optimum-rbln 0.7.4a0__py3-none-any.whl → 0.7.4a2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +2 -0
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/ops/__init__.py +1 -0
- optimum/rbln/ops/linear.py +25 -0
- optimum/rbln/transformers/__init__.py +2 -0
- optimum/rbln/transformers/models/__init__.py +2 -0
- optimum/rbln/transformers/models/bart/modeling_bart.py +2 -3
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +59 -37
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +2 -2
- optimum/rbln/transformers/models/t5/modeling_t5.py +37 -3
- optimum/rbln/transformers/models/time_series_transformers/__init__.py +24 -0
- optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py +422 -0
- optimum/rbln/transformers/models/time_series_transformers/time_series_transformers_architecture.py +341 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +86 -47
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +62 -27
- {optimum_rbln-0.7.4a0.dist-info → optimum_rbln-0.7.4a2.dist-info}/METADATA +5 -5
- {optimum_rbln-0.7.4a0.dist-info → optimum_rbln-0.7.4a2.dist-info}/RECORD +19 -15
- {optimum_rbln-0.7.4a0.dist-info → optimum_rbln-0.7.4a2.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.7.4a0.dist-info → optimum_rbln-0.7.4a2.dist-info}/licenses/LICENSE +0 -0
optimum/rbln/transformers/models/time_series_transformers/modeling_time_series_transformers.py
ADDED
@@ -0,0 +1,422 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
import inspect
|
25
|
+
import logging
|
26
|
+
from dataclasses import dataclass
|
27
|
+
from pathlib import Path
|
28
|
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
29
|
+
|
30
|
+
import rebel
|
31
|
+
import torch
|
32
|
+
from rebel.compile_context import CompileContext
|
33
|
+
from transformers import (
|
34
|
+
PretrainedConfig,
|
35
|
+
TimeSeriesTransformerForPrediction,
|
36
|
+
TimeSeriesTransformerModel,
|
37
|
+
)
|
38
|
+
from transformers.modeling_outputs import ModelOutput, SampleTSPredictionOutput, Seq2SeqTSModelOutput
|
39
|
+
from transformers.modeling_utils import no_init_weights
|
40
|
+
|
41
|
+
from ....modeling import RBLNModel
|
42
|
+
from ....modeling_config import RBLNCompileConfig, RBLNConfig
|
43
|
+
from ....utils.runtime_utils import RBLNPytorchRuntime
|
44
|
+
from .time_series_transformers_architecture import TimeSeriesTransformersWrapper
|
45
|
+
|
46
|
+
|
47
|
+
logger = logging.getLogger(__name__)
|
48
|
+
|
49
|
+
if TYPE_CHECKING:
|
50
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig, PreTrainedModel
|
51
|
+
|
52
|
+
|
53
|
+
class RBLNRuntimeEncoder(RBLNPytorchRuntime):
|
54
|
+
mandatory_members = ["main_input_name"]
|
55
|
+
|
56
|
+
def __init__(
|
57
|
+
self,
|
58
|
+
runtime: rebel.Runtime,
|
59
|
+
model: TimeSeriesTransformerModel,
|
60
|
+
**kwargs: Any,
|
61
|
+
) -> None:
|
62
|
+
super().__init__(runtime, **kwargs)
|
63
|
+
self._origin_model = model
|
64
|
+
|
65
|
+
def forward(
|
66
|
+
self,
|
67
|
+
past_values: torch.Tensor,
|
68
|
+
past_time_features: torch.Tensor,
|
69
|
+
static_categorical_features: Optional[torch.Tensor] = None,
|
70
|
+
static_real_features: Optional[torch.Tensor] = None,
|
71
|
+
past_observed_mask: Optional[torch.Tensor] = None,
|
72
|
+
future_values: Optional[torch.Tensor] = None,
|
73
|
+
future_time_features: Optional[torch.Tensor] = None,
|
74
|
+
):
|
75
|
+
# preprocess
|
76
|
+
transformer_inputs, loc, scale, static_feat = self._origin_model.create_network_inputs(
|
77
|
+
past_values=past_values,
|
78
|
+
past_time_features=past_time_features,
|
79
|
+
past_observed_mask=past_observed_mask,
|
80
|
+
static_categorical_features=static_categorical_features,
|
81
|
+
static_real_features=static_real_features,
|
82
|
+
future_values=future_values,
|
83
|
+
future_time_features=future_time_features,
|
84
|
+
)
|
85
|
+
enc_input = transformer_inputs[:, : self._origin_model.config.context_length, ...]
