optimum-rbln 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +17 -0
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/diffusers/__init__.py +0 -1
- optimum/rbln/diffusers/models/autoencoder_kl.py +3 -3
- optimum/rbln/diffusers/models/controlnet.py +7 -3
- optimum/rbln/diffusers/models/unet_2d_condition.py +5 -5
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +23 -146
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +107 -59
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +106 -54
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +130 -71
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +131 -72
- optimum/rbln/modeling_alias.py +19 -1
- optimum/rbln/modeling_base.py +162 -18
- optimum/rbln/transformers/__init__.py +8 -0
- optimum/rbln/transformers/cache_utils.py +111 -0
- optimum/rbln/transformers/generation/utils.py +0 -2
- optimum/rbln/transformers/models/__init__.py +3 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +0 -5
- optimum/rbln/transformers/models/clip/modeling_clip.py +1 -1
- optimum/rbln/transformers/models/decoderonly/__init__.py +36 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +516 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +464 -0
- optimum/rbln/transformers/models/gemma/__init__.py +24 -0
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +123 -0
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +67 -0
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +201 -166
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +10 -257
- optimum/rbln/transformers/models/llama/llama_architecture.py +3 -610
- optimum/rbln/transformers/models/llama/modeling_llama.py +12 -440
- optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py +2 -1
- optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py +0 -4
- optimum/rbln/transformers/models/midm/midm_architecture.py +160 -357
- optimum/rbln/transformers/models/midm/modeling_midm.py +10 -325
- optimum/rbln/transformers/models/mistral/__init__.py +24 -0
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +29 -0
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +68 -0
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -6
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +131 -0
- optimum/rbln/transformers/utils/__init__.py +0 -0
- optimum/rbln/transformers/utils/rbln_quantization.py +109 -0
- optimum/rbln/utils/import_utils.py +1 -4
- optimum/rbln/utils/runtime_utils.py +2 -1
- {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.9.dist-info}/METADATA +11 -5
- {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.9.dist-info}/RECORD +48 -35
- optimum/rbln/transformers/models/llama/llama_architecture_cb.py +0 -764
- {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.9.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.9.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,131 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
import logging
|
25
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
26
|
+
|
27
|
+
import torch
|
28
|
+
from transformers import AutoModel, PretrainedConfig, PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
|
29
|
+
|
30
|
+
from ....modeling_base import RBLNModel
|
31
|
+
from ....modeling_config import RBLNConfig, RBLNRuntimeConfig
|
32
|
+
|
33
|
+
|
34
|
+
logger = logging.getLogger(__name__)
|
35
|
+
|
36
|
+
if TYPE_CHECKING:
|
37
|
+
from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer
|
38
|
+
|
39
|
+
|
40
|
+
class RBLNXLMRobertaModel(RBLNModel):
|
41
|
+
auto_model_class = AutoModel # feature extraction
|
42
|
+
original_model_class = XLMRobertaModel
|
43
|
+
original_config_class = XLMRobertaConfig
|
44
|
+
|
45
|
+
@classmethod
|
46
|
+
def get_pytorch_model(
|
47
|
+
cls,
|
48
|
+
model_id: str,
|
49
|
+
use_auth_token: Optional[Union[bool, str]] = None,
|
50
|
+
revision: Optional[str] = None,
|
51
|
+
force_download: bool = False,
|
52
|
+
cache_dir: Optional[str] = None,
|
53
|
+
subfolder: str = "",
|
54
|
