optimum-rbln 0.7.3a6__py3-none-any.whl → 0.7.3.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__version__.py +2 -2
- optimum/rbln/diffusers/modeling_diffusers.py +99 -111
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +3 -3
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +12 -0
- optimum/rbln/utils/import_utils.py +7 -0
- {optimum_rbln-0.7.3a6.dist-info → optimum_rbln-0.7.3.post2.dist-info}/METADATA +1 -1
- {optimum_rbln-0.7.3a6.dist-info → optimum_rbln-0.7.3.post2.dist-info}/RECORD +9 -9
- {optimum_rbln-0.7.3a6.dist-info → optimum_rbln-0.7.3.post2.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.7.3a6.dist-info → optimum_rbln-0.7.3.post2.dist-info}/licenses/LICENSE +0 -0
optimum/rbln/__version__.py
CHANGED
@@ -17,5 +17,5 @@ __version__: str
|
|
17
17
|
__version_tuple__: VERSION_TUPLE
|
18
18
|
version_tuple: VERSION_TUPLE
|
19
19
|
|
20
|
-
__version__ = version = '0.7.
|
21
|
-
__version_tuple__ = version_tuple = (0, 7, 3
|
20
|
+
__version__ = version = '0.7.3.post2'
|
21
|
+
__version_tuple__ = version_tuple = (0, 7, 3)
|
@@ -23,7 +23,6 @@ from ..modeling import RBLNModel
|
|
23
23
|
from ..modeling_config import RUNTIME_KEYWORDS, ContextRblnConfig, use_rbln_config
|
24
24
|
from ..utils.decorator_utils import remove_compile_time_kwargs
|
25
25
|
from ..utils.logging import get_logger
|
26
|
-
from . import pipelines
|
27
26
|
|
28
27
|
|
29
28
|
logger = get_logger(__name__)
|
@@ -67,6 +66,7 @@ class RBLNDiffusionMixin:
|
|
67
66
|
as keys in rbln_config
|
68
67
|
"""
|
69
68
|
|
69
|
+
_connected_classes = {}
|
70
70
|
_submodules = []
|
71
71
|
_prefix = {}
|
72
72
|
|
@@ -103,37 +103,6 @@ class RBLNDiffusionMixin:
|
|
103
103
|
}
|
104
104
|
)
|
105
105
|
submodule_config = submodule_cls.update_rbln_config_using_pipe(model, submodule_config)
|
106
|
-
elif hasattr(pipelines, submodule_class_name):
|
107
|
-
submodule_config = rbln_config.get(submodule_name, {})
|
108
|
-
submodule_config = copy.deepcopy(submodule_config)
|
109
|
-
|
110
|
-
submodule_cls: RBLNModel = getattr(importlib.import_module("optimum.rbln"), f"{submodule_class_name}")
|
111
|
-
prefix = cls._prefix.get(submodule_name, "")
|
112
|
-
connected_submodules = cls._connected_classes.get(submodule_name)._submodules
|
113
|
-
pipe_global_config = {k: v for k, v in submodule_config.items() if k not in connected_submodules}
|
114
|
-
submodule_config = {k: v for k, v in submodule_config.items() if k in connected_submodules}
|
115
|
-
for key in submodule_config.keys():
|
116
|
-
submodule_config[key].update(pipe_global_config)
|
117
|
-
|
118
|
-
for connected_submodule_name in connected_submodules:
|
119
|
-
connected_submodule_config = rbln_config.pop(prefix + connected_submodule_name, {})
|
120
|
-
if connected_submodule_name in submodule_config:
|
121
|
-
submodule_config[connected_submodule_name].update(connected_submodule_config)
|
122
|
-
else:
|
123
|
-
submodule_config[connected_submodule_name] = connected_submodule_config
|
124
|
-
|
125
|
-
pipe_global_config = {
|
126
|
-
k: v for k, v in rbln_config.items() if k != submodule_class_name and not isinstance(v, dict)
|
127
|
-
}
|
128
|
-
|
129
|
-
for connected_submodule_name in connected_submodules:
|
130
|
-
for k, v in pipe_global_config.items():
|
131
|
-
if "guidance_scale" in k:
|
132
|
-
if prefix + "guidance_scale" == k:
|
133
|
-
submodule_config[connected_submodule_name]["guidance_scale"] = v
|
134
|
-
else:
|
135
|
-
submodule_config[connected_submodule_name][k] = v
|
136
|
-
rbln_config[submodule_name] = submodule_config
|
137
106
|
else:
|
138
107
|
raise ValueError(f"submodule {submodule_name} isn't supported")
|
139
108
|
return submodule_config
|
@@ -199,25 +168,8 @@ class RBLNDiffusionMixin:
|
|
199
168
|
else:
