optimum-rbln 0.7.3.post1__py3-none-any.whl → 0.7.3.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/transformers/models/bart/modeling_bart.py +0 -2
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +13 -19
- optimum/rbln/transformers/models/t5/modeling_t5.py +210 -3
- {optimum_rbln-0.7.3.post1.dist-info → optimum_rbln-0.7.3.post2.dist-info}/METADATA +1 -1
- {optimum_rbln-0.7.3.post1.dist-info → optimum_rbln-0.7.3.post2.dist-info}/RECORD +8 -8
- {optimum_rbln-0.7.3.post1.dist-info → optimum_rbln-0.7.3.post2.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.7.3.post1.dist-info → optimum_rbln-0.7.3.post2.dist-info}/licenses/LICENSE +0 -0
optimum/rbln/__version__.py
CHANGED
@@ -108,8 +108,6 @@ class RBLNBartModel(RBLNModel):
|
|
108
108
|
|
109
109
|
|
110
110
|
class RBLNBartForConditionalGeneration(RBLNModelForSeq2SeqLM):
|
111
|
-
support_paged_causal_attn = True
|
112
|
-
|
113
111
|
@classmethod
|
114
112
|
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
115
113
|
enc_max_seq_len = (
|
@@ -50,7 +50,6 @@ class RBLNRuntimeDecoder(RBLNPytorchRuntime):
|
|
50
50
|
runtime: rebel.Runtime,
|
51
51
|
batch_size: int,
|
52
52
|
dec_max_seq_len: int,
|
53
|
-
support_paged_causal_attn: Optional[bool] = None,
|
54
53
|
use_attention_mask: Optional[bool] = None,
|
55
54
|
**kwargs: Any,
|
56
55
|
) -> None:
|
@@ -58,10 +57,7 @@ class RBLNRuntimeDecoder(RBLNPytorchRuntime):
|
|
58
57
|
self.batch_size = batch_size
|
59
58
|
self.dec_max_seq_len = dec_max_seq_len
|
60
59
|
self.use_attention_mask = use_attention_mask
|
61
|
-
|
62
|
-
self.default_block_tables = torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, 1)
|
63
|
-
else:
|
64
|
-
self.default_block_tables = None
|
60
|
+
self.default_block_tables = torch.arange(0, self.batch_size, dtype=torch.int16).view(self.batch_size, 1)
|
65
61
|
|
66
62
|
def forward(
|
67
63
|
self,
|
@@ -98,7 +94,7 @@ class RBLNRuntimeDecoder(RBLNPytorchRuntime):
|
|
98
94
|
decoder_attention_mask if self.use_attention_mask else None,
|
99
95
|
attention_mask,
|
100
96
|
cache_position,
|
101
|
-
block_tables
|
97
|
+
block_tables,
|
102
98
|
)
|
103
99
|
|
104
100
|
return Seq2SeqLMOutput(logits=lm_logits)
|
@@ -119,7 +115,6 @@ class RBLNModelForSeq2SeqLM(RBLNModel, ABC):
|
|
119
115
|
|
120
116
|
main_input_name = "input_ids"
|
121
117
|
auto_model_class = AutoModelForSeq2SeqLM
|
122
|
-
support_paged_causal_attn = None
|
123
118
|
|
124
119
|
def __post_init__(self, **kwargs):
|
125
120
|
batch_size = self.rbln_config.model_cfg["batch_size"]
|
@@ -135,7 +130,6 @@ class RBLNModelForSeq2SeqLM(RBLNModel, ABC):
|
|
135
130
|
main_input_name="input_ids",
|
136
131
|
batch_size=batch_size,
|
137
132
|
dec_max_seq_len=dec_max_seq_len,
|
138
|
-
support_paged_causal_attn=self.support_paged_causal_attn,
|
139
133
|
use_attention_mask=self.use_attention_mask,
|
140
134
|
)
|
141
135
|
|
@@ -192,16 +186,13 @@ class RBLNModelForSeq2SeqLM(RBLNModel, ABC):
|
|
192
186
|
rbln_dec_max_seq_len = rbln_kwargs.get("dec_max_seq_len", None)
|
193
187
|
rbln_batch_size = rbln_kwargs.get("batch_size", None)
|
194
188
|
rbln_batch_size = 1 if rbln_batch_size is None else rbln_batch_size
|
189
|
+
rbln_use_attention_mask = rbln_kwargs.get("use_attention_mask", None)
|
195
190
|
|
196
|
-
if
|
197
|
-
rbln_use_attention_mask =
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
if rbln_npu == "RBLN-CA02":
|
202
|