+
local_files_only: bool = False,
|
55
|
+
trust_remote_code: bool = False,
|
56
|
+
rbln_config_kwargs: Optional[Dict[str, Any]] = None,
|
57
|
+
rbln_constructor_kwargs: Optional[Dict[str, Any]] = None,
|
58
|
+
**kwargs,
|
59
|
+
) -> "PreTrainedModel":
|
60
|
+
model: "PreTrainedModel" = super().get_pytorch_model(
|
61
|
+
model_id=model_id,
|
62
|
+
use_auth_token=use_auth_token,
|
63
|
+
revision=revision,
|
64
|
+
force_download=force_download,
|
65
|
+
cache_dir=cache_dir,
|
66
|
+
subfolder=subfolder,
|
67
|
+
local_files_only=local_files_only,
|
68
|
+
trust_remote_code=trust_remote_code,
|
69
|
+
rbln_config_kwargs=rbln_config_kwargs,
|
70
|
+
rbln_constructor_kwargs=rbln_constructor_kwargs,
|
71
|
+
library_name="transformers",
|
72
|
+
)
|
73
|
+
|
74
|
+
return model
|
75
|
+
|
76
|
+
@classmethod
|
77
|
+
def _get_rbln_config(
|
78
|
+
cls,
|
79
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
80
|
+
model_config: Optional["PretrainedConfig"] = None,
|
81
|
+
rbln_max_seq_len: Optional[int] = None,
|
82
|
+
rbln_model_input_names: Optional[List[str]] = None,
|
83
|
+
rbln_batch_size: Optional[int] = None,
|
84
|
+
) -> RBLNConfig:
|
85
|
+
max_position_embeddings = getattr(model_config, "n_positions", None) or getattr(
|
86
|
+
model_config, "max_position_embeddings", None
|
87
|
+
)
|
88
|
+
|
89
|
+
if rbln_max_seq_len is None:
|
90
|
+
rbln_max_seq_len = max_position_embeddings
|
91
|
+
if rbln_max_seq_len is None:
|
92
|
+
for tokenizer in preprocessors:
|
93
|
+
if hasattr(tokenizer, "model_max_length"):
|
94
|
+
rbln_max_seq_len = tokenizer.model_max_length
|
95
|
+
break
|
96
|
+
if rbln_max_seq_len is None:
|
97
|
+
raise ValueError("`rbln_max_seq_len` should be specified!")
|
98
|
+
|
99
|
+
if max_position_embeddings is not None and rbln_max_seq_len > max_position_embeddings:
|
100
|
+
raise ValueError("`rbln_enc_max_seq_len` should be less or equal than max_position_embeddings!")
|
101
|
+
|
102
|
+
if rbln_model_input_names is None:
|
103
|
+
# These are BERT's inputs
|
104
|
+
rbln_model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
|
105
|
+
|
106
|
+
if rbln_batch_size is None:
|
107
|
+
rbln_batch_size = 1
|
108
|
+
|
109
|
+
input_info = [
|
110
|
+
(model_input_name, [rbln_batch_size, rbln_max_seq_len], "int64")
|
111
|
+
for model_input_name in rbln_model_input_names
|
112
|
+
]
|
113
|
+
|
114
|
+
rbln_runtime_config = RBLNRuntimeConfig(input_info=input_info)
|
115
|
+
rbln_runtime_config.batch_size = rbln_batch_size
|
116
|
+
|
117
|
+
meta = {"rbln_max_seq_len": rbln_max_seq_len}
|
118
|
+
|
119
|
+
return RBLNConfig.from_rbln_runtime_configs([rbln_runtime_config], _rbln_meta=meta)
|
120
|
+
|
121
|
+
def forward(
|
122
|
+
self,
|
123
|
+
input_ids: "torch.Tensor",
|
124
|
+
attention_mask: "torch.Tensor",
|
125
|
+
token_type_ids: "torch.Tensor" = None,
|
126
|
+
**kwargs,
|
127
|
+
):
|
128
|
+
if token_type_ids is None:
|
129
|
+
token_type_ids = torch.zeros_like(input=input_ids, dtype=torch.int64)
|
130
|
+
output = super().forward(input_ids, attention_mask, token_type_ids)
|
131
|
+
return output
|
File without changes
|
@@ -0,0 +1,109 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
|
25
|
+
from typing import Any, List
|
26
|
+
|
27
|
+
import torch
|
28
|
+
from torch.nn import Linear, Parameter
|
29
|
+
from torch.nn import functional as F
|
30
|
+
|
31
|
+
|
32
|
+
QUANTIZED_WEIGHTS = [
|
33
|
+
"q_proj",
|
34
|
+
"k_proj",
|
35
|
+
"v_proj",
|
36
|
+
"o_proj",
|
37
|
+
"gate_proj",
|
38
|
+
"up_proj",
|
39
|
+
"down_proj",
|
40
|
+
]
|
41
|
+
|
42
|
+
|
43
|
+
def replace_quantized_linear_layers(
|
44
|
+
module: torch.nn.Module,
|
45
|
+
) -> None:
|
46
|
+
"""Replace target(quantized) linear layer's forward to qlinear forward
|
47
|
+
|
48
|
+
Args:
|
49
|
+
module (torch.nn.Module): The module containing the linear layers to be replaced.
|
50
|
+
For example, this could be an instance of a model like
|
51
|
+
LlamaForCausalLM().