|
200
169
|
# raise error if any of submodules are torch module.
|
201
170
|
model_index_config = cls.load_config(pretrained_model_name_or_path=model_id)
|
202
|
-
|
203
|
-
|
204
|
-
for submodule in cls._submodules:
|
205
|
-
submodule_config = rbln_config.pop(submodule, {})
|
206
|
-
prefix = cls._prefix.get(submodule, "")
|
207
|
-
connected_submodules = cls._connected_classes.get(submodule)._submodules
|
208
|
-
for connected_submodule_name in connected_submodules:
|
209
|
-
connected_submodule_config = submodule_config.pop(connected_submodule_name, {})
|
210
|
-
if connected_submodule_config:
|
211
|
-
rbln_config[prefix + connected_submodule_name] = connected_submodule_config
|
212
|
-
submodules.append(prefix + connected_submodule_name)
|
213
|
-
pipe_global_config = {k: v for k, v in rbln_config.items() if k not in submodules}
|
214
|
-
for submodule in submodules:
|
215
|
-
if submodule in rbln_config:
|
216
|
-
rbln_config[submodule].update(pipe_global_config)
|
217
|
-
else:
|
218
|
-
submodules = cls._submodules
|
219
|
-
|
220
|
-
for submodule_name in submodules:
|
171
|
+
rbln_config = cls._flatten_rbln_config(rbln_config)
|
172
|
+
for submodule_name in cls._submodules:
|
221
173
|
if isinstance(kwargs.get(submodule_name), torch.nn.Module):
|
222
174
|
raise AssertionError(
|
223
175
|
f"{submodule_name} is not compiled torch module. If you want to compile, set `export=True`."
|
@@ -266,9 +218,89 @@ class RBLNDiffusionMixin:
|
|
266
218
|
lora_scales=lora_scales,
|
267
219
|
)
|
268
220
|
|
269
|
-
|
221
|
+
if cls._load_connected_pipes:
|
222
|
+
compiled_submodules = cls._compile_pipelines(model, passed_submodules, model_save_dir, rbln_config)
|
223
|
+
else:
|
224
|
+
compiled_submodules = cls._compile_submodules(model, passed_submodules, model_save_dir, rbln_config)
|
270
225
|
return cls._construct_pipe(model, compiled_submodules, model_save_dir, rbln_config)
|
271
226
|
|
227
|
+
@classmethod
|
228
|
+
def _prepare_rbln_config(
|
229
|
+
cls,
|
230
|
+
rbln_config,
|
231
|
+
) -> Dict[str, Any]:
|
232
|
+
prepared_config = {}
|
233
|
+
for connected_pipe_name, connected_pipe_cls in cls._connected_classes.items():
|
234
|
+
connected_pipe_config = rbln_config.pop(connected_pipe_name, {})
|
235
|
+
prefix = cls._prefix.get(connected_pipe_name, "")
|
236
|
+
guidance_scale = rbln_config.pop(f"{prefix}guidance_scale", None)
|
237
|
+
if "guidance_scale" not in connected_pipe_config and guidance_scale is not None:
|
238
|
+
connected_pipe_config["guidance_scale"] = guidance_scale
|
239
|
+
for submodule_name in connected_pipe_cls._submodules:
|
240
|
+
submodule_config = rbln_config.pop(prefix + submodule_name, {})
|
241
|
+
if submodule_name not in connected_pipe_config:
|
242
|
+
connected_pipe_config[submodule_name] = {}
|
243
|
+
connected_pipe_config[submodule_name].update(
|
244
|
+
{k: v for k, v in submodule_config.items() if k not in connected_pipe_config[submodule_name]}
|
245
|
+
)
|
246
|
+
prepared_config[connected_pipe_name] = connected_pipe_config
|
247
|
+
prepared_config.update(rbln_config)