-
rbln_use_attention_mask = True
|
203
|
-
else:
|
204
|
-
rbln_use_attention_mask = True
|
191
|
+
if rbln_use_attention_mask is None:
|
192
|
+
rbln_use_attention_mask = False
|
193
|
+
rbln_npu = rbln_kwargs.get("npu", None) or rebel.get_npu_name()
|
194
|
+
if rbln_npu == "RBLN-CA02":
|
195
|
+
rbln_use_attention_mask = True
|
205
196
|
|
206
197
|
n_layer = getattr(model_config, "decoder_layers", None) or getattr(model_config, "num_layers")
|
207
198
|
n_head = getattr(model_config, "decoder_attention_heads", None) or getattr(model_config, "num_heads")
|
@@ -274,6 +265,11 @@ class RBLNModelForSeq2SeqLM(RBLNModel, ABC):
|
|
274
265
|
[rbln_batch_size, 1],
|
275
266
|
"int32",
|
276
267
|
),
|
268
|
+
(
|
269
|
+
"block_tables",
|
270
|
+
[rbln_batch_size, 1],
|
271
|
+
"int16",
|
272
|
+
),
|
277
273
|
]
|
278
274
|
dec_input_info.extend(
|
279
275
|
[
|
@@ -306,8 +302,6 @@ class RBLNModelForSeq2SeqLM(RBLNModel, ABC):
|
|
306
302
|
]
|
307
303
|
)
|
308
304
|
|
309
|
-
if cls.support_paged_causal_attn:
|
310
|
-
dec_input_info.insert(3, ("block_tables", [rbln_batch_size, 1], "int16"))
|
311
305
|
if rbln_use_attention_mask:
|
312
306
|
dec_input_info.insert(1, ("attention_mask", [rbln_batch_size, rbln_dec_max_seq_len], "float32"))
|
313
307
|
|
@@ -13,8 +13,9 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
import inspect
|
16
|
-
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
|
16
|
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
17
17
|
|
18
|
+
import rebel
|
18
19
|
import torch
|
19
20
|
from transformers import (
|
20
21
|
AutoModelForTextEncoding,
|
@@ -22,7 +23,7 @@ from transformers import (
|
|
22
23
|
T5EncoderModel,
|
23
24
|
T5ForConditionalGeneration,
|
24
25
|
)
|
25
|
-
from transformers.modeling_outputs import BaseModelOutput
|
26
|
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
26
27
|
|
27
28
|
from ....diffusers.modeling_diffusers import RBLNDiffusionMixin
|
28
29
|
from ....modeling import RBLNModel
|
@@ -57,6 +58,63 @@ class RBLNRuntimeModel(RBLNPytorchRuntime):
|
|
57
58
|
)
|
58
59
|
|
59
60
|
|
61
|
+
class RBLNRuntimeEncoder(RBLNPytorchRuntime):
|
62
|
+
mandatory_members = ["main_input_name"]
|
63
|
+
|
64
|
+
def forward(self, *args: List[torch.Tensor], **kwargs: Dict[str, torch.Tensor]):
|
65
|
+
_ = super().forward(*args, **kwargs)
|
66
|
+
return BaseModelOutput(last_hidden_state=torch.tensor([1.0]))
|
67
|
+
|
68
|
+
|
69
|
+
class RBLNRuntimeDecoder(RBLNPytorchRuntime):
|
70
|
+
mandatory_members = ["main_input_name"]
|
71
|
+
|
72
|
+
def __init__(
|
73
|
+
self,
|
74
|
+
runtime: rebel.Runtime,
|
75
|
+
batch_size: int,
|
76
|
+
dec_max_seq_len: int,
|
77
|
+
**kwargs: Any,
|
78
|
+
) -> None:
|
79
|
+
super().__init__(runtime, **kwargs)
|
80
|
+
self.batch_size = batch_size
|
81
|
+
self.dec_max_seq_len = dec_max_seq_len
|
82
|
+
|
83
|
+
def forward(
|
84
|
+
self,
|
85
|
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
86
|
+
attention_mask: Optional[torch.FloatTensor] = None,
|
87
|
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
88
|
+
cache_position: Optional[torch.Tensor] = None,
|
89
|
+
**kwargs,
|
90
|
+
) -> Tuple[torch.FloatTensor]:
|
91
|
+
batch_size = decoder_input_ids.shape[0]
|
92
|
+
if batch_size != self.batch_size:
|
93
|
+
raise RuntimeError(
|
94
|
+
f"Batch size mismatch: got {batch_size}, expected {self.batch_size} (compiled batch size)."