|
52
|
+
"""
|
53
|
+
processed_names: List[str] = []
|
54
|
+
|
55
|
+
for name, layer in module.named_modules():
|
56
|
+
is_replace_linear = name.split(".")[-1] in QUANTIZED_WEIGHTS
|
57
|
+
if isinstance(layer, torch.nn.Linear) and is_replace_linear:
|
58
|
+
*parent_address, child_name = name.split(".")
|
59
|
+
parent = access_attribute(module, parent_address)
|
60
|
+
setattr(parent, child_name, get_qlinear(layer))
|
61
|
+
processed_names.append(name)
|
62
|
+
names_repr = ", ".join(processed_names)
|
63
|
+
print(f"Replace the following linear layers as qlinear layer:\n {{{names_repr}}}")
|
64
|
+
|
65
|
+
|
66
|
+
def access_attribute(obj: Any, tokens: List[str]) -> Any:
|
67
|
+
"""Get attribute of given object.
|
68
|
+
|
69
|
+
Args:
|
70
|
+
obj: object
|
71
|
+
|
72
|
+
tokens (List[str]): attribute names to access, must be in correct order
|
73
|
+
|
74
|
+
Returns:
|
75
|
+
Any: accessed attribute
|
76
|
+
|
77
|
+
Raises:
|
78
|
+
AttributeError: If attribute doesn't exists
|
79
|
+
"""
|
80
|
+
if len(tokens) == 0:
|
81
|
+
return obj
|
82
|
+
return access_attribute(getattr(obj, tokens[0]), tokens[1:])
|
83
|
+
|
84
|
+
|
85
|
+
def get_qlinear(layer: Linear):
|
86
|
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
87
|
+
"""Perform weight-only quantized linear layer.
|
88
|
+
|
89
|
+
Forward workflow:
|
90
|
+
- cast weight to high precision
|
91
|
+
- multiply scale factor to weight
|
92
|
+
- call torch.nn.functional linear
|
93
|
+
Note:
|
94
|
+
- Please don't modify following workflow
|
95
|
+
- if the workflow must be changed please contact Rebellions
|
96
|
+
"""
|
97
|
+
if inputs.dtype != self.scales.dtype:
|
98
|
+
raise TypeError(f"Expected tensor of dtype {self.scales.dtype} but got {inputs.dtype}")
|
99
|
+
w_fp = self.weight.type(inputs.dtype)
|
100
|
+
w_fp *= self.scales.view(-1, 1)
|
101
|
+
return F.linear(inputs, w_fp, self.bias)
|
102
|
+
|
103
|
+
keep = layer.weight.to(torch.int8)
|
104
|
+
layer.weight = None
|
105
|
+
del layer.weight
|
106
|
+
layer.weight = Parameter(keep, requires_grad=False)
|
107
|
+
layer.scales = Parameter(torch.ones(layer.out_features, dtype=torch.float32), requires_grad=False)
|
108
|
+
layer.forward = lambda *args, **kwargs: forward(layer, *args, **kwargs)
|
109
|
+
return layer
|
@@ -53,8 +53,7 @@ def is_rbln_available() -> bool:
|
|
53
53
|
|
54
54
|
|
55
55
|
def check_version_compats() -> None:
|
56
|
-
warnings.filterwarnings(action="always", category=ImportWarning)
|
57
|
-
|
56
|
+
warnings.filterwarnings(action="always", category=ImportWarning, module="optimum.rbln")
|
58
57
|
my_version = importlib.metadata.version("optimum-rbln")
|
59
58
|
target_version = list(filter(lambda v: Version(my_version) > Version(v), RBLN_VERSION_COMPATS.keys()))[0]
|
60
59
|
for compat in RBLN_VERSION_COMPATS[target_version]:
|
@@ -70,5 +69,3 @@ def check_version_compats() -> None:
|
|
70
69
|
"Please refer to our SDK release notes at https://docs.rbln.ai/about_atom/release_note.html",
|
71
70
|
ImportWarning,
|
72
71
|
)
|
73
|
-
|
74
|
-
warnings.resetwarnings()
|
@@ -42,8 +42,9 @@ class RBLNPytorchRuntime:
|
|
42
42
|
return self.forward(*args, **kwds)
|
43
43
|
|
44
44
|
def forward(self, *args: List["torch.Tensor"], **kwargs: Dict[str, "torch.Tensor"]):
|
45
|
+
# filtering uselss args or kwarg such as None.
|
45
46
|
args = list(filter(lambda arg: isinstance(arg, torch.Tensor), args))
|
46
|
-
kwargs = dict(filter(lambda kwarg: isinstance(kwarg[1], torch.Tensor), kwargs.items()))
|
47
|
+
kwargs = dict(filter(lambda kwarg: isinstance(kwarg[1], torch.Tensor) or kwarg[0] == "out", kwargs.items()))
|
47
48
|
output = self.runtime(*args, **kwargs)
|
48
49
|
return output
|
49
50
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: optimum-rbln
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.9
|
4
4
|
Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators.
