optimum-rbln 0.1.7__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. optimum/rbln/__init__.py +17 -0
  2. optimum/rbln/__version__.py +1 -1
  3. optimum/rbln/diffusers/__init__.py +0 -1
  4. optimum/rbln/diffusers/models/autoencoder_kl.py +3 -3
  5. optimum/rbln/diffusers/models/controlnet.py +7 -3
  6. optimum/rbln/diffusers/models/unet_2d_condition.py +5 -5
  7. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +23 -146
  8. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +107 -59
  9. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +106 -54
  10. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +130 -71
  11. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +131 -72
  12. optimum/rbln/modeling_alias.py +19 -1
  13. optimum/rbln/modeling_base.py +162 -18
  14. optimum/rbln/transformers/__init__.py +8 -0
  15. optimum/rbln/transformers/cache_utils.py +111 -0
  16. optimum/rbln/transformers/generation/utils.py +0 -2
  17. optimum/rbln/transformers/models/__init__.py +3 -0
  18. optimum/rbln/transformers/models/bart/bart_architecture.py +0 -5
  19. optimum/rbln/transformers/models/clip/modeling_clip.py +1 -1
  20. optimum/rbln/transformers/models/decoderonly/__init__.py +36 -0
  21. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +516 -0
  22. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +464 -0
  23. optimum/rbln/transformers/models/gemma/__init__.py +24 -0
  24. optimum/rbln/transformers/models/gemma/gemma_architecture.py +123 -0
  25. optimum/rbln/transformers/models/gemma/modeling_gemma.py +67 -0
  26. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +201 -166
  27. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +10 -257
  28. optimum/rbln/transformers/models/llama/llama_architecture.py +3 -610
  29. optimum/rbln/transformers/models/llama/modeling_llama.py +12 -440
  30. optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py +2 -1
  31. optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py +0 -4
  32. optimum/rbln/transformers/models/midm/midm_architecture.py +160 -357
  33. optimum/rbln/transformers/models/midm/modeling_midm.py +10 -325
  34. optimum/rbln/transformers/models/mistral/__init__.py +24 -0
  35. optimum/rbln/transformers/models/mistral/mistral_architecture.py +29 -0
  36. optimum/rbln/transformers/models/mistral/modeling_mistral.py +68 -0
  37. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
  38. optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -6
  39. optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
  40. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +131 -0
  41. optimum/rbln/transformers/utils/__init__.py +0 -0
  42. optimum/rbln/transformers/utils/rbln_quantization.py +109 -0
  43. optimum/rbln/utils/import_utils.py +1 -4
  44. optimum/rbln/utils/runtime_utils.py +2 -1
  45. {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.9.dist-info}/METADATA +11 -5
  46. {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.9.dist-info}/RECORD +48 -35
  47. optimum/rbln/transformers/models/llama/llama_architecture_cb.py +0 -764
  48. {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.9.dist-info}/WHEEL +0 -0
  49. {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.9.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,131 @@
1
+ # Copyright 2024 Rebellions Inc.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Portions of this software are licensed under the Apache License,
16
+ # Version 2.0. See the NOTICE file distributed with this work for
17
+ # additional information regarding copyright ownership.
18
+
19
+ # All other portions of this software, including proprietary code,
20
+ # are the intellectual property of Rebellions Inc. and may not be
21
+ # copied, modified, or distributed without prior written permission
22
+ # from Rebellions Inc.