|
95
|
+
)
|
96
|
+
|
97
|
+
if batch_size != cache_position.shape[0]:
|
98
|
+
raise RuntimeError(f"Cache position size mismatch: got {cache_position.shape[0]}, expected {batch_size}.")
|
99
|
+
|
100
|
+
for b_idx in range(self.batch_size):
|
101
|
+
decoding_step = cache_position[b_idx].item()
|
102
|
+
if not (0 <= decoding_step < self.dec_max_seq_len):
|
103
|
+
raise ValueError(
|
104
|
+
f"Decoding step {decoding_step} out of bounds for attention mask with shape {self.dec_attn_mask.shape}."
|
105
|
+
)
|
106
|
+
decoder_attention_mask[b_idx, : decoding_step + 1] = 1
|
107
|
+
|
108
|
+
lm_logits = super().forward(
|
109
|
+
decoder_input_ids,
|
110
|
+
decoder_attention_mask,
|
111
|
+
attention_mask,
|
112
|
+
cache_position,
|
113
|
+
)
|
114
|
+
|
115
|
+
return Seq2SeqLMOutput(logits=lm_logits)
|
116
|
+
|
117
|
+
|
60
118
|
class T5EncoderWrapper(torch.nn.Module):
|
61
119
|
def __init__(self, model: "T5EncoderModel") -> None:
|
62
120
|
super().__init__()
|
@@ -189,7 +247,20 @@ class RBLNT5EncoderModel(RBLNModel):
|
|
189
247
|
|
190
248
|
|
191
249
|
class RBLNT5ForConditionalGeneration(RBLNModelForSeq2SeqLM):
|
192
|
-
|
250
|
+
def __post_init__(self, **kwargs):
|
251
|
+
batch_size = self.rbln_config.model_cfg["batch_size"]
|
252
|
+
dec_max_seq_len = self.rbln_config.model_cfg["dec_max_seq_len"]
|
253
|
+
|
254
|
+
self.encoder = RBLNRuntimeEncoder(
|
255
|
+
runtime=self.model[0],
|
256
|
+
main_input_name="input_ids",
|
257
|
+
)
|
258
|
+
self.decoder = RBLNRuntimeDecoder(
|
259
|
+
runtime=self.model[1],
|
260
|
+
main_input_name="input_ids",
|
261
|
+
batch_size=batch_size,
|
262
|
+
dec_max_seq_len=dec_max_seq_len,
|
263
|
+
)
|
193
264
|
|
194
265
|
@classmethod
|
195
266
|
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
@@ -208,3 +279,139 @@ class RBLNT5ForConditionalGeneration(RBLNModelForSeq2SeqLM):
|
|
208
279
|
return redirect(val)
|
209
280
|
|
210
281
|
return val
|
282
|
+
|
283
|
+
@classmethod
|
284
|
+
def _get_rbln_config(
|
285
|
+
cls,
|
286
|
+
preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
|
287
|
+
model_config: "PretrainedConfig",
|
288
|
+
rbln_kwargs: Dict[str, Any] = {},
|
289
|
+
) -> RBLNConfig:
|
290
|
+
rbln_enc_max_seq_len = rbln_kwargs.get("enc_max_seq_len", None)
|
291
|
+
rbln_dec_max_seq_len = rbln_kwargs.get("dec_max_seq_len", None)
|
292
|
+
