rbln_custom_cache_update,
27
- register_rbln_custom_paged_attention,
28
- register_rbln_custom_paged_causal_attention,
29
- )
30
-
31
22
 
32
23
  logger = logging.get_logger(__name__)
33
24
 
34
25
 
35
26
  class WhisperWrapper:
36
27
  def __init__(self, model, use_attention_mask, rbln_token_timestamps):
37
- register_rbln_custom_cache_update()
38
28
  self.encoder = WhisperEncoderWrapper(model)
39
29
  self.decoder = WhisperDecoderWrapper(
40
30
  model, use_attention_mask=use_attention_mask, output_attentions=rbln_token_timestamps
@@ -80,9 +70,11 @@ class WhisperEncoderWrapper(torch.nn.Module):
80
70
 
81
71
  # 3. update cross_attention's past_key_value to the device-dram for optimization.
82
72
  batch_axis = torch.tensor(1, dtype=torch.int16)
83
- enc_output = torch.ops.rbln_custom_ops.rbln_cache_update(cross_key_values, cross_kv, b_idx[0], batch_axis)
73
+ cross_key_values = torch.ops.rbln_custom_ops.rbln_cache_update(
74
+ cross_key_values, cross_kv, b_idx[0], batch_axis
75
+ )
84
76
 
85
- return enc_output
77
+ return cross_key_values
86
78
 
87
79
 
88
80
  class WhisperDecoderWrapper(torch.nn.Module):
@@ -100,11 +92,6 @@ class WhisperDecoderWrapper(torch.nn.Module):
100
92
  It is inspired by the BART architecture, but it is designed to be flexible and can be overridden
101
93
  by subclasses to modify or add custom attributes as necessary.
102
94
  """
103
- if self.use_attention_mask:
104
- register_rbln_custom_paged_attention()
105
- else:
106
- register_rbln_custom_paged_causal_attention()
107
-
108
95
  self.num_layers = self.config.decoder_layers
109
96
  self.decoder = self.convert_to_rbln_conditional_generation(model)
110
97
 
@@ -310,22 +297,23 @@ class WhisperSelfAttention(WhisperAttention):
310
297
  value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
311
298
  block_size = past_key_value[0].shape[-2]
312
299
 
313
- args = [
314
- query_states,
315
- key_states,
316
- value_states,
317
- past_key_value[0].view(bsz, self.num_heads, 1, -1, self.head_dim),
318
- past_key_value[1].view(bsz, self.num_heads, 1, -1, self.head_dim),
319
- cache_position,
320
- torch.tensor(1.0, dtype=torch.float32), # scale
321
- block_tables,
322
- block_size,
323
- ]
300
+ args = {
301
+ "q": query_states,
302
+ "k": key_states,
303
+ "v": value_states,
304
+ "kcache": past_key_value[0].view(bsz, self.num_heads, 1, -1, self.head_dim),
305
+ "vcache": past_key_value[1].view(bsz, self.num_heads, 1, -1, self.head_dim),
306
+ "seq": cache_position.expand(bsz, 1),
307
+ "scale": torch.tensor(1.0, dtype=torch.float32),
308
+ "block_table": block_tables,
309
+ "block_size": block_size,
310
+ }
311
+
324
312
  if attention_mask is not None:
325
- args.insert(3, attention_mask.unsqueeze(2))
326
- attn_output = torch.ops.rbln_custom_ops.paged_attn_decode(*args)
313
+ args["mask"] = attention_mask.unsqueeze(2)
314
+ attn_output = torch.ops.rbln_custom_ops.paged_attn_decode(**args)
327
315
  else:
328
- attn_output = torch.ops.rbln_custom_ops.paged_causal_attn_decode(*args)
316
+ attn_output = torch.ops.rbln_custom_ops.paged_causal_attn_decode(**args)
329
317
 