|
86
|
+
|
87
|
+
# enc_attn_key_value_caches is updated to device dram in-place
|
88
|
+
_ = super().forward(inputs_embeds=enc_input)
|
89
|
+
|
90
|
+
return Seq2SeqTSModelOutput(
|
91
|
+
loc=loc,
|
92
|
+
scale=scale,
|
93
|
+
static_features=static_feat,
|
94
|
+
)
|
95
|
+
|
96
|
+
|
97
|
+
class RBLNRuntimeDecoder(RBLNPytorchRuntime):
|
98
|
+
mandatory_members = ["main_input_name"]
|
99
|
+
|
100
|
+
def forward(
|
101
|
+
self,
|
102
|
+
inputs_embeds: torch.Tensor = None,
|
103
|
+
attention_mask: torch.Tensor = None,
|
104
|
+
cache_position: torch.Tensor = None,
|
105
|
+
):
|
106
|
+
block_tables = torch.zeros(1, 1, dtype=torch.int16)
|
107
|
+
outputs = super().forward(inputs_embeds, attention_mask, cache_position, block_tables)
|
108
|
+
|
109
|
+
return RBLNSeq2SeqTSDecoderOutput(
|
110
|
+
params=outputs[:-1],
|
111
|
+
last_hidden_states=outputs[-1],
|
112
|
+
)
|
113
|
+
|
114
|
+
|
115
|
+
@dataclass
|
116
|
+
class RBLNSeq2SeqTSDecoderOutput(ModelOutput):
|
117
|
+
last_hidden_states: torch.FloatTensor = None
|
118
|
+
params: Tuple[torch.FloatTensor] = None
|
119
|
+
|
120
|
+
|
121
|
+
class RBLNTimeSeriesTransformerForPrediction(RBLNModel):
|
122
|
+
auto_model_class = None
|
123
|
+
main_input_name = "inputs_embeds"
|
124
|
+
|
125
|
+
def __post_init__(self, **kwargs):
|
126
|
+
super().__post_init__(**kwargs)
|
127
|
+
self.batch_size = self.rbln_config.model_cfg["batch_size"]
|
128
|
+
self.dec_max_seq_len = self.rbln_config.model_cfg["dec_max_seq_len"]
|
129
|
+
self.num_parallel_samples = self.rbln_config.model_cfg["num_parallel_samples"]
|
130
|
+
|
131
|
+
with no_init_weights():
|
132
|
+
self._origin_model = TimeSeriesTransformerForPrediction._from_config(self.config)
|
133
|
+
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
134
|
+
self._origin_model.model.embedder.load_state_dict(artifacts["embedder"])
|
135
|
+
self.encoder = RBLNRuntimeEncoder(
|
136
|
+
runtime=self.model[0],
|
137
|
+
main_input_name="inputs_embeds",
|
138
|
+
model=self._origin_model.model,
|
139
|
+
)
|
140
|
+
self.decoder = RBLNRuntimeDecoder(
|
141
|
+
runtime=self.model[1],
|
142
|
+
main_input_name="inputs_embeds",
|
143
|
+
)
|
144
|
+
|
145
|
+
def __getattr__(self, __name: str) -> Any:
|
146
|
+
"""This is the key method to implement RBLN-TimeSeriesTransformersForPrediction.