|
248
|
+
return prepared_config
|
249
|
+
|
250
|
+
@classmethod
|
251
|
+
def _flatten_rbln_config(
|
252
|
+
cls,
|
253
|
+
rbln_config,
|
254
|
+
) -> Dict[str, Any]:
|
255
|
+
prepared_config = cls._prepare_rbln_config(rbln_config)
|
256
|
+
flattened_config = {}
|
257
|
+
pipe_global_config = {k: v for k, v in prepared_config.items() if k not in cls._connected_classes.keys()}
|
258
|
+
for connected_pipe_name, connected_pipe_cls in cls._connected_classes.items():
|
259
|
+
connected_pipe_config = prepared_config.pop(connected_pipe_name)
|
260
|
+
prefix = cls._prefix.get(connected_pipe_name, "")
|
261
|
+
connected_pipe_global_config = {
|
262
|
+
k: v for k, v in connected_pipe_config.items() if k not in connected_pipe_cls._submodules
|
263
|
+
}
|
264
|
+
for submodule_name in connected_pipe_cls._submodules:
|
265
|
+
flattened_config[prefix + submodule_name] = connected_pipe_config[submodule_name]
|
266
|
+
flattened_config[prefix + submodule_name].update(
|
267
|
+
{
|
268
|
+
k: v
|
269
|
+
for k, v in connected_pipe_global_config.items()
|
270
|
+
if k not in flattened_config[prefix + submodule_name]
|
271
|
+
}
|
272
|
+
)
|
273
|
+
flattened_config.update(pipe_global_config)
|
274
|
+
return flattened_config
|
275
|
+
|
276
|
+
@classmethod
|
277
|
+
def _compile_pipelines(
|
278
|
+
cls,
|
279
|
+
model: torch.nn.Module,
|
280
|
+
passed_submodules: Dict[str, RBLNModel],
|
281
|
+
model_save_dir: Optional[PathLike],
|
282
|
+
rbln_config: Dict[str, Any],
|
283
|
+
) -> Dict[str, RBLNModel]:
|
284
|
+
compiled_submodules = {}
|
285
|
+
|
286
|
+
rbln_config = cls._prepare_rbln_config(rbln_config)
|
287
|
+
pipe_global_config = {k: v for k, v in rbln_config.items() if k not in cls._connected_classes.keys()}
|
288
|
+
for connected_pipe_name, connected_pipe_cls in cls._connected_classes.items():
|
289
|
+
connected_pipe_submodules = {}
|
290
|
+
prefix = cls._prefix.get(connected_pipe_name, "")
|
291
|
+
for submodule_name in connected_pipe_cls._submodules:
|
292
|
+
connected_pipe_submodules[submodule_name] = passed_submodules.get(prefix + submodule_name, None)
|
293
|
+
connected_pipe = getattr(model, connected_pipe_name)
|
294
|
+
connected_pipe_config = {}
|
295
|
+
connected_pipe_config.update(pipe_global_config)
|
296
|
+
connected_pipe_config.update(rbln_config[connected_pipe_name])
|
297
|
+
connected_pipe_compiled_submodules = connected_pipe_cls._compile_submodules(
|
298
|
+
connected_pipe, connected_pipe_submodules, model_save_dir, connected_pipe_config, prefix
|
299
|
+
)
|
300
|
+
for submodule_name, compiled_submodule in connected_pipe_compiled_submodules.items():
|
301
|
+
compiled_submodules[prefix + submodule_name] = compiled_submodule
|
302
|
+
return compiled_submodules
|
303
|
+
|
272
304
|
@classmethod
|
273
305
|
def _compile_submodules(
|
274
306
|
cls,
|
@@ -307,41 +339,6 @@ class RBLNDiffusionMixin:
|
|
307
339
|
model_save_dir=model_save_dir,
|
308
340
|
rbln_config=submodule_rbln_config,
|
309
341
|
)
|
310
|
-
elif hasattr(pipelines, submodule.__class__.__name__):
|
311