23
+
24
+ import logging
25
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
26
+
27
+ import torch
28
+ from transformers import AutoModel, PretrainedConfig, PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
29
+
30
+ from ....modeling_base import RBLNModel
31
+ from ....modeling_config import RBLNConfig, RBLNRuntimeConfig
32
+
33
+
34
+ logger = logging.getLogger(__name__)
35
+
36
+ if TYPE_CHECKING:
37
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer
38
+
39
+
40
+ class RBLNXLMRobertaModel(RBLNModel):
41
+ auto_model_class = AutoModel # feature extraction
42
+ original_model_class = XLMRobertaModel
43
+ original_config_class = XLMRobertaConfig
44
+
45
+ @classmethod
46
+ def get_pytorch_model(
47
+ cls,
48
+ model_id: str,
49
+ use_auth_token: Optional[Union[bool, str]] = None,
50
+ revision: Optional[str] = None,
51
+ force_download: bool = False,
52
+ cache_dir: Optional[str] = None,
53
+ subfolder: str = "",
54
+ local_files_only: bool = False,
55
+ trust_remote_code: bool = False,
56
+ rbln_config_kwargs: Optional[Dict[str, Any]] = None,
57
+ rbln_constructor_kwargs: Optional[Dict[str, Any]] = None,
58
+ **kwargs,
59
+ ) -> "PreTrainedModel":
60
+ model: "PreTrainedModel" = super().get_pytorch_model(
61
+ model_id=model_id,
62
+ use_auth_token=use_auth_token,
63
+ revision=revision,
64
+ force_download=force_download,
65
+ cache_dir=cache_dir,
66
+ subfolder=subfolder,
67
+ local_files_only=local_files_only,
68
+ trust_remote_code=trust_remote_code,
69
+ rbln_config_kwargs=rbln_config_kwargs,
70
+ rbln_constructor_kwargs=rbln_constructor_kwargs,
71
+ library_name="transformers",
72
+ )
73
+
74
+ return model
75
+
76
+ @classmethod
77
+ def _get_rbln_config(
78
+ cls,
79
+ preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
80
+ model_config: Optional["PretrainedConfig"] = None,
81
+ rbln_max_seq_len: Optional[int] = None,
82
+ rbln_model_input_names: Optional[List[str]] = None,
83
+ rbln_batch_size: Optional[int] = None,
84
+ ) -> RBLNConfig:
85
+ max_position_embeddings = getattr(model_config, "n_positions", None) or getattr(
86
+ model_config, "max_position_embeddings", None
87
+ )
88
+
89
+ if rbln_max_seq_len is None:
90
+ rbln_max_seq_len = max_position_embeddings
91
+ if rbln_max_seq_len is None:
92
+ for tokenizer in preprocessors:
93
+ if hasattr(tokenizer, "model_max_length"):
94
+ rbln_max_seq_len = tokenizer.model_max_length
95
+ break
96
+ if rbln_max_seq_len is None:
97
+ raise ValueError("`rbln_max_seq_len` should be specified!")
98
+
99
+ if max_position_embeddings is not None and rbln_max_seq_len > max_position_embeddings:
100
+ raise ValueError("`rbln_enc_max_seq_len` should be less or equal than max_position_embeddings!")
101
+
102
+ if rbln_model_input_names is None:
103
+ # These are BERT's inputs
104
+ rbln_model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
105
+
106
+ if rbln_batch_size is None:
107
+ rbln_batch_size = 1
108
+
109
+ input_info = [
110
+ (model_input_name, [rbln_batch_size, rbln_max_seq_len], "int64")
111
+ for model_input_name in rbln_model_input_names
112
+ ]
113
+
114
+ rbln_runtime_config = RBLNRuntimeConfig(input_info=input_info)
115
+ rbln_runtime_config.batch_size = rbln_batch_size
116
+
117
+ meta = {"rbln_max_seq_len": rbln_max_seq_len}
118
+
119
+ return RBLNConfig.from_rbln_runtime_configs([rbln_runtime_config], _rbln_meta=meta)
120
+
121
+ def forward(
122
+ self,
123
+ input_ids: "torch.Tensor",
124
+ attention_mask: "torch.Tensor",
125
+ token_type_ids: "torch.Tensor" = None,
126
+ **kwargs,
127
+ ):
128
+ if token_type_ids is None:
129
+ token_type_ids = torch.zeros_like(input=input_ids, dtype=torch.int64)
130
+ output = super().forward(input_ids, attention_mask, token_type_ids)
131
+ return output
File without changes
@@ -0,0 +1,109 @@
1
+ # Copyright 2024 Rebellions Inc.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Portions of this software are licensed under the Apache License,
16
+ # Version 2.0. See the NOTICE file distributed with this work for
17
+ # additional information regarding copyright ownership.
18
+
19
+ # All other portions of this software, including proprietary code,
20
+ # are the intellectual property of Rebellions Inc. and may not be
21
+ # copied, modified, or distributed without prior written permission
22
+ # from Rebellions Inc.