|
5
5
|
It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
|
6
6
|
Keywords: transformers,diffusers,inference,rbln,atom,rebel
|
@@ -21,10 +21,12 @@ Project-URL: Homepage, https://rebellions.ai
|
|
21
21
|
Project-URL: Documentation, https://docs.rbln.ai
|
22
22
|
Requires-Python: <3.11,>=3.8
|
23
23
|
Requires-Dist: torch<=2.2.1
|
24
|
-
Requires-Dist:
|
24
|
+
Requires-Dist: torchvision<=0.17.1
|
25
|
+
Requires-Dist: torchaudio<=2.2.1
|
26
|
+
Requires-Dist: optimum<=1.20.0
|
25
27
|
Requires-Dist: accelerate>=0.28.0
|
26
|
-
Requires-Dist: transformers<=4.40.2
|
27
|
-
Requires-Dist: diffusers<=0.
|
28
|
+
Requires-Dist: transformers<=4.40.2,>=4.38.0
|
29
|
+
Requires-Dist: diffusers<=0.30.1
|
28
30
|
Requires-Dist: einops>=0.8.0
|
29
31
|
Requires-Dist: packaging>=24.1
|
30
32
|
Requires-Dist: pytest>=8.1.1; extra == "tests"
|
@@ -35,7 +37,6 @@ Requires-Dist: sentencepiece>=0.2.0; extra == "tests"
|
|
35
37
|
Requires-Dist: datasets>=2.18.0; extra == "tests"
|
36
38
|
Requires-Dist: sacremoses>=0.1.1; extra == "tests"
|
37
39
|
Requires-Dist: safetensors>=0.4.2; extra == "tests"
|
38
|
-
Requires-Dist: black>=24.3.0; extra == "quality"
|
39
40
|
Requires-Dist: ruff>=0.3.3; extra == "quality"
|
40
41
|
Requires-Dist: isort>=5.13.2; extra == "quality"
|
41
42
|
Requires-Dist: hf-doc-builder>=0.5.0; extra == "quality"
|
@@ -100,6 +101,11 @@ To install optional dependencies from all groups, specify `-G:all` option.
|
|
100
101
|
pdm install -G:all
|
101
102
|
```
|
102
103
|
|
104
|
+
If you want to install optimum-rbln as [editable mode](https://pip.pypa.io/en/stable/topics/local-project-installs/#editable-installs) in existing venv,
|
105
|
+
```bash
|
106
|
+
(venv) pip install -e .