rbln_batch_size = rbln_kwargs.get("batch_size", None)
|
293
|
+
rbln_batch_size = 1 if rbln_batch_size is None else rbln_batch_size
|
294
|
+
|
295
|
+
n_layer = getattr(model_config, "decoder_layers", None) or getattr(model_config, "num_layers")
|
296
|
+
n_head = getattr(model_config, "decoder_attention_heads", None) or getattr(model_config, "num_heads")
|
297
|
+
d_kv = (
|
298
|
+
model_config.d_kv
|
299
|
+
if hasattr(model_config, "d_kv")
|
300
|
+
else model_config.d_model // model_config.encoder_attention_heads
|
301
|
+
)
|
302
|
+
|
303
|
+
max_position_embeddings = getattr(model_config, "n_positions", None) or getattr(
|
304
|
+
model_config, "max_position_embeddings", None
|
305
|
+
)
|
306
|
+
|
307
|
+
rbln_pad_token_id = getattr(model_config, "pad_token_id", None)
|
308
|
+
if rbln_pad_token_id is None:
|
309
|
+
rbln_pad_token_id = getattr(model_config, "bos_token_id", None)
|
310
|
+
if rbln_pad_token_id is None:
|
311
|
+
rbln_pad_token_id = getattr(model_config, "eos_token_id", None)
|
312
|
+
if rbln_pad_token_id is None:
|
313
|
+
rbln_pad_token_id = -1
|
314
|
+
|
315
|
+
if rbln_enc_max_seq_len is None:
|
316
|
+
rbln_enc_max_seq_len = max_position_embeddings
|
317
|
+
if rbln_enc_max_seq_len is None:
|
318
|
+
for tokenizer in preprocessors:
|
319
|
+
if hasattr(tokenizer, "model_max_length"):
|
320
|
+
rbln_enc_max_seq_len = tokenizer.model_max_length
|
321
|
+
break
|
322
|
+
if rbln_enc_max_seq_len is None:
|
323
|
+
raise ValueError("`rbln_enc_max_seq_len` should be specified!")
|
324
|
+
if max_position_embeddings is not None and rbln_enc_max_seq_len > max_position_embeddings:
|
325
|
+
raise ValueError("`rbln_enc_max_seq_len` should be less or equal than max_position_embeddings!")
|
326
|
+
|
327
|
+
if rbln_dec_max_seq_len is None:
|
328
|
+
rbln_dec_max_seq_len = max_position_embeddings
|
329
|
+
if rbln_dec_max_seq_len is None:
|
330
|
+
for tokenizer in preprocessors:
|
331
|
+
if hasattr(tokenizer, "model_max_length"):
|
332
|
+
rbln_dec_max_seq_len = tokenizer.model_max_length
|
333
|
+
break
|
334
|
+
if rbln_dec_max_seq_len is None:
|
335
|
+
raise ValueError("`rbln_dec_max_seq_len` should be specified!")
|
336
|
+
|
337
|
+
if max_position_embeddings is not None and rbln_dec_max_seq_len > max_position_embeddings:
|
338
|
+
raise ValueError("`rbln_dec_max_seq_len` should be less or equal than max_position_embeddings!")
