optimum-rbln 0.7.2rc2__py3-none-any.whl → 0.7.3a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (26) hide show
  1. optimum/rbln/__version__.py +2 -2
  2. optimum/rbln/diffusers/modeling_diffusers.py +4 -6
  3. optimum/rbln/modeling.py +1 -1
  4. optimum/rbln/modeling_base.py +15 -3
  5. optimum/rbln/ops/__init__.py +6 -2
  6. optimum/rbln/ops/attn.py +95 -7
  7. optimum/rbln/ops/flash_attn.py +43 -6
  8. optimum/rbln/transformers/modeling_generic.py +3 -3
  9. optimum/rbln/transformers/models/bart/bart_architecture.py +1 -1
  10. optimum/rbln/transformers/models/bart/modeling_bart.py +1 -1
  11. optimum/rbln/transformers/models/bert/modeling_bert.py +1 -1
  12. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +186 -78
  13. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +55 -17
  14. optimum/rbln/transformers/models/exaone/exaone_architecture.py +5 -3
  15. optimum/rbln/transformers/models/gemma/gemma_architecture.py +5 -3
  16. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +3 -3
  17. optimum/rbln/transformers/models/midm/midm_architecture.py +3 -3
  18. optimum/rbln/transformers/models/phi/phi_architecture.py +2 -2
  19. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
  20. optimum/rbln/transformers/models/t5/modeling_t5.py +1 -1
  21. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +1 -14
  22. optimum/rbln/utils/import_utils.py +7 -0
  23. {optimum_rbln-0.7.2rc2.dist-info → optimum_rbln-0.7.3a1.dist-info}/METADATA +1 -1
  24. {optimum_rbln-0.7.2rc2.dist-info → optimum_rbln-0.7.3a1.dist-info}/RECORD +26 -26
  25. {optimum_rbln-0.7.2rc2.dist-info → optimum_rbln-0.7.3a1.dist-info}/WHEEL +0 -0
  26. {optimum_rbln-0.7.2rc2.dist-info → optimum_rbln-0.7.3a1.dist-info}/licenses/LICENSE +0 -0
@@ -32,15 +32,15 @@ if TYPE_CHECKING:
32
32
 
33
33
 
34
34
  class GPT2Wrapper(DecoderOnlyWrapper):
35
- def convert_to_rbln_causal_lm(self, causal_lm: "GPT2LMHeadModel"):
35
+ def convert_to_rbln_causal_lm(self, causal_lm: "GPT2LMHeadModel", max_seq_len: int):
36
36
  if self.attn_impl != "eager":
37
37
  raise NotImplementedError(f"flash attention ({self.attn_impl}) is not implemented for {self.__class__}")
38
38
  new_layers = []
39
39
  for layer in causal_lm.transformer.h:
40
- new_self_attn = GPT2Attention(layer.attn)
40
+ new_self_attn = GPT2Attention(layer.attn, self.use_attention_mask)
41
41
  new_layer = GPT2Layer(layer, new_self_attn)
42
42
  new_layers.append(new_layer)
43
- new_model = GPT2Model(causal_lm.transformer, new_layers)
43
+ new_model = GPT2Model(causal_lm.transformer, new_layers, max_seq_len=max_seq_len)
44
44
  new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
45
45
  return new_causal_lm
46
46
 
@@ -55,15 +55,15 @@ class MidmLMHeadModelWrapper(DecoderOnlyWrapper):
55
55
  self.config.partial_rotary_factor = self.config.rotary_percentage
56
56
  return super().get_rotary_emb(max_seq_len=max_seq_len)
57
57
 