|
107
|
+
```
|
108
|
+
|
103
109
|
## How to use it?
|
104
110
|
|
105
111
|
### Quick Start
|
@@ -1,17 +1,17 @@
|
|
1
|
-
optimum/rbln/__init__.py,sha256=
|
2
|
-
optimum/rbln/__version__.py,sha256=
|
3
|
-
optimum/rbln/diffusers/__init__.py,sha256=
|
1
|
+
optimum/rbln/__init__.py,sha256=Nci6sT3QWzbyKOuJ_KzbIJd8LqkNLS66TAibBUmnPig,4897
|
2
|
+
optimum/rbln/__version__.py,sha256=m1D6fscvvsMhq5HVNKw7kP5M8AqEzQm1ekrn_nLQF1M,21
|
3
|
+
optimum/rbln/diffusers/__init__.py,sha256=w4W7Wy-Mmh8CQZ5M9JnrrE5bN0UsfNehZI41QadE-hk,2605
|
4
4
|
optimum/rbln/diffusers/models/__init__.py,sha256=aY6Llq_31dZjdB9HPBDvi7sXVtdQT9r11gokXG5ffxA,1139
|
5
|
-
optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=
|
6
|
-
optimum/rbln/diffusers/models/controlnet.py,sha256=
|
7
|
-
optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=
|
5
|
+
optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=xfjlbbvNmSrxRGlqNmvuCO9wKaRlcpMF7AxZneitTHM,9520
|
6
|
+
optimum/rbln/diffusers/models/controlnet.py,sha256=ePIicWNFKwTBjmH5wDsd1C3LipTHpWpE-X5ZGAMQiDU,9329
|
7
|
+
optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=zU38gThPlzs7wAPLDdcojMkmx1P25ooQ29TNEQ034YA,14493
|
8
8
|
optimum/rbln/diffusers/pipelines/__init__.py,sha256=Xr_bQbpbC5HbJB2NuUcVQu2BGebDkc2bhsGJmL6jgps,1449
|
9
9
|
optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=k0govvSBxBUR5qpxUGxRMHuQCMX7hXHVZ4EqVRw1LWk,1377
|
10
|
-
optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256
|
11
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=
|
12
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=
|
13
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=
|
14
|
-
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=
|
10
|
+
optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=rCvQgf5kiqw_b5pfPTpx2GpjoHW-hQsl_4ikYN9klOc,5128
|
11
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=qX0nDFShyZL3RHKgaeeM8XpMLLDsa_PCrhqS2-IfEwM,42605
|
12
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=9-zw07G5dICByN4k9UgZ5NwPiToRcOApj7M93SM75Pk,41199
|
13
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=g8SABYroDmcND-0_3CUH1wkdrZPHWdzoWpWLxBk8p-8,53126
|
14
|
+
optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=mOlVPumpYbss18jjnZUSwS1EzFjzQDtZf1yOkS4VLng,54485
|
15
15
|
optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py,sha256=qf_uMWSwD-CyRMRC73y1QsTMyl_qCMreIdg0a8rhJuA,1142
|
16
16
|
optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=rVryl7riAgkkNJzbXQHKRDYEyR7ZhsF_aF_MkMnerco,5399
|
17
17
|
optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=VfOOybXQnotWIS1ch0a-eMSM-BDrPlZdGwtsYtsH0JQ,5747
|
@@ -19,47 +19,60 @@ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=8MDMHIVs
|
|
19
19
|
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=aCJSoXks7IpjX4rcH6q0TjXtIPzNrbvAvz0KbIEmMr8,5684
|
20
20
|
optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=Cv9L4El2GOE-3IRQKHNEMuSdWGmtVsRnQJShcv2hOo0,5874
|
21
21
|
optimum/rbln/modeling.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
22
|
-
optimum/rbln/modeling_alias.py,sha256=
|
23
|
-
optimum/rbln/modeling_base.py,sha256=
|
22
|
+
optimum/rbln/modeling_alias.py,sha256=4E0HgaYJTesetqMSnVYKDZ-SRXlTeQ2GZsJ8xuMkmTY,2094
|
23
|
+
optimum/rbln/modeling_base.py,sha256=oSm9w1YVCNIQEDW5bdm4bwUF2bqCIGrnrcl335YgVe0,35491
|
24
24
|
optimum/rbln/modeling_config.py,sha256=R0GBd-upavJrpR-2SvfgCCxP7f5Zr0NxIqdKmwBfVCk,6439
|
25
25
|
optimum/rbln/modeling_seq2seq.py,sha256=XXYu_hpxOgQmMgayUy9URQwgMl9Ci2AfWyVHm7tMP5o,16783
|
26
|
-
optimum/rbln/transformers/__init__.py,sha256=
|
26
|
+