|
339
|
+
|
340
|
+
# model input info
|
341
|
+
enc_input_info = [
|
342
|
+
("input_ids", [1, rbln_enc_max_seq_len], "int64"),
|
343
|
+
("attention_mask", [1, rbln_enc_max_seq_len], "float32"),
|
344
|
+
(
|
345
|
+
"cross_key_value_states",
|
346
|
+
[
|
347
|
+
n_layer * 2,
|
348
|
+
rbln_batch_size,
|
349
|
+
n_head,
|
350
|
+
rbln_enc_max_seq_len,
|
351
|
+
d_kv,
|
352
|
+
],
|
353
|
+
"float32",
|
354
|
+
),
|
355
|
+
("block_tables", [1], "int16"),
|
356
|
+
]
|
357
|
+
|
358
|
+
dec_input_info = [
|
359
|
+
("input_ids", [rbln_batch_size, 1], "int64"),
|
360
|
+
("attention_mask", [rbln_batch_size, rbln_dec_max_seq_len], "float32"),
|
361
|
+
("encoder_attention_mask", [rbln_batch_size, rbln_enc_max_seq_len], "float32"),
|
362
|
+
(
|
363
|
+
"cache_position",
|
364
|
+
[rbln_batch_size, 1],
|
365
|
+
"int32",
|
366
|
+
),
|
367
|
+
]
|
368
|
+
dec_input_info.extend(
|
369
|
+
[
|
370
|
+
(
|
371
|
+
"cross_key_value_states",
|
372
|
+
[
|
373
|
+
n_layer * 2,
|
374
|
+
rbln_batch_size,
|
375
|
+
n_head,
|
376
|
+
rbln_enc_max_seq_len,
|
377
|
+
d_kv,
|
378
|
+
],
|
379
|
+
"float32",
|
380
|
+
)
|
381
|
+
]
|
382
|
+
)
|
383
|
+
dec_input_info.extend(
|
384
|
+
[
|
385
|
+
(
|
386
|
+
f"self_key_value_states_{i}",
|
387
|
+
[
|
388
|
+
rbln_batch_size,
|
389
|
+
n_head,
|
390
|
+
rbln_dec_max_seq_len,
|
391
|
+
d_kv,
|
392
|
+
],
|
393
|
+
"float32",
|
394
|
+
)
|
395
|
+
for i in range(n_layer * 2)
|
396
|
+
]
|
397
|
+
)
|
398
|
+
|
399
|
+
enc_compile_config = RBLNCompileConfig(compiled_model_name="encoder", input_info=enc_input_info)
|
400
|
+
dec_compile_config = RBLNCompileConfig(compiled_model_name="decoder", input_info=dec_input_info)
|
401
|
+
|
402
|
+
rbln_config = RBLNConfig(
|
403
|
+
rbln_cls=cls.__name__,
|
404
|
+
compile_cfgs=[enc_compile_config, dec_compile_config],
|
405
|
+
rbln_kwargs=rbln_kwargs,
|
406
|
+
)
|
407
|
+
|
408
|
+
rbln_config.model_cfg.update(
|
409
|
+
{
|
410
|
+
"enc_max_seq_len": rbln_enc_max_seq_len,
|
411
|
+
"dec_max_seq_len": rbln_dec_max_seq_len,
|
412
|
+
"batch_size": rbln_batch_size,
|
413
|
+
"pad_token_id": rbln_pad_token_id,
|
414
|
+
}
|
415
|
+
)
|
416
|
+
|
417
|
+
return rbln_config
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: optimum-rbln
|
3
|
-
Version: 0.7.3.
|
3
|
+
Version: 0.7.3.post2
|
4
4
|
Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
5
5
|
Project-URL: Homepage, https://rebellions.ai
|
6
6
|
Project-URL: Documentation, https://docs.rbln.ai
|
@@ -1,5 +1,5 @@
|
|
1
1
|
optimum/rbln/__init__.py,sha256=ZDzXcl-oAcYJhKjJMpotjbTih9awo7HzUb6T3MUEP6Q,6894
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
2
|
+
optimum/rbln/__version__.py,sha256=OJRzB6Y7xaNgH7EkerbumPEoY0Nlzs1_xYhBJvOXTzQ,517
|
3
3
|
optimum/rbln/modeling.py,sha256=nJsAs5zs--VVOYGFjYNpqfxYIemJIK4Lr0WEzlDLdP0,8390
|
4
4
|
optimum/rbln/modeling_base.py,sha256=dNCL-BhrWCpuOVkZaj8-MW567Tf4lLo3p3Z3ldjWJfU,21779
|
5
5
|
optimum/rbln/modeling_config.py,sha256=7104bxmrvKW4Q6XTruQayiIGl8GHDFmPkJ3cknMIInE,11335
|
@@ -55,7 +55,7 @@ optimum/rbln/transformers/models/auto/auto_factory.py,sha256=IK9jFrJ3EEzYQa9_aKp