23
+
24
+
25
+ from typing import Any, List
26
+
27
+ import torch
28
+ from torch.nn import Linear, Parameter
29
+ from torch.nn import functional as F
30
+
31
+
32
+ QUANTIZED_WEIGHTS = [
33
+ "q_proj",
34
+ "k_proj",
35
+ "v_proj",
36
+ "o_proj",
37
+ "gate_proj",
38
+ "up_proj",
39
+ "down_proj",
40
+ ]
41
+
42
+
43
+ def replace_quantized_linear_layers(
44
+ module: torch.nn.Module,
45
+ ) -> None:
46
+ """Replace target(quantized) linear layer's forward to qlinear forward
47
+
48
+ Args:
49
+ module (torch.nn.Module): The module containing the linear layers to be replaced.
50
+ For example, this could be an instance of a model like
51
+ LlamaForCausalLM().
52
+ """
53
+ processed_names: List[str] = []
54
+
55
+ for name, layer in module.named_modules():
56
+ is_replace_linear = name.split(".")[-1] in QUANTIZED_WEIGHTS
57
+ if isinstance(layer, torch.nn.Linear) and is_replace_linear:
58
+ *parent_address, child_name = name.split(".")
59
+ parent = access_attribute(module, parent_address)
60
+ setattr(parent, child_name, get_qlinear(layer))
61
+ processed_names.append(name)
62
+ names_repr = ", ".join(processed_names)
63
+ print(f"Replace the following linear layers as qlinear layer:\n {{{names_repr}}}")
64
+
65
+
66
+ def access_attribute(obj: Any, tokens: List[str]) -> Any:
67
+ """Get attribute of given object.
68
+
69
+ Args:
70
+ obj: object
71
+
72
+ tokens (List[str]): attribute names to access, must be in correct order
73
+
74
+ Returns:
75
+ Any: accessed attribute
76
+
77
+ Raises:
78
+ AttributeError: If attribute doesn't exists
79
+ """
80
+ if len(tokens) == 0:
81
+ return obj
82
+ return access_attribute(getattr(obj, tokens[0]), tokens[1:])
83
+
84
+
85
+ def get_qlinear(layer: Linear):
86
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
87
+ """Perform weight-only quantized linear layer.
88
+
89
+ Forward workflow:
90
+ - cast weight to high precision
91
+ - multiply scale factor to weight
92
+ - call torch.nn.functional linear
93
+ Note:
94
+ - Please don't modify following workflow
95
+ - if the workflow must be changed please contact Rebellions
96
+ """
97
+ if inputs.dtype != self.scales.dtype:
98
+ raise TypeError(f"Expected tensor of dtype {self.scales.dtype} but got {inputs.dtype}")
99
+ w_fp = self.weight.type(inputs.dtype)
100
+ w_fp *= self.scales.view(-1, 1)
101
+ return F.linear(inputs, w_fp, self.bias)
102
+
103
+ keep = layer.weight.to(torch.int8)
104
+ layer.weight = None
105
+ del layer.weight
106
+ layer.weight = Parameter(keep, requires_grad=False)
107
+ layer.scales = Parameter(torch.ones(layer.out_features, dtype=torch.float32), requires_grad=False)
108
+ layer.forward = lambda *args, **kwargs: forward(layer, *args, **kwargs)
109
+ return layer
@@ -53,8 +53,7 @@ def is_rbln_available() -> bool:
53
53
 
54
54
 
55
55
  def check_version_compats() -> None:
56
- warnings.filterwarnings(action="always", category=ImportWarning)
57
-
56
+ warnings.filterwarnings(action="always", category=ImportWarning, module="optimum.rbln")
58
57
  my_version = importlib.metadata.version("optimum-rbln")
59
58
  target_version = list(filter(lambda v: Version(my_version) > Version(v), RBLN_VERSION_COMPATS.keys()))[0]
60
59
  for compat in RBLN_VERSION_COMPATS[target_version]:
@@ -70,5 +69,3 @@ def check_version_compats() -> None:
70
69
  "Please refer to our SDK release notes at https://docs.rbln.ai/about_atom/release_note.html",
71
70
  ImportWarning,
72
71
  )
73
-
74
- warnings.resetwarnings()
@@ -42,8 +42,9 @@ class RBLNPytorchRuntime:
42
42
  return self.forward(*args, **kwds)
43
43
 
44
44
  def forward(self, *args: List["torch.Tensor"], **kwargs: Dict[str, "torch.Tensor"]):
45
+ # filtering uselss args or kwarg such as None.