optimum/rbln/transformers/__init__.py,sha256=ZC7i3PyMbcZDjxE5F93uZRMyrMghGSmG1ZV3rnAr8A4,2269
|
27
|
+
optimum/rbln/transformers/cache_utils.py,sha256=VfArIkAJn3zPXdu-6RXiCWlU-uVwxvhgoMiGxrPtk40,3835
|
27
28
|
optimum/rbln/transformers/generation/__init__.py,sha256=6MmqS9D21ir4dcH6_fq8kRsX1VK3QspSn6Qw83F4ORE,1081
|
28
29
|
optimum/rbln/transformers/generation/streamers.py,sha256=X-dEmL1L_0Oy0QSFj2RNdamb_xbDWLXd-Ms8ckx6OZ4,5778
|
29
|
-
optimum/rbln/transformers/generation/utils.py,sha256=
|
30
|
-
optimum/rbln/transformers/models/__init__.py,sha256=
|
30
|
+
optimum/rbln/transformers/generation/utils.py,sha256=XqPbYQCe6cEuWssG9iHpbbL-wgSQTcyKHabGwKj7lnE,19462
|
31
|
+
optimum/rbln/transformers/models/__init__.py,sha256=kCbAvlMadrhOv8PyEpvJLLBq1b7DYC3zDmlsxLPufTI,1448
|
31
32
|
optimum/rbln/transformers/models/bart/__init__.py,sha256=SGUcpQ_5iLsVxySxtbwhRpmGt7BgVUTxHAjxAjQStdU,1063
|
32
|
-
optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=
|
33
|
+
optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=T9GjcsL8fAJcvAs_ifnZuDP2F77hhbjBcsc7u53k6OE,14951
|
33
34
|
optimum/rbln/transformers/models/clip/__init__.py,sha256=tbco8qW9QhBe3dtWoKgslLZMsXu9dg_KfJ4IgjvK248,1071
|
34
|
-
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=
|
35
|
+
optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=V8Ix1X9gqeBHXP-HvRuNarFRC-cm--ZEU9ICCvwv-tk,4015
|
36
|
+
optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=AG3ib8iZAEDAvVTNhieCyojWZtA67voPB0dI8lbCXTQ,1371
|
37
|
+
optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=QJHCrYKAyXOHZsKiRt4uRCxoB7zATxjOERSbqOqjK-g,19095
|
38
|
+
optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=DpY88CqhhesQVh6z42nvzG9p1Ju9wuEloFjPT8F92t4,18436
|
35
39
|
optimum/rbln/transformers/models/dpt/__init__.py,sha256=R8OHDxOAYPjkk5t8osaPqRh85Pf1Cg1BtzqesqFRcTI,1045
|
36
40
|
optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=uN_5DhjGbFmTbpm1JUBgPsDhMP_vIyc0QM2UK5DoRqc,3537
|
41
|
+
optimum/rbln/transformers/models/gemma/__init__.py,sha256=L1Qfr6dufWtoUZND_ofwxXPSxivEvPR8exy16a_nM2o,1042
|
42
|
+
optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=hT0CqL_jhKWi8cDa1zFcAFPyli844wkliJ3bL5OyEdQ,4376
|
43
|
+
optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=QW57x2ehojt0CHBJSC4Y51VaMqvjbiSYfEpxIPVMbj8,2643
|
37
44
|
optimum/rbln/transformers/models/gpt2/__init__.py,sha256=jsOKYXUclG9G6cwUTUX4eeKqjCPfQUwev7TTFIMXS4Y,1040
|
38
|
-
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=
|
39
|
-
optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=
|
45
|
+
optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=SIzwfQFRNvNOHjZmKcUZiURbnmXNXFh95twYELVmHcg,10278
|
46
|
+
optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=ZR0wep7V_sENaODlAbg70_xNZKeTK8xdN0AEOsIrKms,2721
|
40
47
|
optimum/rbln/transformers/models/llama/__init__.py,sha256=5mX-MuKzVBj6WQeVxyPhtvFTv0jeZXAFfg4RZ2nVUh0,1042
|
41
|
-
optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=
|
42
|
-
optimum/rbln/transformers/models/llama/
|
43
|
-
optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=kTMxJwHRdK0XJFu_OfVWq3iWdOXZkDf4TdKzsi0uQWQ,19821
|
48
|
+
optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=j4mifSOaIk7wwV9fL9wQSt5kR3rpnvjtxd3VzhMNdgY,1123
|
49
|
+
optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=AQU4RVWQb0Ht_eAEiNTkcEq9bPCr-P1JnCkLy77yDnE,2643
|
44
50
|
optimum/rbln/transformers/models/midm/__init__.py,sha256=_6kYchy47frGMZ8uoUspZ9IwrmCBQJ-8kVfXM7xOMew,1249
|
45
51
|
optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py,sha256=P5JqTTcx56HOccxKbR14ZjA67BI0RNnJycG738JMaJ4,833