58
- def convert_to_rbln_causal_lm(self, causal_lm: "MidmLMHeadModel"):
58
+ def convert_to_rbln_causal_lm(self, causal_lm: "MidmLMHeadModel", max_seq_len: int):
59
59
  if self.attn_impl != "eager":
60
60
  raise NotImplementedError(f"flash attention ({self.attn_impl}) is not implemented for {self.__class__}")
61
61
  new_layers = []
62
62
  for layer in causal_lm.transformer.h:
63
- new_self_attn = MidmAttention(layer.attn)
63
+ new_self_attn = MidmAttention(layer.attn, self.use_attention_mask)
64
64
  new_layer = MidmLayer(layer, new_self_attn)
65
65
  new_layers.append(new_layer)
66
- new_model = MidmModel(causal_lm.transformer, new_layers)
66
+ new_model = MidmModel(causal_lm.transformer, new_layers, max_seq_len=max_seq_len)
67
67
  new_causal_lm = DecoderOnlyForCausalLM(causal_lm, new_model)
68
68
  return new_causal_lm
69
69
 
@@ -32,11 +32,11 @@ if TYPE_CHECKING:
32
32
 
33
33
 
34
34
  class PhiWrapper(DecoderOnlyWrapper):
35
- def convert_to_rbln_causal_lm(self, causal_lm: "PhiForCausalLM"):
35
+ def convert_to_rbln_causal_lm(self, causal_lm: "PhiForCausalLM", max_seq_len: int):
36
36
  new_layers = []
37
37
  for layer in causal_lm.model.layers:
38
38
  if self.attn_impl == "eager":
39
- new_self_attn = PhiAttention(layer.self_attn)
39
+ new_self_attn = PhiAttention(layer.self_attn, self.use_attention_mask)
40
40
  elif self.attn_impl == "flash_attn":
41
41
  raise NotImplementedError(f"flash attn for {self.__class__} is not implemented yet.")
42
42
  else:
@@ -18,7 +18,7 @@ import torch
18
18
  from torch import nn
19
19
  from transformers.utils import logging
20
20
 
21
- from ....ops import register_rbln_custom_attention, register_rbln_custom_cache_update
21
+ from ....ops import register_rbln_custom_cache_update, register_rbln_custom_masked_attention
22
22
 
23
23
 
24
24
  logger = logging.get_logger(__name__)
@@ -143,7 +143,7 @@ class Seq2SeqDecoderWrapper(nn.Module):
143
143
  It is inspired by the BART architecture, but it is designed to be flexible and can be overridden
144
144
  by subclasses to modify or add custom attributes as necessary.
145
145
  """
146
- register_rbln_custom_attention()
146
+ register_rbln_custom_masked_attention()
147
147
  self.num_layers = self.config.decoder_layers
148
148
  self.conditional_generation = self.convert_to_rbln_conditional_generation(model)
149
149
 
@@ -120,7 +120,7 @@ class RBLNT5EncoderModel(RBLNModel):
120
120
  if max_position_embeddings is not None and rbln_max_seq_len > max_position_embeddings:
121
121
  raise ValueError("`rbln_max_seq_len` should be less or equal than max_position_embeddings!")
122
122
 
123
- signature_params = inspect.signature(cls.hf_class.forward).parameters.keys()
123
+ signature_params = inspect.signature(cls.get_hf_class().forward).parameters.keys()
124
124
 
125
125
  if rbln_model_input_names is None:
126
126
  for tokenizer in preprocessors:
@@ -15,7 +15,6 @@
15
15
  import inspect
16
16
  from typing import TYPE_CHECKING, Optional, Union
17
17
 
18
- import torch
19
18
  from transformers import PretrainedConfig
20
19
 
21
20
  from ....modeling import RBLNModel
@@ -58,7 +57,7 @@ class RBLNXLMRobertaModel(RBLNModel):
58
57
  if max_position_embeddings is not None and rbln_max_seq_len > max_position_embeddings:
59
58
  raise ValueError("`rbln_enc_max_seq_len` should be less or equal than max_position_embeddings!")
60
59
 
61
- signature_params = inspect.signature(cls.hf_class.forward).parameters.keys()
60
+ signature_params = inspect.signature(cls.get_hf_class().forward).parameters.keys()
62
61
 
