optimum-rbln 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. optimum/rbln/__init__.py +14 -0
  2. optimum/rbln/__version__.py +1 -1
  3. optimum/rbln/diffusers/__init__.py +0 -1
  4. optimum/rbln/diffusers/models/controlnet.py +3 -0
  5. optimum/rbln/diffusers/models/unet_2d_condition.py +2 -2
  6. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +22 -144
  7. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +107 -59
  8. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +106 -54
  9. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +130 -71
  10. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +131 -72
  11. optimum/rbln/modeling_alias.py +14 -0
  12. optimum/rbln/modeling_base.py +110 -0
  13. optimum/rbln/transformers/__init__.py +6 -0
  14. optimum/rbln/transformers/cache_utils.py +111 -0
  15. optimum/rbln/transformers/generation/utils.py +0 -2
  16. optimum/rbln/transformers/models/__init__.py +2 -0
  17. optimum/rbln/transformers/models/bart/bart_architecture.py +0 -5
  18. optimum/rbln/transformers/models/decoderonly/__init__.py +36 -0
  19. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +515 -0
  20. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +349 -0
  21. optimum/rbln/transformers/models/gemma/__init__.py +24 -0
  22. optimum/rbln/transformers/models/gemma/gemma_architecture.py +116 -0
  23. optimum/rbln/transformers/models/gemma/modeling_gemma.py +61 -0
  24. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +201 -166
  25. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +56 -220
  26. optimum/rbln/transformers/models/llama/llama_architecture.py +3 -610
  27. optimum/rbln/transformers/models/llama/modeling_llama.py +8 -442
  28. optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py +2 -1
  29. optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py +0 -4
  30. optimum/rbln/transformers/models/midm/midm_architecture.py +160 -357
  31. optimum/rbln/transformers/models/midm/modeling_midm.py +40 -272
  32. optimum/rbln/transformers/models/whisper/whisper_architecture.py +0 -6
  33. optimum/rbln/transformers/models/xlm_roberta/__init__.py +24 -0
  34. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +125 -0
  35. {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.8.dist-info}/METADATA +2 -3
  36. {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.8.dist-info}/RECORD +38 -30
  37. optimum/rbln/transformers/models/llama/llama_architecture_cb.py +0 -764
  38. {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.8.dist-info}/WHEEL +0 -0
  39. {optimum_rbln-0.1.7.dist-info → optimum_rbln-0.1.8.dist-info}/licenses/LICENSE +0 -0
@@ -22,17 +22,17 @@
22
22
  # from Rebellions Inc.
23
23
  """RBLNStableDiffusionPipeline class for inference of diffusion models on rbln devices."""
24
24
 
25
- from pathlib import Path
26
- from tempfile import TemporaryDirectory
27
25
  from typing import Any, Callable, Dict, List, Optional, Union
28
26
 
29
27
  import torch
30
28
  import torch.nn.functional as F
31
- from diffusers import StableDiffusionControlNetImg2ImgPipeline
29
+ from diffusers import AutoencoderKL, ControlNetModel, StableDiffusionControlNetImg2ImgPipeline
32
30
  from diffusers.image_processor import PipelineImageInput
31
+ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
33
32
  from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
34
33
  from diffusers.utils import deprecate, logging
35
34
  from diffusers.utils.torch_utils import is_compiled_module
35
+ from transformers import CLIPTextModel
36
36
 
37
37
  from ....modeling_base import RBLNBaseModel
38
38
  from ....transformers import RBLNCLIPTextModel
@@ -63,18 +63,40 @@ class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2
63
63
  - A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
64
64
  """
65
65
  export = kwargs.pop("export", None)
66
+ vae = kwargs.pop("vae", None)
67
+ unet = kwargs.pop("unet", None)
66
68
  text_encoder = kwargs.pop("text_encoder", None)
67
- controlnets = kwargs.pop("controlnet", None)
69
+ controlnet = kwargs.pop("controlnet", None)
70
+ model_save_dir = kwargs.pop("model_save_dir", None)
68
71
 