45
46
  args = list(filter(lambda arg: isinstance(arg, torch.Tensor), args))
46
- kwargs = dict(filter(lambda kwarg: isinstance(kwarg[1], torch.Tensor), kwargs.items()))
47
+ kwargs = dict(filter(lambda kwarg: isinstance(kwarg[1], torch.Tensor) or kwarg[0] == "out", kwargs.items()))
47
48
  output = self.runtime(*args, **kwargs)
48
49
  return output
49
50
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: optimum-rbln
3
- Version: 0.1.7
3
+ Version: 0.1.9
4
4
  Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators.
5
5
  It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
6
6
  Keywords: transformers,diffusers,inference,rbln,atom,rebel
@@ -21,10 +21,12 @@ Project-URL: Homepage, https://rebellions.ai
21
21
  Project-URL: Documentation, https://docs.rbln.ai
22
22
  Requires-Python: <3.11,>=3.8
23
23
  Requires-Dist: torch<=2.2.1
24
- Requires-Dist: optimum>=1.17.1
24
+ Requires-Dist: torchvision<=0.17.1
25
+ Requires-Dist: torchaudio<=2.2.1
26
+ Requires-Dist: optimum<=1.20.0
25
27
  Requires-Dist: accelerate>=0.28.0
26
- Requires-Dist: transformers<=4.40.2
27
- Requires-Dist: diffusers<=0.29.2
28
+ Requires-Dist: transformers<=4.40.2,>=4.38.0
29
+ Requires-Dist: diffusers<=0.30.1
28
30
  Requires-Dist: einops>=0.8.0
29
31
  Requires-Dist: packaging>=24.1
30
32
  Requires-Dist: pytest>=8.1.1; extra == "tests"
@@ -35,7 +37,6 @@ Requires-Dist: sentencepiece>=0.2.0; extra == "tests"
35
37
  Requires-Dist: datasets>=2.18.0; extra == "tests"
36
38
  Requires-Dist: sacremoses>=0.1.1; extra == "tests"
37
39
  Requires-Dist: safetensors>=0.4.2; extra == "tests"
38
- Requires-Dist: black>=24.3.0; extra == "quality"
39
40
  Requires-Dist: ruff>=0.3.3; extra == "quality"
40
41
  Requires-Dist: isort>=5.13.2; extra == "quality"
41
42
  Requires-Dist: hf-doc-builder>=0.5.0; extra == "quality"
@@ -100,6 +101,11 @@ To install optional dependencies from all groups, specify `-G:all` option.
100
101
  pdm install -G:all
101
102
  ```
102
103
 
104
+ If you want to install optimum-rbln as [editable mode](https://pip.pypa.io/en/stable/topics/local-project-installs/#editable-installs) in existing venv,
105
+ ```bash
106
+ (venv) pip install -e .