63
62
  if rbln_model_input_names is None:
64
63
  for tokenizer in preprocessors:
@@ -99,15 +98,3 @@ class RBLNXLMRobertaModel(RBLNModel):
99
98
  )
100
99
  rbln_config.model_cfg.update({"max_seq_len": rbln_max_seq_len})
101
100
  return rbln_config
102
-
103
- def forward(
104
- self,
105
- input_ids: "torch.Tensor",
106
- attention_mask: "torch.Tensor",
107
- token_type_ids: "torch.Tensor" = None,
108
- **kwargs,
109
- ):
110
- if token_type_ids is None:
111
- token_type_ids = torch.zeros_like(input=input_ids, dtype=torch.int64)
112
- output = super().forward(input_ids, attention_mask, token_type_ids)
113
- return output
@@ -28,6 +28,13 @@ class VersionCompat:
28
28
 
29
29
 
30
30
  RBLN_VERSION_COMPATS = {
31
+ "0.7.2": [
32
+ VersionCompat(
33
+ package_name="rebel-compiler",
34
+ min_version="0.7.2",
35
+ max_version="0.7.3",
36
+ ),
37
+ ],
31
38
  "0.2.0": [
32
39
  VersionCompat(
33
40
  package_name="rebel-compiler",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: optimum-rbln
3
- Version: 0.7.2rc2
3
+ Version: 0.7.3a1
4
4
  Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators. It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
5
5
  Project-URL: Homepage, https://rebellions.ai
6
6
  Project-URL: Documentation, https://docs.rbln.ai
@@ -1,10 +1,10 @@
1
1
  optimum/rbln/__init__.py,sha256=eHi15YM3989AcX52jka9rUmgAtlp1PHqMNwBEdOfuu8,6554
2
- optimum/rbln/__version__.py,sha256=zqbmLyo5pPWR9BW6zJWr8YbUBrDxL1gWhoBU3tq2Ds4,514
3
- optimum/rbln/modeling.py,sha256=REImAAKO82CqSNABR-9E1jJEsWch9amSOwOOQhFEYLY,8283
4
- optimum/rbln/modeling_base.py,sha256=fQ0bI1Bb6GJquRXftmSSN9K-TXLhFltZJ6C-2w43xMg,21193
2
+ optimum/rbln/__version__.py,sha256=3XXLT-7KoOXBM5ecjGQ9vxdHcJ06x38tTkK1veoUkmQ,513
3
+ optimum/rbln/modeling.py,sha256=3XE0IrCYbkjw9_Q9BFzZ_ri_Kyxw1g6iwfdohZB46-s,8289
4
+ optimum/rbln/modeling_base.py,sha256=ELSPbjx7awBRM2SckkD-5gI3TIa01mfzz7gDRC1Pljk,21778
5
5
  optimum/rbln/modeling_config.py,sha256=7104bxmrvKW4Q6XTruQayiIGl8GHDFmPkJ3cknMIInE,11335
6
6
  optimum/rbln/diffusers/__init__.py,sha256=pOyoXv3-JRzTBSwPKbgLS9H6F2K9dJdReEmpGhcLQYU,3283
7
- optimum/rbln/diffusers/modeling_diffusers.py,sha256=3qoBuUvaUMKqIzl7DZpMkrLLjB490qtqfn7ijk_mue8,21128
7
+ optimum/rbln/diffusers/modeling_diffusers.py,sha256=zqVNgH9oeOx2iNE7VsW_FinVf4s6G5Idyh4TKz7XJJg,21116
8
8
  optimum/rbln/diffusers/models/__init__.py,sha256=mkCvJyH1KcwrsUvYSq_bVC79oOfyqtBSFDyPS1_48wA,1478
9
9
  optimum/rbln/diffusers/models/controlnet.py,sha256=EM_HlzCdaZdnnK0oGpY2fQeigPqHhlwh4NHCzlmoumI,10512
10
10
  optimum/rbln/diffusers/models/autoencoders/__init__.py,sha256=dg17ZTUsiqTcbIaEE4fqew9uRbao0diQ21PXvRKIqKg,679
@@ -39,38 +39,38 @@ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=9iIMZYvp
39
39