|
|
55
55
|
optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Un9qoqdy3dO8JBza_bTJF_6_fRVNM9QisihSgTRFI-o,3933
|
56
56
|
optimum/rbln/transformers/models/bart/__init__.py,sha256=32HPe0_GIO0hp9U464Iv6Jd7M-1nop9g8hA1UZMHhyw,674
|
57
57
|
optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=Oo-Cdne7igKEex8wwP-gztKJHgs5GLHQjK1oc3IZIDE,5801
|
58
|
-
optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=
|
58
|
+
optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=iI3ubPOVvHmhLt0wEz_vkOfMyNTHVNjmnkLtbpOX760,5797
|
59
59
|
optimum/rbln/transformers/models/bert/__init__.py,sha256=YVV7k_laU6yJBawZrgjIWjRmIF-Y4oQQHqyf8lsraQs,691
|
60
60
|
optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=p3utRqf3dv9_RkHwaMCa1EfXttNJkqCJUIZo3CeZ9YY,4674
|
61
61
|
optimum/rbln/transformers/models/clip/__init__.py,sha256=H9vuBwrmFO0-CqZhXUrKF-uQL6igCqMlqrT1X_ELaAI,754
|
@@ -92,10 +92,10 @@ optimum/rbln/transformers/models/qwen2/__init__.py,sha256=RAMWc21W_2I6DH9xBjeNxP
|
|
92
92
|
optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=9-aFDvjMzPNUyGOz0qo33RE18bUFGYZ3Wt_68zb5uJY,1530
|
93
93
|
optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
|
94
94
|
optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=EmEMV4rOYqKyruX85d0fR73-b8N6BSD6CPcbpYdBuVk,651
|
95
|
-
optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=
|
95
|
+
optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=NPfJf9Uk_bYOae7hXGHwteGiWH0va63Z-D93RmAMENg,17611
|
96
96
|
optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=tvzacIZam1sIr_1BvvZ_fDr8u5dXAiYiynFdX9tArtY,18877
|
97
97
|
optimum/rbln/transformers/models/t5/__init__.py,sha256=1skR1RmnG62WTAP3-F5P1x-V_ReFhMyirH3u56vWwvc,675
|
98
|
-
optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=
|
98
|
+
optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=nKRR3eH1EAu1YkKvhlqGyTrJXDRd-IWB5LOeG9jrcb4,16021
|
99
99
|
optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=AArCQhZRETVM583wlIRzMFOSYq7t2nzxaAeyhZxyxKk,9508
|
100
100
|
optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=YpgA0K-vyg9veh0eL_jxauosbRpb_kpGKHvvQLBspKM,649
|
101
101
|
optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=JYJmV52j6cBwim4RanVJryfKnV80V96ol0A-oR6o7cg,3856
|
@@ -116,7 +116,7 @@ optimum/rbln/utils/model_utils.py,sha256=DfD_Z2qvZHqcddXqnzTM1AN8khanj3-DXK2lJvV
|
|
116
116
|
optimum/rbln/utils/runtime_utils.py,sha256=5-DYniyP59nx-mrrbi7AqA77L85b4Cm5oLpaxidSyss,3699
|
117
117
|
optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
|
118
118
|
optimum/rbln/utils/submodule.py,sha256=oZoGrItB8WqY4i-K9WJPlLlcLohc1YGB9OHB8_XZw3A,4071
|
119
|
-
optimum_rbln-0.7.3.
|
120
|
-
optimum_rbln-0.7.3.
|
121
|
-
optimum_rbln-0.7.3.
|
122
|
-
optimum_rbln-0.7.3.
|
119
|
+
optimum_rbln-0.7.3.post2.dist-info/METADATA,sha256=YgOp5SEpJ_VfYEohAoBhSQ20TaX1usvkRAzV7s7mS5I,5304
|
120
|
+
optimum_rbln-0.7.3.post2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
121
|
+
optimum_rbln-0.7.3.post2.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
122
|
+
optimum_rbln-0.7.3.post2.dist-info/RECORD,,
|
File without changes
|
File without changes
|