330
318
  attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
331
319
  attn_output = attn_output.transpose(1, 2)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.7.4a2
3
+ Version: 0.7.4a4
4
4
  Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -1,7 +1,7 @@
1
1
  optimum/rbln/__init__.py,sha256=qW45z47BiNLTDtRFEhVEzr4THNFX0ygqCbdNKqI0biI,6992
2
- optimum/rbln/__version__.py,sha256=7nOn__ePBcQxiENj-KnOIjfCYYWSP4QlkMW59HLjtRs,513
3
- optimum/rbln/modeling.py,sha256=nJsAs5zs--VVOYGFjYNpqfxYIemJIK4Lr0WEzlDLdP0,8390
4
- optimum/rbln/modeling_base.py,sha256=dNCL-BhrWCpuOVkZaj8-MW567Tf4lLo3p3Z3ldjWJfU,21779
2
+ optimum/rbln/__version__.py,sha256=d6hw8hJyAPi7Z3yrW8lAIxLNilvYyOIhPO-OPRYoduA,513
3
+ optimum/rbln/modeling.py,sha256=0Hh75PVNDchAx9xd5dDSwrhV9PkT1lDuiJy-Wm2hchA,8797
4
+ optimum/rbln/modeling_base.py,sha256=FA5K6z4K3aFQ4UyMfYEGF6doDlTig82JfcSSGHNak2U,21560
5
5
  optimum/rbln/modeling_config.py,sha256=7104bxmrvKW4Q6XTruQayiIGl8GHDFmPkJ3cknMIInE,11335
6
6
  optimum/rbln/diffusers/__init__.py,sha256=Hq87CbtiCy85YmK2SB-OmUyfv77oe3j4bsTenTRnu6w,3623
7
7
  optimum/rbln/diffusers/modeling_diffusers.py,sha256=IS6Mlgexofap7f9Lefk5cKFP7ejSG_oWN3v2PX9_IDQ,20118
@@ -41,10 +41,10 @@ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=9iIMZYvp
41
41
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=OvB5bxX6HUiqJeIc3uukuEmUXYEx1pTqGNOtdG2l1m8,902
42
42
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=3aB1Rw-OgKytQOHwOaShbEvq_XVHPOGvsGm8pstEmKU,930
43
43
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py,sha256=MzVP1wscaO1sUIiBIPJqG6zuGyez9VUbA42-JSIm-mk,930
44
- optimum/rbln/ops/__init__.py,sha256=LmTIX9yTfRiMDcalmb52yz5LhLRWqq3H5S94r0VDYDw,974
45
- optimum/rbln/ops/attn.py,sha256=OSgPoEgCwvR7HdjbnaVkFVMBcJ5RpRWcE6OCg2lVyGk,10634
46
- optimum/rbln/ops/flash_attn.py,sha256=wfyiCxDGf034IngzwRU160R7_DlKYpd-uWT0BDEGFks,3408
47
- optimum/rbln/ops/kv_cache_update.py,sha256=pxf8kAptPaQF5xE8qItvmlFOq_sgim6ZERD7AVaOtec,3221
44
+ optimum/rbln/ops/__init__.py,sha256=rSz6mfC0aGbNYjMaNSsOZSPYxPRenW8DWbNpAkjTfAc,703
45
+ optimum/rbln/ops/attn.py,sha256=x02yFLk7FcONFqfow0ROmVy9fmxo5Pw0SPCiDY3AZNg,9012
46
+ optimum/rbln/ops/flash_attn.py,sha256=NmCqUdMTzgJ4sbYGj8IWXJEsLWvbuCMponR01w5DK6w,4121
47
+ optimum/rbln/ops/kv_cache_update.py,sha256=HjnHBR-oFrJQibsVnkYb0P5_-wEma8jl0mkjkylwakU,1270
48
48
  optimum/rbln/ops/linear.py,sha256=1_7Hg-9wXxhu97fqPobotLQx17k7VPeSSL91_9Z7EDg,1018
49
49
  optimum/rbln/transformers/__init__.py,sha256=rW2wEgNpkcBwrrib2tui5sEpw04s1YUDHB50m2L7Os8,4353
50
50
  optimum/rbln/transformers/modeling_alias.py,sha256=yx7FnZQWAnrWzivaO5hI7T6i-fyLzt2tMIXG2oDNbPo,1657
@@ -54,15 +54,15 @@ optimum/rbln/transformers/models/__init__.py,sha256=Qyt9E61FDpnyAXTmRKDbv7CTtn-m
54
54
  optimum/rbln/transformers/models/auto/__init__.py,sha256=GvGbb3ZpMv-h6euXeZ42jSizoOfrL2O1uvpAnfKxYEo,1034
55
55
  optimum/rbln/transformers/models/auto/auto_factory.py,sha256=IK9jFrJ3EEzYQa9_aKpcp2TO68M5YGkA-HcfBVpA2QU,7027
56
56
  optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Un9qoqdy3dO8JBza_bTJF_6_fRVNM9QisihSgTRFI-o,3933