|
147
|
+
Returns:
|
148
|
+
Any: TimeSeriesTransformersForPrediction's corresponding method
|
149
|
+
"""
|
150
|
+
|
151
|
+
def redirect(func):
|
152
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
153
|
+
|
154
|
+
val = getattr(TimeSeriesTransformerForPrediction, __name)
|
155
|
+
if val is not None and isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
156
|
+
return redirect(val)
|
157
|
+
|
158
|
+
@classmethod
|
159
|
+
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
160
|
+
return TimeSeriesTransformersWrapper(model, rbln_config.model_cfg["num_parallel_samples"])
|
161
|
+
|
162
|
+
@classmethod
|
163
|
+
@torch.inference_mode()
|
164
|
+
def get_compiled_model(cls, model, rbln_config: RBLNConfig):
|
165
|
+
wrapped_model = cls.wrap_model_if_needed(model, rbln_config)
|
166
|
+
|
167
|
+
enc_compile_config = rbln_config.compile_cfgs[0]
|
168
|
+
dec_compile_config = rbln_config.compile_cfgs[1]
|
169
|
+
|
170
|
+
context = CompileContext(use_weight_sharing=False)
|
171
|
+
|
172
|
+
enc_example_inputs = enc_compile_config.get_dummy_inputs(fill=0)
|
173
|
+
|
174
|
+
# Mark encoder's static tensors (cross kv states)
|
175
|
+
static_tensors = {}
|
176
|
+
for (name, _, _), tensor in zip(enc_compile_config.input_info, enc_example_inputs):
|
177
|
+
if "key_value_states" in name:
|
178
|
+
static_tensors[name] = tensor
|
179
|
+
context.mark_static_address(tensor)
|
180
|
+
|
181
|
+
dec_example_inputs = dec_compile_config.get_dummy_inputs(fill=0, static_tensors=static_tensors)
|
182
|
+
|
183
|
+
# Mark decoder's static tensors (self kv states)
|
184
|
+
for (name, _, _), tensor in zip(dec_compile_config.input_info, dec_example_inputs):
|
185
|
+
if "key_value_states" in name:
|
186
|
+
context.mark_static_address(tensor)
|
187
|
+
|
188
|
+
compiled_decoder = super().compile(
|
189
|
+
wrapped_model.decoder,
|
190
|
+
dec_compile_config,
|
191
|
+
example_inputs=dec_example_inputs,
|
192
|
+
compile_context=context,
|
193
|
+
)
|
194
|
+
compiled_encoder = super().compile(
|
195
|
+
wrapped_model.encoder,
|
196
|
+
enc_compile_config,
|
197
|
+
example_inputs=enc_example_inputs,
|
198
|
+
compile_context=context,
|
199
|
+
)
|
200
|
+
|
201
|
+
return {"encoder": compiled_encoder, "decoder": compiled_decoder}
|
202
|
+
|
203
|
+
@classmethod
|
204
|
+
def save_torch_artifacts(
|
205
|
+
cls,
|
206
|
+
model: "PreTrainedModel",
|
207
|
+
save_dir_path: Path,
|
208
|
+
subfolder: str,
|
209
|
+
rbln_config: RBLNConfig,
|
210
|
+
):
|
211
|
+
"""
|
212
|
+
If you are unavoidably running on a CPU rather than an RBLN device,
|
213
|
+
store the torch tensor, weight, etc. in this function.
|
214
|
+
"""
|
215
|
+
save_dict = {}
|
216
|
+
save_dict["embedder"] = model.model.embedder.state_dict()
|
217
|
+
torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
|
218
|
+
|
219
|
+
@classmethod
|
220
|
+
def _get_rbln_config(
|
221
|
+
cls,
|
222
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
223
|
+
model_config: "PretrainedConfig",
|
224
|
+
rbln_kwargs: Dict[str, Any] = {},
|
225
|
+
) -> RBLNConfig:
|
226
|
+
rbln_batch_size = rbln_kwargs.get("batch_size", 1)
|
227
|
+
rbln_dec_max_seq_len = rbln_kwargs.get("dec_max_seq_len", None)
|
228
|
+
rbln_num_parallel_samples = rbln_kwargs.get("num_parallel_samples", None)
|
229
|
+
|
230
|
+
if not isinstance(rbln_batch_size, int):
|
231
|
+
raise TypeError(f"Expected rbln_batch_size to be an int, but got {type(rbln_batch_size)}")
|
232
|
+
|
233
|
+
rbln_num_parallel_samples = (
|
234
|
+
model_config.num_parallel_samples if rbln_num_parallel_samples is None else rbln_num_parallel_samples
|
235
|
+
)
|
236
|
+
if rbln_dec_max_seq_len is None:
|
237
|
+
predict_length = model_config.prediction_length
|
238
|
+
rbln_dec_max_seq_len = (
|
239
|
+
predict_length if predict_length % 64 == 0 else predict_length + (64 - predict_length % 64)