|
-
connected_pipe = submodule
|
312
|
-
connected_pipe_model_save_dir = model_save_dir
|
313
|
-
connected_pipe_rbln_config = submodule_rbln_config
|
314
|
-
connected_pipe_cls: RBLNDiffusionMixin = getattr(
|
315
|
-
importlib.import_module("optimum.rbln"), connected_pipe.__class__.__name__
|
316
|
-
)
|
317
|
-
submodule_dict = {}
|
318
|
-
for name in connected_pipe.config.keys():
|
319
|
-
if hasattr(connected_pipe, name):
|
320
|
-
submodule_dict[name] = getattr(connected_pipe, name)
|
321
|
-
connected_pipe = connected_pipe_cls(**submodule_dict)
|
322
|
-
connected_pipe_submodules = {}
|
323
|
-
prefix = cls._prefix.get(submodule_name, "")
|
324
|
-
for name in connected_pipe_cls._submodules:
|
325
|
-
if prefix + name in passed_submodules:
|
326
|
-
connected_pipe_submodules[name] = passed_submodules.get(prefix + name)
|
327
|
-
|
328
|
-
connected_pipe_compiled_submodules = connected_pipe_cls._compile_submodules(
|
329
|
-
model=connected_pipe,
|
330
|
-
passed_submodules=connected_pipe_submodules,
|
331
|
-
model_save_dir=model_save_dir,
|
332
|
-
rbln_config=connected_pipe_rbln_config,
|
333
|
-
prefix=prefix,
|
334
|
-
)
|
335
|
-
connected_pipe = connected_pipe_cls._construct_pipe(
|
336
|
-
connected_pipe,
|
337
|
-
connected_pipe_compiled_submodules,
|
338
|
-
connected_pipe_model_save_dir,
|
339
|
-
connected_pipe_rbln_config,
|
340
|
-
)
|
341
|
-
|
342
|
-
for name in connected_pipe_cls._submodules:
|
343
|
-
compiled_submodules[prefix + name] = getattr(connected_pipe, name)
|
344
|
-
submodule = connected_pipe
|
345
342
|
else:
|
346
343
|
raise ValueError(f"Unknown class of submodule({submodule_name}) : {submodule.__class__.__name__} ")
|
347
344
|
|
@@ -374,23 +371,16 @@ class RBLNDiffusionMixin:
|
|
374
371
|
@classmethod
|
375
372
|
def _construct_pipe(cls, model, submodules, model_save_dir, rbln_config):
|
376
373
|
# Construct finalize pipe setup with compiled submodules and configurations
|
377
|
-
submodule_names = []
|
378
|
-
for submodule_name in cls._submodules:
|
379
|
-
submodule = getattr(model, submodule_name)
|
380
|
-
if hasattr(pipelines, submodule.__class__.__name__):
|
381
|
-
prefix = cls._prefix.get(submodule_name, "")
|
382
|
-
connected_pipe_submodules = submodules[submodule_name].__class__._submodules
|
383
|
-
connected_pipe_submodules = [prefix + name for name in connected_pipe_submodules]
|
384
|
-
submodule_names += connected_pipe_submodules
|
385
|
-
setattr(model, submodule_name, submodules[submodule_name])
|
386
|
-
else:
|
387
|
-
submodule_names.append(submodule_name)
|
388
|
-
|
389
374
|
if model_save_dir is not None:
|
390
375
|
# To skip saving original pytorch modules
|
391
|
-
for submodule_name in
|
376
|
+
for submodule_name in cls._submodules:
|
392
377
|
delattr(model, submodule_name)
|
393
378
|
|
379
|
+
if cls._load_connected_pipes:
|
380
|
+
for connected_pipe_name, connected_pipe_cls in cls._connected_classes.items():
|
381
|
+
for submodule_name in connected_pipe_cls._submodules:
|
382
|
+
delattr(getattr(model, connected_pipe_name), submodule_name)