57
- optimum/rbln/transformers/models/bart/__init__.py,sha256=32HPe0_GIO0hp9U464Iv6Jd7M-1nop9g8hA1UZMHhyw,674
57
+ optimum/rbln/transformers/models/bart/__init__.py,sha256=MqOlNX0QJvvLzTkTPd3SF-lq4PLeztXGfLHyJVMN6uU,738
58
58
  optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=Oo-Cdne7igKEex8wwP-gztKJHgs5GLHQjK1oc3IZIDE,5801
59
59
  optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=naFpsOSjNRG8s5QPjeAsYCk2oJCxnn0Au0aYnMKZOBY,5679
60
60
  optimum/rbln/transformers/models/bert/__init__.py,sha256=YVV7k_laU6yJBawZrgjIWjRmIF-Y4oQQHqyf8lsraQs,691
61
61
  optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=p3utRqf3dv9_RkHwaMCa1EfXttNJkqCJUIZo3CeZ9YY,4674
62
62
  optimum/rbln/transformers/models/clip/__init__.py,sha256=H9vuBwrmFO0-CqZhXUrKF-uQL6igCqMlqrT1X_ELaAI,754
63
63
  optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=NiSm7bHs4SReHDUr53BBWSX0Y8bkKOeUSpsBDrp8YDw,6628
64
- optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pDogsdpJKKB5rqnVFrRjwfhUvOSV-jZ3oARMsqSvOOQ,665
65
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=m93-qKN7NMw3i0XDmFmttmRIRK4np_fWtLFlBb2RFgU,41351
64
+ optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=vFJvOsmUuvxLkhZELb5JKok-I1Bh_xCn1vb3pjMw1Ug,929
65
+ optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=gIkXCtjbcUbd4KcB_MFoPdhXM4MdrZNeKXnxK5OrT4c,41255
66
66
  optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=qNnWSe3p2LDwNJ6utrilsqid-rQ8YLloqYkSOZamvhs,39918
67
67
  optimum/rbln/transformers/models/dpt/__init__.py,sha256=gP1tkR3XMNlHq1GT87ugIVvb2o_1eAUg1JaniXjy1Lw,651
68
68
  optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=ZsS2SOiqcA4azULB-WFEMQZbgIoOyVUKqVKqrw_tWzA,3430
@@ -93,20 +93,20 @@ optimum/rbln/transformers/models/qwen2/__init__.py,sha256=RAMWc21W_2I6DH9xBjeNxP
93
93
  optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=9-aFDvjMzPNUyGOz0qo33RE18bUFGYZ3Wt_68zb5uJY,1530
94
94
  optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
95
95
  optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=EmEMV4rOYqKyruX85d0fR73-b8N6BSD6CPcbpYdBuVk,651
96
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=XcZb57v42wju1qOJ1AKqmtJXcmz6MEWaJZ8jyzaEiTw,17701
97
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=tvzacIZam1sIr_1BvvZ_fDr8u5dXAiYiynFdX9tArtY,18877
98
- optimum/rbln/transformers/models/t5/__init__.py,sha256=1skR1RmnG62WTAP3-F5P1x-V_ReFhMyirH3u56vWwvc,675
99
- optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=Gyq5aAfkl4hBbLiR0114nDxLBs5P6YTw7hCnyuDyRrM,9494
100
- optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=Ups6drBbYe4wEAiBLcBIyO9wqrIQbvOPFR_ybbAgR8c,9722
101
- optimum/rbln/transformers/models/time_series_transformers/__init__.py,sha256=RL4SO8tKEd4wQrzyU4Nv4-hhITKPhblUsBd3anXNkA8,1079
96
+ optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=PQQ9dZyFToNGKYp1GeKXYHKaLuAVyeZwgdCfylmWY6Y,17837
97
+ optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=w5pMnWbJhgYmpl5NT_vJEzcb4RfEbHfalJ371IL3wp8,18685
98
+ optimum/rbln/transformers/models/t5/__init__.py,sha256=r6RJKPbbAoz_jCWC_yTyC9jBGYYze-vauPt1ahWax0E,725