107
+ ```
108
+
103
109
  ## How to use it?
104
110
 
105
111
  ### Quick Start
@@ -1,17 +1,17 @@
1
- optimum/rbln/__init__.py,sha256=m2CcYYJw98tSvIFSNJJc5yzrjYKsUdEeBBvsX3a5koI,4251
2
- optimum/rbln/__version__.py,sha256=V7LnX330m3uiAO0EYQbPUYETPj2br2y1Pv-a7ApMj40,21
3
- optimum/rbln/diffusers/__init__.py,sha256=JWeu2ihHKiYD0Uzs9jXbaAq-bA1G86UCMPPx_oiJYFU,2606
1
+ optimum/rbln/__init__.py,sha256=Nci6sT3QWzbyKOuJ_KzbIJd8LqkNLS66TAibBUmnPig,4897
2
+ optimum/rbln/__version__.py,sha256=m1D6fscvvsMhq5HVNKw7kP5M8AqEzQm1ekrn_nLQF1M,21
3
+ optimum/rbln/diffusers/__init__.py,sha256=w4W7Wy-Mmh8CQZ5M9JnrrE5bN0UsfNehZI41QadE-hk,2605
4
4
  optimum/rbln/diffusers/models/__init__.py,sha256=aY6Llq_31dZjdB9HPBDvi7sXVtdQT9r11gokXG5ffxA,1139
5
- optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=qIhXCfEADNTm2U9I5ZFN1IfA01zwupUY0IBnJwvxLwI,9506
6
- optimum/rbln/diffusers/models/controlnet.py,sha256=7T5E-RvGawT2uEtuJYxGTrzIDbApcF13zuXbVCcoQVI,9224
7
- optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=tdNQHSdN92MlErpsvPpiUleRGhRa9GH0FSFZoSA6-wk,14468
5
+ optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=xfjlbbvNmSrxRGlqNmvuCO9wKaRlcpMF7AxZneitTHM,9520
6
+ optimum/rbln/diffusers/models/controlnet.py,sha256=ePIicWNFKwTBjmH5wDsd1C3LipTHpWpE-X5ZGAMQiDU,9329
7
+ optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=zU38gThPlzs7wAPLDdcojMkmx1P25ooQ29TNEQ034YA,14493
8
8
  optimum/rbln/diffusers/pipelines/__init__.py,sha256=Xr_bQbpbC5HbJB2NuUcVQu2BGebDkc2bhsGJmL6jgps,1449
9
9
  optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=k0govvSBxBUR5qpxUGxRMHuQCMX7hXHVZ4EqVRw1LWk,1377
10
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=-Mtot-EJbYnySLKX7v0Im9UQyo2H2HjlZiO31SosbbQ,9592
11
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=QK8C9mCgCCPTy_sj6PjiwlQzj8sKwUSDWKYeMT3Vb7A,39936
12
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=8wUn937eZvr8uVLhTtw-OwF9r_iwdQ1_RpD4XNkarAU,38481
13
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=qe2ZW-ugpnfatx7bx1a21C_40kVMSp8DsQ5fl2DFoKM,49849
14
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=DKai4mdW_fkhdD4yjIGKyKv00COFH-Nz5ux9jmatjWE,51196
10
+ optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=rCvQgf5kiqw_b5pfPTpx2GpjoHW-hQsl_4ikYN9klOc,5128
11
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=qX0nDFShyZL3RHKgaeeM8XpMLLDsa_PCrhqS2-IfEwM,42605
12
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=9-zw07G5dICByN4k9UgZ5NwPiToRcOApj7M93SM75Pk,41199
13
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=g8SABYroDmcND-0_3CUH1wkdrZPHWdzoWpWLxBk8p-8,53126
14
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=mOlVPumpYbss18jjnZUSwS1EzFjzQDtZf1yOkS4VLng,54485
15
15
  optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py,sha256=qf_uMWSwD-CyRMRC73y1QsTMyl_qCMreIdg0a8rhJuA,1142
16
16
  optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=rVryl7riAgkkNJzbXQHKRDYEyR7ZhsF_aF_MkMnerco,5399
17
17
  optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=VfOOybXQnotWIS1ch0a-eMSM-BDrPlZdGwtsYtsH0JQ,5747