|
383
|
+
|
394
384
|
# Direct calling of `save_pretrained` causes config.unet = (None, None).
|
395
385
|
# So config must be saved again, later.
|
396
386
|
model.save_pretrained(model_save_dir)
|
@@ -398,10 +388,15 @@ class RBLNDiffusionMixin:
|
|
398
388
|
# Causing warning messeages.
|
399
389
|
|
400
390
|
update_dict = {}
|
401
|
-
for submodule_name in
|
391
|
+
for submodule_name in cls._submodules:
|
402
392
|
# replace submodule
|
403
393
|
setattr(model, submodule_name, submodules[submodule_name])
|
404
394
|
update_dict[submodule_name] = ("optimum.rbln", submodules[submodule_name].__class__.__name__)
|
395
|
+
if cls._load_connected_pipes:
|
396
|
+
for connected_pipe_name, connected_pipe_cls in cls._connected_classes.items():
|
397
|
+
prefix = cls._prefix.get(connected_pipe_name, "")
|
398
|
+
for submodule_name in connected_pipe_cls._submodules:
|
399
|
+
setattr(getattr(model, connected_pipe_name), submodule_name, submodules[prefix + submodule_name])
|
405
400
|
|
406
401
|
# Update config to be able to load from model directory.
|
407
402
|
#
|
@@ -420,16 +415,9 @@ class RBLNDiffusionMixin:
|
|
420
415
|
if rbln_config.get("optimize_host_memory") is False:
|
421
416
|
# Keep compiled_model objs to further analysis. -> TODO: remove soon...
|
422
417
|
model.compiled_models = []
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
for submodule_name in connected_pipe.__class__._submodules:
|
427
|
-
submodule = getattr(connected_pipe, submodule_name)
|
428
|
-
model.compiled_models.extend(submodule.compiled_models)
|
429
|
-
else:
|
430
|
-
for name in cls._submodules:
|
431
|
-
submodule = getattr(model, name)
|
432
|
-
model.compiled_models.extend(submodule.compiled_models)
|
418
|
+
for name in cls._submodules:
|
419
|
+
submodule = getattr(model, name)
|
420
|
+
model.compiled_models.extend(submodule.compiled_models)
|
433
421
|
|
434
422
|
return model
|
435
423
|
|
@@ -39,7 +39,7 @@ from .pipeline_kandinsky2_2_prior import RBLNKandinskyV22PriorPipeline
|
|
39
39
|
class RBLNKandinskyV22CombinedPipeline(RBLNDiffusionMixin, KandinskyV22CombinedPipeline):
|
40
40
|
original_class = KandinskyV22CombinedPipeline
|
41
41
|
_connected_classes = {"prior_pipe": RBLNKandinskyV22PriorPipeline, "decoder_pipe": RBLNKandinskyV22Pipeline}
|
42
|
-
_submodules = ["
|
42
|
+
_submodules = ["prior_image_encoder", "prior_text_encoder", "prior_prior", "unet", "movq"]
|
43
43
|
_prefix = {"prior_pipe": "prior_"}
|
44
44
|
|
45
45
|
def __init__(
|
@@ -90,7 +90,7 @@ class RBLNKandinskyV22CombinedPipeline(RBLNDiffusionMixin, KandinskyV22CombinedP
|
|
90
90
|
class RBLNKandinskyV22Img2ImgCombinedPipeline(RBLNDiffusionMixin, KandinskyV22Img2ImgCombinedPipeline):
|
91
91
|
original_class = KandinskyV22Img2ImgCombinedPipeline
|
92
92
|
_connected_classes = {"prior_pipe": RBLNKandinskyV22PriorPipeline, "decoder_pipe": RBLNKandinskyV22Img2ImgPipeline}
|
93
|
-
_submodules = ["
|
93
|
+
_submodules = ["prior_image_encoder", "prior_text_encoder", "prior_prior", "unet", "movq"]
|
94
94
|
_prefix = {"prior_pipe": "prior_"}
|
95
95
|
|
96
96
|
def __init__(
|
@@ -141,7 +141,7 @@ class RBLNKandinskyV22Img2ImgCombinedPipeline(RBLNDiffusionMixin, KandinskyV22Im
|
|
141
141
|
class RBLNKandinskyV22InpaintCombinedPipeline(RBLNDiffusionMixin, KandinskyV22InpaintCombinedPipeline):
|
142
142
|
original_class = KandinskyV22InpaintCombinedPipeline
|
143
143
|
_connected_classes = {"prior_pipe": RBLNKandinskyV22PriorPipeline, "decoder_pipe": RBLNKandinskyV22InpaintPipeline}
|
144
|
-
_submodules = ["
|
144
|
+
_submodules = ["prior_image_encoder", "prior_text_encoder", "prior_prior", "unet", "movq"]
|
145
145
|
_prefix = {"prior_pipe": "prior_"}
|
146
146
|
|
147
147
|
def __init__(
|
@@ -98,6 +98,18 @@ def validate_attention_method(
|
|
98
98
|
"this requirement, or consider switching `rbln_attn_impl` to 'eager' for shorter lengths."