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=OvB5bxX6HUiqJeIc3uukuEmUXYEx1pTqGNOtdG2l1m8,902
40
40
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=3aB1Rw-OgKytQOHwOaShbEvq_XVHPOGvsGm8pstEmKU,930
41
41
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py,sha256=MzVP1wscaO1sUIiBIPJqG6zuGyez9VUbA42-JSIm-mk,930
42
- optimum/rbln/ops/__init__.py,sha256=MbAHevg59fXQOFgrnsFFZ97s8-YrgvYCYML_sgKEEfM,816
43
- optimum/rbln/ops/attn.py,sha256=QYvSMg4ps_PenHwpLVhuYRoOAFvHIo19nY0ZEdj4nTE,9700
44
- optimum/rbln/ops/flash_attn.py,sha256=Zn5nkouY3kk6MBivQpPjgGh4oepjpi8F3tnTrmrNfpg,2304
42
+ optimum/rbln/ops/__init__.py,sha256=-jcOGX3B8w5Znpr1z2eUsrK3TN-w9trrkSoqJRWgXdA,945
43
+ optimum/rbln/ops/attn.py,sha256=WUsy4I25gm2j9Xdns9W2NNd3jCNcueqJuisDzp0jPaA,13899
44
+ optimum/rbln/ops/flash_attn.py,sha256=aQRupKPvJsNFWKrHaeyXg-LemyUJWmCJaVrA__Mjabo,3869
45
45
  optimum/rbln/ops/kv_cache_update.py,sha256=9W4WCO1Dtfy0u5i978JJRa7uLbqrfR2lHuoPynb07fw,3143
46
46
  optimum/rbln/transformers/__init__.py,sha256=AGo3BqVIZrsOzYsQAnnQ25HCstTPBclrXbvvUxVMlqE,4255
47
47
  optimum/rbln/transformers/modeling_alias.py,sha256=yx7FnZQWAnrWzivaO5hI7T6i-fyLzt2tMIXG2oDNbPo,1657
48
- optimum/rbln/transformers/modeling_generic.py,sha256=SD7XjpjnCn-ejNAUWgkaaHV6Fv2Y6K-hbXEXXb9W_H4,18177
48
+ optimum/rbln/transformers/modeling_generic.py,sha256=aaZWsqVDCRvH03q-Wen7DMfLr7Gy-u-I0mTw0aYqWjk,18195
49
49
  optimum/rbln/transformers/modeling_rope_utils.py,sha256=3zwkhYUyTZhxCJUSmwCc88iiY1TppRWEY9ShwUqNB2k,14293
50
50
  optimum/rbln/transformers/models/__init__.py,sha256=zGnYODR-_T65tv6jFjtC8l01LC4vjfm41bM4doCXRvY,3835
51
51
  optimum/rbln/transformers/models/auto/__init__.py,sha256=GvGbb3ZpMv-h6euXeZ42jSizoOfrL2O1uvpAnfKxYEo,1034
52
52
  optimum/rbln/transformers/models/auto/auto_factory.py,sha256=IK9jFrJ3EEzYQa9_aKpcp2TO68M5YGkA-HcfBVpA2QU,7027
53
53
  optimum/rbln/transformers/models/auto/modeling_auto.py,sha256=Un9qoqdy3dO8JBza_bTJF_6_fRVNM9QisihSgTRFI-o,3933
54
54
  optimum/rbln/transformers/models/bart/__init__.py,sha256=32HPe0_GIO0hp9U464Iv6Jd7M-1nop9g8hA1UZMHhyw,674
55
- optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=dTkgMpNkyh4vT_mZU5tQ5bvH_lRZfRjaJ1gIHvJkmgs,5479
56
- optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=ADRbE-5N3xJ60AzzjJ4BZs_THmB71qs4XTr9iFqsEqE,5667
55
+ optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=ZV-6Y3xABJsGAw2wi3vGYZNXbeVp-DlI2uUsdsa-8M8,5486
56
+ optimum/rbln/transformers/models/bart/modeling_bart.py,sha256=QZCTJA0K90YBzkCXxs3JR9Ol9lbmAn50RDeN2hcWtx8,5673
57
57
  optimum/rbln/transformers/models/bert/__init__.py,sha256=YVV7k_laU6yJBawZrgjIWjRmIF-Y4oQQHqyf8lsraQs,691
58
- optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=-nv-sgmHkyHQIoQvF8-lXOJiL4eaa1pq8MpdN4uRi9M,4668
58