@@ -19,47 +19,60 @@ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=8MDMHIVs
19
19
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=aCJSoXks7IpjX4rcH6q0TjXtIPzNrbvAvz0KbIEmMr8,5684
20
20
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=Cv9L4El2GOE-3IRQKHNEMuSdWGmtVsRnQJShcv2hOo0,5874
21
21
  optimum/rbln/modeling.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- optimum/rbln/modeling_alias.py,sha256=pyYGME31QaiBaLqnjQq3LwUF1T6dLeb8QLB91gzNsLM,1574
23
- optimum/rbln/modeling_base.py,sha256=779VbQy6gxCkCaa75KAbP87EqBkTQV4RW_roqjxrNMg,29564
22
+ optimum/rbln/modeling_alias.py,sha256=4E0HgaYJTesetqMSnVYKDZ-SRXlTeQ2GZsJ8xuMkmTY,2094
23
+ optimum/rbln/modeling_base.py,sha256=oSm9w1YVCNIQEDW5bdm4bwUF2bqCIGrnrcl335YgVe0,35491
24
24
  optimum/rbln/modeling_config.py,sha256=R0GBd-upavJrpR-2SvfgCCxP7f5Zr0NxIqdKmwBfVCk,6439
25
25
  optimum/rbln/modeling_seq2seq.py,sha256=XXYu_hpxOgQmMgayUy9URQwgMl9Ci2AfWyVHm7tMP5o,16783
26
- optimum/rbln/transformers/__init__.py,sha256=fgRvfcQps-YEpXV3h0uz0VBXB1Ts9t-DZRwjS0zHUNU,1992
26
+ optimum/rbln/transformers/__init__.py,sha256=ZC7i3PyMbcZDjxE5F93uZRMyrMghGSmG1ZV3rnAr8A4,2269
27
+ optimum/rbln/transformers/cache_utils.py,sha256=VfArIkAJn3zPXdu-6RXiCWlU-uVwxvhgoMiGxrPtk40,3835
27
28
  optimum/rbln/transformers/generation/__init__.py,sha256=6MmqS9D21ir4dcH6_fq8kRsX1VK3QspSn6Qw83F4ORE,1081
28
29
  optimum/rbln/transformers/generation/streamers.py,sha256=X-dEmL1L_0Oy0QSFj2RNdamb_xbDWLXd-Ms8ckx6OZ4,5778
29
- optimum/rbln/transformers/generation/utils.py,sha256=F8gnVYG79kzg_IvQynD-p409E_5loy5VaIXvfi094u0,19464
30
- optimum/rbln/transformers/models/__init__.py,sha256=8sOIypsvyrKk3bxsdiibCspmQVxc-xMx3WsUbDyMOfM,1319
30
+ optimum/rbln/transformers/generation/utils.py,sha256=XqPbYQCe6cEuWssG9iHpbbL-wgSQTcyKHabGwKj7lnE,19462
31
+ optimum/rbln/transformers/models/__init__.py,sha256=kCbAvlMadrhOv8PyEpvJLLBq1b7DYC3zDmlsxLPufTI,1448
31
32
  optimum/rbln/transformers/models/bart/__init__.py,sha256=SGUcpQ_5iLsVxySxtbwhRpmGt7BgVUTxHAjxAjQStdU,1063
32
- optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=H8yVoBFa5uMXQv_wYCHKRW6tIIjdD50ho9C0vcMsbSo,14956
33
+ optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=T9GjcsL8fAJcvAs_ifnZuDP2F77hhbjBcsc7u53k6OE,14951
33
34
  optimum/rbln/transformers/models/clip/__init__.py,sha256=tbco8qW9QhBe3dtWoKgslLZMsXu9dg_KfJ4IgjvK248,1071
34
- optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=WEXc9LWbClEzxeIw-LliI1A5OpiL7nnDm0G2IzYdqp4,3990
35
+ optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=V8Ix1X9gqeBHXP-HvRuNarFRC-cm--ZEU9ICCvwv-tk,4015
36
+ optimum/rbln/transformers/models/decoderonly/__init__.py,sha256=AG3ib8iZAEDAvVTNhieCyojWZtA67voPB0dI8lbCXTQ,1371
37
+ optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py,sha256=QJHCrYKAyXOHZsKiRt4uRCxoB7zATxjOERSbqOqjK-g,19095
38
+ optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py,sha256=DpY88CqhhesQVh6z42nvzG9p1Ju9wuEloFjPT8F92t4,18436
35
39
  optimum/rbln/transformers/models/dpt/__init__.py,sha256=R8OHDxOAYPjkk5t8osaPqRh85Pf1Cg1BtzqesqFRcTI,1045