|
46
|
-
optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py,sha256=
|
47
|
-
optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py,sha256=
|
52
|
+
optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py,sha256=5lhMXfqnIak1PJ9YL-vUxIdY_3DUr3IBXzTqf3ofpmI,12835
|
53
|
+
optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py,sha256=54__wd9EXwGxmaHDksTTcUD2aWl6WoszYsR8dlL1wfE,61031
|
48
54
|
optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py,sha256=5ywaUVKTvqO8GRsHOSXOOGlbiEn-DbGkpJs59_dFb18,4059
|
49
|
-
optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=
|
50
|
-
optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=
|
55
|
+
optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=IFnu54MVPFEk5pvaeJ8RZGlCR7X-9MMeTKThXOP6_M0,11367
|
56
|
+
optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=rk1LgR3s9dDC1zwE6Jg6LJQK868VyAIViD9zsK09-UE,2779
|
57
|
+
optimum/rbln/transformers/models/mistral/__init__.py,sha256=XtuOmzBITjj-H1yctXobJjHF908x1Wlxr_p4hi06v8I,1046
|
58
|
+
optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=LCvY4L0Wq1VruKhZ3JTSiuZJqQRJlTae5A2bKsUBGAg,1128
|
59
|
+
optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=77CRdlD3n465fQRZ6SOya9jRgL7M3KN624VzRUJBxt4,2678
|
51
60
|
optimum/rbln/transformers/models/t5/__init__.py,sha256=dK6F1jbBf001h79WZiVdiNZoXm5kOe2fskzhREhu0EE,1057
|
52
61
|
optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=2nFovfOdiJdY9jdAR9BngwPO3d2Oofn9jqVWgZ-YYZ0,18091
|
53
62
|
optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=mz4cXqG9b0tDpTAw3qYn3FaJuolX601VmKBE3gohLSw,1043
|
54
|
-
optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=
|
63
|
+
optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=ZnsJ9f2Lu3WNH2QFiuOCTU5Y--_wNlyYy_0zuvkJ5RI,4088
|
55
64
|
optimum/rbln/transformers/models/whisper/__init__.py,sha256=PZ8qeAAFMas2MizwVYFxlpFWd5k1Pe1x-0IJfYAMhT8,1059
|
56
65
|
optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=L49ThCv5sqidNevBGsCpGrOSH4H6wzXOCmON1PCmY9M,11996
|
57
|
-
optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=
|
66
|
+
optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=QtHP5bXUa9HXa95rEdaqsmbH3eG2QJgUBTV1OG7LF-I,15879
|
67
|
+
optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=NTj4hCpd8L2_i5DZuV5wp-h8OlTLYVUqTrJxzY_Dg9g,1047
|
68
|
+
optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=YOnybpasUwtAhZSRirHQj0kvmzpD0i2nBzcYT0En3ew,5018
|
69
|
+
optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
70
|
+
optimum/rbln/transformers/utils/rbln_quantization.py,sha256=kRms512Vf1o7vTZl5cd64ivjBVltZrUDCVqCRWFft88,3734
|
58
71
|
optimum/rbln/utils/__init__.py,sha256=F6hJP00eV1_hT_IVwqqYwLWcLQAvZbmmrNMJTia3mjI,1106
|
59
|
-
optimum/rbln/utils/import_utils.py,sha256=
|
60
|
-
optimum/rbln/utils/runtime_utils.py,sha256=
|
72
|
+
optimum/rbln/utils/import_utils.py,sha256=btQpDE5WBJUfCMzg5S-cokWbTh_IHYGo1tRNiU16vLU,2624
|
73
|
+
optimum/rbln/utils/runtime_utils.py,sha256=6APwOmW04DjdRto5ntKZFTw4CuFd194OcQtImcIQD2U,2621
|
61
74
|
optimum/rbln/utils/save_utils.py,sha256=eFIPtmiblCJ3MvtxEPxmAR3iuLEUrzpyzwtVotDauhw,3283
|
62
|
-
optimum_rbln-0.1.
|
63
|
-
optimum_rbln-0.1.
|
64
|
-
optimum_rbln-0.1.
|
65
|
-
optimum_rbln-0.1.
|
75
|
+
optimum_rbln-0.1.9.dist-info/METADATA,sha256=loqigjmaw3tu7yv9gzydFI-JMJcdr9TTGuJWMQx5F44,4578
|
76
|
+
optimum_rbln-0.1.9.dist-info/WHEEL,sha256=rSwsxJWe3vzyR5HCwjWXQruDgschpei4h_giTm0dJVE,90
|
77
|
+
optimum_rbln-0.1.9.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
78
|
+
optimum_rbln-0.1.9.dist-info/RECORD,,
|