+ optimum/rbln/transformers/models/bert/modeling_bert.py,sha256=p3utRqf3dv9_RkHwaMCa1EfXttNJkqCJUIZo3CeZ9YY,4674
59
59
  optimum/rbln/transformers/models/clip/__init__.py,sha256=H9vuBwrmFO0-CqZhXUrKF-uQL6igCqMlqrT1X_ELaAI,754
60
60
  optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=NiSm7bHs4SReHDUr53BBWSX0Y8bkKOeUSpsBDrp8YDw,6628
61
61
  optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=pDogsdpJKKB5rqnVFrRjwfhUvOSV-jZ3oARMsqSvOOQ,665
62
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=eT1fbKDL92yGBXtUKA_JibD4kiRPdf3tAFJHP5nlfH4,36646
63
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=2OO8MEgFgcl1VPrQXxqkvmRJJEuFdexwu8XqbHDbR6Y,27609
62
+ optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=6X87ZVvz4wHoTATdaxxSLy8wBfsEkUwWQISlo_mXPKM,40822
63
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=BYENVqueqR121nPyh2LnV_sMdhl95GRgqHLnCcX2sz8,29067
64
64
  optimum/rbln/transformers/models/dpt/__init__.py,sha256=gP1tkR3XMNlHq1GT87ugIVvb2o_1eAUg1JaniXjy1Lw,651
65
65
  optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=ZsS2SOiqcA4azULB-WFEMQZbgIoOyVUKqVKqrw_tWzA,3430
66
66
  optimum/rbln/transformers/models/exaone/__init__.py,sha256=zYH_5tVa8-juEdsOIky7I33WSC3Zuhoq1upI0OHYeVw,859
67
- optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256=thzWLVz3eUcst4IPiOavta5QeXZw7JQwwfdIzQ_x6Ns,3029
67
+ optimum/rbln/transformers/models/exaone/exaone_architecture.py,sha256=aPit1EOe3s3g3IVhztU1wydiTjYGA_j02btV9dl8W_I,3119
68
68
  optimum/rbln/transformers/models/exaone/modeling_exaone.py,sha256=WjyH8PmsMljSea7kJn_Cq1FJ96OXwXAoU7hv2Q8zUnI,1747
69
69
  optimum/rbln/transformers/models/gemma/__init__.py,sha256=7qUrekuBwCI9a6_Fq6j--FzCirRtUDz3ApY17mQS5Y4,648
70
- optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=TvPWphXWG1snpnKakxQWUQZuST2GGJhCrRdUN1FLSIk,1965
70
+ optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=_GPIcSY5Q3PPuTehEseEf43mMBkW9Gl6pJlnHnjmkkM,2055
71
71
  optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=-U3w3cEOv3ps1S8aL7uOq6Kq2siCPZz7Z8MXhDQgQqo,1530
72
72
  optimum/rbln/transformers/models/gpt2/__init__.py,sha256=UwwPPYVTB9ywDWy314L2bNL0i7wfkQFA71qjgXicEPg,646
73
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=sa4rU6mtLwD9q97EnBPwfPvhN7ZvG44xFtIs4inGL7o,2866
73
+ optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=eN_UFcaaxWrtXvAGYck7J19Im2GZub2pwOejF3VWR6I,2934
74
74
  optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=qBDanUk_O-HtOIVCA4IE3FYyCsnL9xIDK00vft-0caw,1490
75
75
  optimum/rbln/transformers/models/llama/__init__.py,sha256=jo_j_eIrHYGNEhR5lb6g3r5sO0ewe3fm2TWO8mLrT58,648
76
76
  optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=S7MCPfyjG5eUqgaS-QNBB0ApUD6wnb5fR0RHq7k7-pA,728
@@ -78,22 +78,22 @@ optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=Z3iony7icoFhRQ11