36
40
  optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=uN_5DhjGbFmTbpm1JUBgPsDhMP_vIyc0QM2UK5DoRqc,3537
41
+ optimum/rbln/transformers/models/gemma/__init__.py,sha256=L1Qfr6dufWtoUZND_ofwxXPSxivEvPR8exy16a_nM2o,1042
42
+ optimum/rbln/transformers/models/gemma/gemma_architecture.py,sha256=hT0CqL_jhKWi8cDa1zFcAFPyli844wkliJ3bL5OyEdQ,4376
43
+ optimum/rbln/transformers/models/gemma/modeling_gemma.py,sha256=QW57x2ehojt0CHBJSC4Y51VaMqvjbiSYfEpxIPVMbj8,2643
37
44
  optimum/rbln/transformers/models/gpt2/__init__.py,sha256=jsOKYXUclG9G6cwUTUX4eeKqjCPfQUwev7TTFIMXS4Y,1040
38
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=QiNKLhBZ_-1bcq-7WQ4Bd2MK5xj9XR35IdkwEgCA6lk,10004
39
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=coWguusgbBhQ8yUfl7EFOCPnzeujDQpepRdd09czRZg,12471
45
+ optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=SIzwfQFRNvNOHjZmKcUZiURbnmXNXFh95twYELVmHcg,10278
46
+ optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=ZR0wep7V_sENaODlAbg70_xNZKeTK8xdN0AEOsIrKms,2721
40
47
  optimum/rbln/transformers/models/llama/__init__.py,sha256=5mX-MuKzVBj6WQeVxyPhtvFTv0jeZXAFfg4RZ2nVUh0,1042
41
- optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=bBUZBAsBvsvxY-_gGUofm5zn-piu61pooZr86Ib2CuI,27086
42
- optimum/rbln/transformers/models/llama/llama_architecture_cb.py,sha256=bhbi0MAee0k1cHeB20c0maD89fxT-53DSf1Mn8ZhgjA,32719
43
- optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=kTMxJwHRdK0XJFu_OfVWq3iWdOXZkDf4TdKzsi0uQWQ,19821
48
+ optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=j4mifSOaIk7wwV9fL9wQSt5kR3rpnvjtxd3VzhMNdgY,1123
49
+ optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=AQU4RVWQb0Ht_eAEiNTkcEq9bPCr-P1JnCkLy77yDnE,2643
44
50
  optimum/rbln/transformers/models/midm/__init__.py,sha256=_6kYchy47frGMZ8uoUspZ9IwrmCBQJ-8kVfXM7xOMew,1249
45
51
  optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py,sha256=P5JqTTcx56HOccxKbR14ZjA67BI0RNnJycG738JMaJ4,833
46
- optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py,sha256=p8U2Owo8KJzOnrI5vAcDkT2DCt3r-05zFDD2m6D4pEg,12835
47
- optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py,sha256=v5M_uQsdRUyPaiWEATv_FHp-2Duq2moyQJKSFVY-k1U,61035
52
+ optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py,sha256=5lhMXfqnIak1PJ9YL-vUxIdY_3DUr3IBXzTqf3ofpmI,12835
53
+ optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py,sha256=54__wd9EXwGxmaHDksTTcUD2aWl6WoszYsR8dlL1wfE,61031
48
54
  optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py,sha256=5ywaUVKTvqO8GRsHOSXOOGlbiEn-DbGkpJs59_dFb18,4059
49
- optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=G3fSKuh9CGZXyjM1UPZ3wQAYDDLJZcRlKmV_NgcyfJE,19138
50
- optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=UAZRE9PIVomfA7XgCc1quXl3Kfb2J1rKH-dmSf50EdE,15214
55
+ optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=IFnu54MVPFEk5pvaeJ8RZGlCR7X-9MMeTKThXOP6_M0,11367
56
+ optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=rk1LgR3s9dDC1zwE6Jg6LJQK868VyAIViD9zsK09-UE,2779