|
99
99
|
)
|
100
100
|
|
101
|
+
if rbln_kvcache_block_size is not None:
|
102
|
+
if rbln_attn_impl == "flash_attn" and rbln_kvcache_partition_len != rbln_kvcache_block_size:
|
103
|
+
raise ValueError(
|
104
|
+
f" When using 'flash attention', the `rbln_kvcache_block_size` ({rbln_kvcache_block_size}) "
|
105
|
+
f"must always be set equal to the `rbln_kvcache_partition_len` {rbln_kvcache_partition_len}."
|
106
|
+
)
|
107
|
+
elif rbln_attn_impl == "eager" and rbln_kvcache_block_size != rbln_max_seq_len:
|
108
|
+
raise ValueError(
|
109
|
+
f" When using 'eager attention', the `rbln_kvcache_block_size` ({rbln_kvcache_block_size}) "
|
110
|
+
f"must always be set equal to the `rbln_max_seq_len` {rbln_max_seq_len}."
|
111
|
+
)
|
112
|
+
|
101
113
|
return rbln_attn_impl, rbln_kvcache_partition_len, rbln_kvcache_block_size
|
102
114
|
|
103
115
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: optimum-rbln
|
3
|
-
Version: 0.7.
|
3
|
+
Version: 0.7.3.post2
|
4
4
|
Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
@@ -1,10 +1,10 @@
|
|
1
1
|
optimum/rbln/__init__.py,sha256=ZDzXcl-oAcYJhKjJMpotjbTih9awo7HzUb6T3MUEP6Q,6894
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
2
|
+
optimum/rbln/__version__.py,sha256=OJRzB6Y7xaNgH7EkerbumPEoY0Nlzs1_xYhBJvOXTzQ,517
|
3
3
|
optimum/rbln/modeling.py,sha256=nJsAs5zs--VVOYGFjYNpqfxYIemJIK4Lr0WEzlDLdP0,8390
|
4
4
|
optimum/rbln/modeling_base.py,sha256=dNCL-BhrWCpuOVkZaj8-MW567Tf4lLo3p3Z3ldjWJfU,21779
|
5
5
|
optimum/rbln/modeling_config.py,sha256=7104bxmrvKW4Q6XTruQayiIGl8GHDFmPkJ3cknMIInE,11335
|
6
6
|
optimum/rbln/diffusers/__init__.py,sha256=Hq87CbtiCy85YmK2SB-OmUyfv77oe3j4bsTenTRnu6w,3623
|
7
|
-
optimum/rbln/diffusers/modeling_diffusers.py,sha256=
|
7
|
+
optimum/rbln/diffusers/modeling_diffusers.py,sha256=IS6Mlgexofap7f9Lefk5cKFP7ejSG_oWN3v2PX9_IDQ,20118
|
8
8
|
optimum/rbln/diffusers/models/__init__.py,sha256=mkCvJyH1KcwrsUvYSq_bVC79oOfyqtBSFDyPS1_48wA,1478
|
9
9
|
optimum/rbln/diffusers/models/controlnet.py,sha256=EM_HlzCdaZdnnK0oGpY2fQeigPqHhlwh4NHCzlmoumI,10512
|
10
10
|
optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=dg17ZTUsiqTcbIaEE4fqew9uRbao0diQ21PXvRKIqKg,679
|
@@ -25,7 +25,7 @@ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=
|
|
25
25
|
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=RfwxNX_zQWFtvvFQJ5bt3qtHbdYdQV_3XLHm9WYCKOs,46084
|
26
26
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/__init__.py,sha256=I4YQq2HfA3xONbWsdJ870IEJPyLWeCDDG-UCJsu9YO8,1035
|
27
27
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py,sha256=aNFGOjth8tDvPrjYLbRWrkHr6p-8AFgcQx1Qay1fw70,904
|
28
|
-
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=
|
28
|
+
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py,sha256=BVXOpdrezWVTCibpuAMu9KkD5oEQUY00cSqm6dFbTnk,7020