78
78
  optimum/rbln/transformers/models/llava_next/__init__.py,sha256=VLieyWm-UgvuNxw9B38wrL1Jsa09NBDX_ebABmdpTbs,670
79
79
  optimum/rbln/transformers/models/llava_next/modeling_llava_next.py,sha256=w_plsUOzxnhkQBhQeUqW9aJqGCvCvLtsx0XNKYjOprU,26203
80
80
  optimum/rbln/transformers/models/midm/__init__.py,sha256=UJSaErsF-z6dZERIS143WTaygffZyzEGqoQ2ZPDiM-c,855
81
- optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=mueRmMGX6UplZb0C0RFdUOa9lsNH8YJHV6rYrDLOdlQ,5302
81
+ optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=au6jHs7UQjthXDOrL7aqlOw7fkwM0-vkKkLGWeV1KKQ,5370
82
82
  optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=GG25BozEZriAL-OPFGpzOjyDtSFB-NfeiLJTDAqxe20,1734
83
83
  optimum/rbln/transformers/models/mistral/__init__.py,sha256=jpGdNtRLoV7WmuYpRGVXR27BTC8RIi_nhmvYlxuhqRc,652
84
84
  optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=_aU8TE_tdvfo0K7QpgTlz_d0qwk4O82dl9268lPL16E,733
85
85
  optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=7nrddoBIHf8S12LZWBUpotnvG3gND11vMQda9yYXJ-s,1560
86
86
  optimum/rbln/transformers/models/phi/__init__.py,sha256=mZLt1M7BbYEvSon5UlkniMUPa15SfjZFdw0kMSAF3VA,644
87
87
  optimum/rbln/transformers/models/phi/modeling_phi.py,sha256=j-6Pqd5rR2JE8I1pnKFlCi4nW5Dv3wZjoPWxohissoo,1516
88
- optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=v1MVf9YGxSV1jJ2w81IVvoz3vxjangZJH5rOZX02pPw,3996
88
+ optimum/rbln/transformers/models/phi/phi_architecture.py,sha256=QQBf5tlJDYuEHy8wLRpQW9vhYV3R6kr5OLTt4ZXrwl8,4039
89
89
  optimum/rbln/transformers/models/qwen2/__init__.py,sha256=RAMWc21W_2I6DH9xBjeNxPECmAcTrbKhSIefq3Lass0,648
90
90
  optimum/rbln/transformers/models/qwen2/modeling_qwen2.py,sha256=9-aFDvjMzPNUyGOz0qo33RE18bUFGYZ3Wt_68zb5uJY,1530
91
91
  optimum/rbln/transformers/models/qwen2/qwen2_architecture.py,sha256=XlNAMYAcDLohnSAhIFGKOPuCB5XLgzYs5ABWdeQSaZs,720
92
92
  optimum/rbln/transformers/models/seq2seq/__init__.py,sha256=EmEMV4rOYqKyruX85d0fR73-b8N6BSD6CPcbpYdBuVk,651
93
93
  optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py,sha256=HG_-8ufRWIls67imU1547V0bk9FUWC0haOBL7eyRV6k,16365
94
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=_TL4-vpjM9lfRnQUXRFm3mtVdz_h5B23k01uc_XnW5I,18376
94
+ optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py,sha256=jPiRo2woijKd8VOHKb0qhBmy0vw4_WHQQh1JotlTx1w,18390
95
95
  optimum/rbln/transformers/models/t5/__init__.py,sha256=1skR1RmnG62WTAP3-F5P1x-V_ReFhMyirH3u56vWwvc,675
96
- optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=MFs-3yYviV1QqSpsTB2GarTEs9wGH5AYofksLQLMBXg,8043
96
+ optimum/rbln/transformers/models/t5/modeling_t5.py,sha256=9AHRoGsr4eD_dIm1JA6ojafqIxd4w5Upzw3HmKOADkk,8049
97
97
  optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=kkjErS42mW2jv5O_xL7BaKobvvqy7BGmYOowKyHakvI,7189