57
+ optimum/rbln/transformers/models/mistral/__init__.py,sha256=XtuOmzBITjj-H1yctXobJjHF908x1Wlxr_p4hi06v8I,1046
58
+ optimum/rbln/transformers/models/mistral/mistral_architecture.py,sha256=LCvY4L0Wq1VruKhZ3JTSiuZJqQRJlTae5A2bKsUBGAg,1128
59
+ optimum/rbln/transformers/models/mistral/modeling_mistral.py,sha256=77CRdlD3n465fQRZ6SOya9jRgL7M3KN624VzRUJBxt4,2678
51
60
  optimum/rbln/transformers/models/t5/__init__.py,sha256=dK6F1jbBf001h79WZiVdiNZoXm5kOe2fskzhREhu0EE,1057
52
61
  optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=2nFovfOdiJdY9jdAR9BngwPO3d2Oofn9jqVWgZ-YYZ0,18091
53
62
  optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=mz4cXqG9b0tDpTAw3qYn3FaJuolX601VmKBE3gohLSw,1043
54
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=kooQ1CC6p2mHvRHkFE48d69yNTnkG_V6g9Beu6Sy3XU,4063
63
+ optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=ZnsJ9f2Lu3WNH2QFiuOCTU5Y--_wNlyYy_0zuvkJ5RI,4088
55
64
  optimum/rbln/transformers/models/whisper/__init__.py,sha256=PZ8qeAAFMas2MizwVYFxlpFWd5k1Pe1x-0IJfYAMhT8,1059
56
65
  optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=L49ThCv5sqidNevBGsCpGrOSH4H6wzXOCmON1PCmY9M,11996
57
- optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=QX1Nmq26F_82EYgKmdgXEpE2F8ry-inkn2BB9Lx5M38,15885
66
+ optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=QtHP5bXUa9HXa95rEdaqsmbH3eG2QJgUBTV1OG7LF-I,15879
67
+ optimum/rbln/transformers/models/xlm_roberta/__init__.py,sha256=NTj4hCpd8L2_i5DZuV5wp-h8OlTLYVUqTrJxzY_Dg9g,1047
68
+ optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py,sha256=YOnybpasUwtAhZSRirHQj0kvmzpD0i2nBzcYT0En3ew,5018
69
+ optimum/rbln/transformers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
70
+ optimum/rbln/transformers/utils/rbln_quantization.py,sha256=kRms512Vf1o7vTZl5cd64ivjBVltZrUDCVqCRWFft88,3734
58
71
  optimum/rbln/utils/__init__.py,sha256=F6hJP00eV1_hT_IVwqqYwLWcLQAvZbmmrNMJTia3mjI,1106
59
- optimum/rbln/utils/import_utils.py,sha256=i2GmQJC9kl4BvXncVUrqx8VCqfv1omaHiWyCliBxChg,2632
60
- optimum/rbln/utils/runtime_utils.py,sha256=EzEabg2E18nq2WZRDZWsZ_hgrdgQ7u_NElTMAYpSDvM,2545
72
+ optimum/rbln/utils/import_utils.py,sha256=btQpDE5WBJUfCMzg5S-cokWbTh_IHYGo1tRNiU16vLU,2624
73
+ optimum/rbln/utils/runtime_utils.py,sha256=6APwOmW04DjdRto5ntKZFTw4CuFd194OcQtImcIQD2U,2621
61
74
  optimum/rbln/utils/save_utils.py,sha256=eFIPtmiblCJ3MvtxEPxmAR3iuLEUrzpyzwtVotDauhw,3283
62
- optimum_rbln-0.1.7.dist-info/METADATA,sha256=5B8Cx1-EWbf1C9VoUUiFJ2iXqIk8e-CExfgKgSZMGwU,4360
63
- optimum_rbln-0.1.7.dist-info/WHEEL,sha256=rSwsxJWe3vzyR5HCwjWXQruDgschpei4h_giTm0dJVE,90
64
- optimum_rbln-0.1.7.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
65
- optimum_rbln-0.1.7.dist-info/RECORD,,
75
+ optimum_rbln-0.1.9.dist-info/METADATA,sha256=loqigjmaw3tu7yv9gzydFI-JMJcdr9TTGuJWMQx5F44,4578
76
+ optimum_rbln-0.1.9.dist-info/WHEEL,sha256=rSwsxJWe3vzyR5HCwjWXQruDgschpei4h_giTm0dJVE,90
77
+ optimum_rbln-0.1.9.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
78
+ optimum_rbln-0.1.9.dist-info/RECORD,,