|
29
29
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py,sha256=fEs-WgJqWs5zvuCkKb7MuZokH9Mi6q-0DOEKxzfWxzo,932
|
30
30
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py,sha256=Ad2ZYCXaMiYpB0mz-8X1CGhILxrVbt7rRIXt6IPwYBM,932
|
31
31
|
optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py,sha256=Mf7tzrXetwCgt7LuXfkX-CX1hltLgNZdwF9bHxAbDJM,874
|
@@ -61,7 +61,7 @@ optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=p3utRqf3dv9_RkHwaM
|
|
61
61
|
optimum/rbln/transformers/models/clip/__init__.py,sha256=H9vuBwrmFO0-CqZhXUrKF-uQL6igCqMlqrT1X_ELaAI,754
|
62
62
|
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=NiSm7bHs4SReHDUr53BBWSX0Y8bkKOeUSpsBDrp8YDw,6628
|
63
63
|
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pDogsdpJKKB5rqnVFrRjwfhUvOSV-jZ3oARMsqSvOOQ,665
|
64
|
-
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=
|
64
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=m93-qKN7NMw3i0XDmFmttmRIRK4np_fWtLFlBb2RFgU,41351
|
65
65
|
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=uGdPGcFrWm2gAwFLjfBiALwFsl49VGCReVi4NUfOPxM,38898
|
66
66
|
optimum/rbln/transformers/models/dpt/__init__.py,sha256=gP1tkR3XMNlHq1GT87ugIVvb2o_1eAUg1JaniXjy1Lw,651
|
67
67
|
optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=ZsS2SOiqcA4azULB-WFEMQZbgIoOyVUKqVKqrw_tWzA,3430
|
@@ -110,13 +110,13 @@ optimum/rbln/transformers/utils/rbln_quantization.py,sha256=gwBVHf97sQgPNmGa0wq8
|
|
110
110
|
optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
|
111
111
|
optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
|
112
112
|
optimum/rbln/utils/hub.py,sha256=bNmOJGEO9Jfux4Cg8Xli-898I4mxk20KuwQOhP0Zs1U,4198
|
113
|
-
optimum/rbln/utils/import_utils.py,sha256=
|
113
|
+
optimum/rbln/utils/import_utils.py,sha256=uMldLJmDVMj5uHvxBfb96uV29bfGEDvlksLY26GOHAs,4389
|
114
114
|
optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
|
115
115
|
optimum/rbln/utils/model_utils.py,sha256=DfD_Z2qvZHqcddXqnzTM1AN8khanj3-DXK2lJvVxDvs,1278
|
116
116
|
optimum/rbln/utils/runtime_utils.py,sha256=5-DYniyP59nx-mrrbi7AqA77L85b4Cm5oLpaxidSyss,3699
|
117
117
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
118
118
|
optimum/rbln/utils/submodule.py,sha256=oZoGrItB8WqY4i-K9WJPlLlcLohc1YGB9OHB8_XZw3A,4071
|
119
|
-
optimum_rbln-0.7.
|
120
|
-
optimum_rbln-0.7.
|
121
|
-
optimum_rbln-0.7.
|
122
|
-
optimum_rbln-0.7.
|
119
|
+
optimum_rbln-0.7.3.post2.dist-info/METADATA,sha256=YgOp5SEpJ_VfYEohAoBhSQ20TaX1usvkRAzV7s7mS5I,5304
|
120
|
+
optimum_rbln-0.7.3.post2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
121
|
+
optimum_rbln-0.7.3.post2.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
122
|
+
optimum_rbln-0.7.3.post2.dist-info/RECORD,,
|
File without changes
|
File without changes
|