98
98
  optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=YpgA0K-vyg9veh0eL_jxauosbRpb_kpGKHvvQLBspKM,649
99
99
  optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=JYJmV52j6cBwim4RanVJryfKnV80V96ol0A-oR6o7cg,3856
@@ -102,19 +102,19 @@ optimum/rbln/transformers/models/whisper/generation_whisper.py,sha256=GIHTca3b1V
102
102
  optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=0nBADNxE0A1ozBbRutTBvxpo_Y1qkOycT_zronkN-ZU,15840
103
103
  optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=eP3UgkwCRaaFjc5Jc4ZEiWxr3-L7oJx9KzpJ7eFkwUs,13158
104
104
  optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=fC7iNcdxBZ_6eOF2snStmf8r2M3c8O_-XcXnQEaHQCE,653
105
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=lKSeL3RUwIyfuca2jZ6SFV4N59EJS4UD59JMUfh3BiA,4767
105
+ optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=8YNLz0bc5ze-QuU8rN-QhUfGzlSUs3iMJiWTxO3o6AM,4366
106
106
  optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
107
  optimum/rbln/transformers/utils/rbln_quantization.py,sha256=gwBVHf97sQgPNmGa0wq87E8mPyrtXYhMnO4X4sKp3c8,7639
108
108
  optimum/rbln/utils/__init__.py,sha256=ieDBT2VFTt2E0M4v_POLBpuGW9LxSydpb_DuPd6PQqc,712
109
109
  optimum/rbln/utils/decorator_utils.py,sha256=xu-TrsNi33SRC2a7DBsyoo6-pEQxWKZPZSmM9QlDe2Y,3745
110
110
  optimum/rbln/utils/hub.py,sha256=bNmOJGEO9Jfux4Cg8Xli-898I4mxk20KuwQOhP0Zs1U,4198
111
- optimum/rbln/utils/import_utils.py,sha256=ec-tISKIjUPHIfjzj6p-w78NVejWVBohb59f7J-HJvQ,4059
111
+ optimum/rbln/utils/import_utils.py,sha256=n4HcvZPzFW2ytl45qJ4ZQYlrRSoOb0-nnqhyT2_JA8M,4224
112
112
  optimum/rbln/utils/logging.py,sha256=VKKBmlQSdg6iZCGmAXaWYiW67K84jyp1QJhLQSSjPPE,3453
113
113
  optimum/rbln/utils/model_utils.py,sha256=DfD_Z2qvZHqcddXqnzTM1AN8khanj3-DXK2lJvVxDvs,1278
114
114
  optimum/rbln/utils/runtime_utils.py,sha256=5-DYniyP59nx-mrrbi7AqA77L85b4Cm5oLpaxidSyss,3699
115
115
  optimum/rbln/utils/save_utils.py,sha256=hG5uOtYmecSXZuGTvCXsTM-SiyZpr5q3InUGCCq_jzQ,3619
116
116
  optimum/rbln/utils/submodule.py,sha256=oZoGrItB8WqY4i-K9WJPlLlcLohc1YGB9OHB8_XZw3A,4071
117
- optimum_rbln-0.7.2rc2.dist-info/METADATA,sha256=3s6ApD61Dy5HLHBuomJz6wvHXFyfqk8E8N1oRtNMr2E,5301
118
- optimum_rbln-0.7.2rc2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
119
- optimum_rbln-0.7.2rc2.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
120
- optimum_rbln-0.7.2rc2.dist-info/RECORD,,
117
+ optimum_rbln-0.7.3a1.dist-info/METADATA,sha256=59cCm0xXF4GfQ4oMuDLjOYHjkhUMqnZayBGMBstYd0Q,5300
118
+ optimum_rbln-0.7.3a1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
119
+ optimum_rbln-0.7.3a1.dist-info/licenses/LICENSE,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
120
+ optimum_rbln-0.7.3a1.dist-info/RECORD,,