99
+ optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=-fG-h0wwsfjZ3par0QHbXKA7hbvw_lPJOIf8iXQDOfM,8082
100
+ optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=YdFOr8LfBhEXuPsLZDfYjmUSI-a3Otrzye1bOf8NUyw,9678
101
+ optimum/rbln/transformers/models/time_series_transformers/__init__.py,sha256=KIeTMfC-8Q4-QdTdzAybVrpPf0nVI7AuGOGAxq8C59M,1148
102
102
  optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py,sha256=1Ippt0Rmt2TxJ5X4-4tlALQOkKmOfMaTrbOLWIUIKWw,16614
103
- optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py,sha256=ohoP4sAxyQZwrQ6euGfRx9w_pPWAh6KT9nKC8Y9taes,14006
103
+ optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py,sha256=XJDjQGbWXUq4ZimNojlcbm3mTDpxUMCl6tkFSzfYFl4,13769
104
104
  optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=YpgA0K-vyg9veh0eL_jxauosbRpb_kpGKHvvQLBspKM,649
105
105
  optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=JYJmV52j6cBwim4RanVJryfKnV80V96ol0A-oR6o7cg,3856
106
- optimum/rbln/transformers/models/whisper/__init__.py,sha256=ktnNe5ri3ycCWZ_W_voFB9y9-vgGgxS1X9s8LBRZmWc,665
106
+ optimum/rbln/transformers/models/whisper/__init__.py,sha256=Do4rVonghYiIa9zgHh4A0XtF-GQNy6UmCetO_KmIUuc,715
107
107
  optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=GIHTca3b1VtW81kp7BzKQ7f77c2t9OsEsbZetripgDo,4582
108
- optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=GegyAi3a8fF0psdYsffTQ1pC4KAUqE7WYLj4ZqObWXI,18184
109
- optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=DS9AQYhNkaR7sUz_loee-fFtCCYy1BUsx7_dX_o1Le8,14199
108
+ optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=HB7BF-SG_QIqeid-PN8Tn9qVTeiv897RUOyYzapa8zA,18127
109
+ optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=zEwfn8DDTbt2TN7lHKMZG9JXZc5WdW9Cp8mH4OVfo3s,13949
110
110
  optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=fC7iNcdxBZ_6eOF2snStmf8r2M3c8O_-XcXnQEaHQCE,653
111
111
  optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=8YNLz0bc5ze-QuU8rN-QhUfGzlSUs3iMJiWTxO3o6AM,4366
112
112
  optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -120,7 +120,7 @@ optimum/rbln/utils/model_utils.py,sha256=DfD_Z2qvZHqcddXqnzTM1AN8khanj3-DXK2lJvV
120
120
  optimum/rbln/utils/runtime_utils.py,sha256=5-DYniyP59nx-mrrbi7AqA77L85b4Cm5oLpaxidSyss,3699
121
121
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
122
122
  optimum/rbln/utils/submodule.py,sha256=oZoGrItB8WqY4i-K9WJPlLlcLohc1YGB9OHB8_XZw3A,4071
123
- optimum_rbln-0.7.4a2.dist-info/METADATA,sha256=Pl6SOVN73gxS7Po-R5hMdTI_2izOrjWqyb9FhaDnr-A,5300
124
- optimum_rbln-0.7.4a2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
125
- optimum_rbln-0.7.4a2.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
126
- optimum_rbln-0.7.4a2.dist-info/RECORD,,
123
+ optimum_rbln-0.7.4a4.dist-info/METADATA,sha256=rfxJZYj0d3KgHgaSfXvk3dV391X8kgWuAptjNfLZGvo,5300
124
+ optimum_rbln-0.7.4a4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
125
+ optimum_rbln-0.7.4a4.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
126
+ optimum_rbln-0.7.4a4.dist-info/RECORD,,