|
240
|
+
)
|
241
|
+
|
242
|
+
# model input info
|
243
|
+
enc_input_info = [
|
244
|
+
("inputs_embeds", [rbln_batch_size, model_config.context_length, model_config.feature_size], "float32"),
|
245
|
+
]
|
246
|
+
enc_input_info.extend(
|
247
|
+
[
|
248
|
+
(
|
249
|
+
"cross_key_value_states",
|
250
|
+
[
|
251
|
+
model_config.decoder_layers * 2,
|
252
|
+
rbln_batch_size,
|
253
|
+
model_config.decoder_attention_heads,
|
254
|
+
model_config.context_length,
|
255
|
+
model_config.d_model // model_config.decoder_attention_heads,
|
256
|
+
],
|
257
|
+
"float32",
|
258
|
+
)
|
259
|
+
]
|
260
|
+
)
|
261
|
+
|
262
|
+
dec_input_info = [
|
263
|
+
("inputs_embeds", [rbln_batch_size * rbln_num_parallel_samples, 1, model_config.feature_size], "float32"),
|
264
|
+
("attention_mask", [1, rbln_dec_max_seq_len], "float32"),
|
265
|
+
("cache_position", [], "int32"),
|
266
|
+
("block_tables", [1, 1], "int16"),
|
267
|
+
]
|
268
|
+
dec_input_info.extend(
|
269
|
+
[
|
270
|
+
(
|
271
|
+
"cross_key_value_states",
|
272
|
+
[
|
273
|
+
model_config.decoder_layers * 2, # 4
|
274
|
+
rbln_batch_size, # 64
|
275
|
+
model_config.decoder_attention_heads, # 2
|
276
|
+
model_config.context_length, # 24
|
277
|
+
model_config.d_model // model_config.decoder_attention_heads, # 13
|
278
|
+
],
|
279
|
+
"float32",
|
280
|
+
)
|
281
|
+
]
|
282
|
+
)
|
283
|
+
dec_input_info.extend(
|
284
|
+
[
|
285
|
+
(
|
286
|
+
f"self_key_value_states_{i}",
|
287
|
+
[
|
288
|
+
1,
|
289
|
+
model_config.decoder_attention_heads * rbln_num_parallel_samples * rbln_batch_size,
|
290
|
+
rbln_dec_max_seq_len,
|
291
|
+
model_config.d_model // model_config.encoder_attention_heads,
|
292
|
+
],
|
293
|
+
"float32",
|
294
|
+
)
|
295
|
+
for i in range(model_config.decoder_layers * 2)
|
296
|
+
]
|
297
|
+
)
|
298
|
+
enc_compile_config = RBLNCompileConfig(compiled_model_name="encoder", input_info=enc_input_info)
|
299
|
+
dec_compile_config = RBLNCompileConfig(compiled_model_name="decoder", input_info=dec_input_info)
|
300
|
+
|
301
|
+
rbln_config = RBLNConfig(
|
302
|
+
rbln_cls=cls.__name__,
|
303
|
+
compile_cfgs=[enc_compile_config, dec_compile_config],
|
304
|
+
rbln_kwargs=rbln_kwargs,
|
305
|
+
)
|
306
|
+
|
307
|
+
rbln_config.model_cfg.update(
|
308
|
+
{
|
309
|
+
"batch_size": rbln_batch_size,
|
310
|
+
"num_parallel_samples": rbln_num_parallel_samples,
|
311
|
+
"dec_max_seq_len": rbln_dec_max_seq_len,
|
312
|
+
}
|
313
|
+
)
|
314
|
+
|
315
|
+
return rbln_config
|
316
|
+
|
317
|
+
@classmethod
|
318
|
+
def _create_runtimes(
|
319
|
+
cls,
|
320
|
+
compiled_models: List[rebel.RBLNCompiledModel],
|
321
|
+
rbln_device_map: Dict[str, int],
|
322
|
+
activate_profiler: Optional[bool] = None,
|
323
|
+
) -> List[rebel.Runtime]:
|
324
|
+
if any(model_name not in rbln_device_map for model_name in ["encoder", "decoder"]):
|
325
|
+
cls._raise_missing_compiled_file_error(["encoder", "decoder"])
|
326
|
+
|
327
|
+
return [
|
328
|
+
compiled_models[0].create_runtime(
|
329
|
+
tensor_type="pt", device=rbln_device_map["encoder"], activate_profiler=activate_profiler
|
330
|
+
),
|
331
|
+
compiled_models[1].create_runtime(
|
332
|
+
tensor_type="pt", device=rbln_device_map["decoder"], activate_profiler=activate_profiler
|
333
|
+
),
|
334
|
+
]
|
335
|
+
|
336
|
+
def validate_batch_size(self, **kwargs):
|
337
|
+
for k, v in kwargs.items():
|
338
|
+
if v is not None and v.shape[0] != self.batch_size:
|
339
|
+
raise RuntimeError(
|
340
|
+
f"Batch size mismatch in '{k}': Expected {self.batch_size}, but got {v.shape[0]}. \n"
|
341
|
+
f"Tensor shape: {v.shape} \n\n"
|
342
|
+
f"Note: `batch_size` is set at compile time. \n"
|
343
|
+
f"To change it, pass `export=True` along with `rbln_batch_size` when calling `from_pretrained()` to trigger recompilation."
|
344
|
+
)
|
345
|
+
|
346
|
+
@torch.no_grad()
|
347
|
+
def generate(
|
348
|
+
self,
|
349
|
+
past_values: torch.Tensor,
|
350
|
+
past_time_features: torch.Tensor,
|
351
|
+
future_time_features: torch.Tensor,
|
352
|
+
past_observed_mask: Optional[torch.Tensor] = None,
|
353
|
+
static_categorical_features: Optional[torch.Tensor] = None,
|
354
|
+
static_real_features: Optional[torch.Tensor] = None,
|
355
|
+
**kwargs,
|
356
|
+
) -> SampleTSPredictionOutput:
|
357
|
+
self.validate_batch_size(**{k: v for k, v in locals().items() if isinstance(v, torch.Tensor)})
|
358
|
+
|
359
|
+
outputs = self.encoder(
|
360
|
+
static_categorical_features=static_categorical_features,
|
361
|
+
static_real_features=static_real_features,
|
362
|
+
past_time_features=past_time_features,
|
363
|
+
past_values=past_values,
|
364
|
+
past_observed_mask=past_observed_mask,
|
365
|
+
future_time_features=future_time_features,
|
366
|
+
)
|
367
|
+
|
368
|
+
loc = outputs.loc
|
369
|
+
scale = outputs.scale
|
370
|
+
static_feat = outputs.static_features
|
371
|
+
|
372
|
+
num_parallel_samples = self.num_parallel_samples
|
373
|
+
repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0)
|
374
|
+
repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0)
|
375
|
+
|
376
|
+
repeated_past_values = (
|
377
|
+
past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc
|
378
|
+
) / repeated_scale
|
379
|
+
|
380
|
+
expanded_static_feat = static_feat.unsqueeze(1).expand(-1, future_time_features.shape[1], -1)
|
381
|
+
features = torch.cat((expanded_static_feat, future_time_features), dim=-1)
|
382
|
+
repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0)
|
383
|
+
|
384
|
+
# greedy decoding
|
385
|
+
future_samples = []
|
386
|
+
dec_attn_mask = torch.zeros(1, self.dec_max_seq_len)
|
387
|
+
for k in range(self.config.prediction_length):
|
388
|
+
lagged_sequence = self._origin_model.model.get_lagged_subsequences(
|
389
|
+
sequence=repeated_past_values,
|
390
|
+
subsequences_length=1 + k,
|
391
|
+
shift=1,
|
392
|
+
)
|
393
|
+
|
394
|
+
lags_shape = lagged_sequence.shape
|
395
|
+
reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
|
396
|
+
decoder_input = torch.cat((reshaped_lagged_sequence, repeated_features[:, : k + 1]), dim=-1)
|
397
|
+
|
398
|
+
dec_attn_mask[:, k] = 1
|
399
|
+
dec_inputs_embeds = decoder_input[:, -1:]
|
400
|
+
|
401
|
+
decoder_out = self.decoder(
|
402
|
+
inputs_embeds=dec_inputs_embeds.contiguous(),
|
403
|
+
attention_mask=dec_attn_mask,
|
404
|
+
cache_position=torch.tensor(k, dtype=torch.int32),
|
405
|
+
)
|
406
|
+
params = decoder_out.params
|
407
|
+
|
408
|
+
distr = self._origin_model.output_distribution(params, loc=repeated_loc, scale=repeated_scale)
|
409
|
+
next_sample = distr.sample()
|
410
|
+
|
411
|
+
repeated_past_values = torch.cat(
|
412
|
+
(repeated_past_values, (next_sample - repeated_loc) / repeated_scale), dim=1
|
413
|
+
)
|
414
|
+
future_samples.append(next_sample)
|
415
|
+
|
416
|
+
concat_future_samples = torch.cat(future_samples, dim=1)
|
417
|
+
|
418
|
+
return SampleTSPredictionOutput(
|
419
|
+
sequences=concat_future_samples.reshape(
|
420
|
+
(-1, num_parallel_samples, self.config.prediction_length) + self._origin_model.target_shape,
|
421
|
+
)
|
422
|
+
)
|