69
72
  rbln_config_kwargs, rbln_constructor_kwargs = RBLNBaseModel.pop_rbln_kwargs_from_kwargs(kwargs)
70
73
 
71
74
  kwargs_dict = {
72
75
  "pretrained_model_name_or_path": model_id,
73
- "text_encoder": text_encoder,
74
- "controlnet": controlnets,
75
76
  **kwargs,
76
77
  }
77
78
 
79
+ kwargs_dict.update(
80
+ {
81
+ **({"vae": vae} if vae is not None and isinstance(vae, AutoencoderKL) else {}),
82
+ **({"unet": unet} if unet is not None and isinstance(unet, UNet2DConditionModel) else {}),
83
+ **(
84
+ {"text_encoder": text_encoder}
85
+ if text_encoder is not None and isinstance(text_encoder, CLIPTextModel)
86
+ else {}
87
+ ),
88
+ **(
89
+ {"controlnet": controlnet}
90
+ if controlnet is not None
91
+ and (
92
+ isinstance(controlnet, ControlNetModel)
93
+ or all(isinstance(c, ControlNetModel) for c in controlnet)
94
+ )
95
+ else {}
96
+ ),
97
+ }
98
+ )
99
+
78
100
  model = super().from_pretrained(**{k: v for k, v in kwargs_dict.items() if v is not None})
79
101
 
80
102
  if export is None or export is False:
@@ -84,64 +106,87 @@ class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2
84
106
  rbln_config_kwargs.pop("rbln_guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
85
107
  )
86
108
 
87
- save_dir = TemporaryDirectory()
88
- save_dir_path = Path(save_dir.name)
89
-
90
- model.save_pretrained(save_directory=save_dir_path, **kwargs)
91
-
92
109
  # compile model, create runtime
93
- vae = RBLNAutoencoderKL.from_pretrained(
94
- model_id=save_dir_path / "vae",
95
- export=True,
96
- rbln_unet_sample_size=model.unet.config.sample_size,
97
- rbln_use_encode=True,
98
- rbln_vae_scale_factor=model.vae_scale_factor,
99
- **rbln_config_kwargs,
100
- **rbln_constructor_kwargs,
101
- )
102
-
103
- text_encoder = RBLNCLIPTextModel.from_pretrained(
104
- model_id=save_dir_path / "text_encoder",
105
- export=True,
106
- **rbln_config_kwargs,
107
- **rbln_constructor_kwargs,
108
- )
109
-
110
- batch_size = rbln_config_kwargs.pop("rbln_batch_size", 1)
111
- unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
112
-
113
- unet = RBLNUNet2DConditionModel.from_pretrained(
114
- model_id=save_dir_path / "unet",
115
- export=True,
116
- rbln_max_seq_len=text_encoder.config.max_position_embeddings,
117
- rbln_batch_size=unet_batch_size,
118
- rbln_use_encode=True,
119
- rbln_vae_scale_factor=model.vae_scale_factor,
120
- rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
121
- **rbln_config_kwargs,
122
- **rbln_constructor_kwargs,
123
- )
124
-
125
- if isinstance(controlnets, (list, tuple)):
126
- controlnet = RBLNMultiControlNetModel.from_pretrained(
127
- model_id=str(save_dir_path / "controlnet"),
110
+ if not isinstance(vae, RBLNAutoencoderKL):
111
+ vae = RBLNAutoencoderKL.from_pretrained(
112
+ model_id=model_id,
113
+ subfolder="vae",
128
114
  export=True,
129
- rbln_batch_size=unet_batch_size,
115
+ model_save_dir=model_save_dir,
116
+ rbln_unet_sample_size=model.unet.config.sample_size,
117
+ rbln_use_encode=True,
130
118
  rbln_vae_scale_factor=model.vae_scale_factor,
131
119
  **rbln_config_kwargs,
132
120
  **rbln_constructor_kwargs,
133
121
  )
134
- controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
135
- else:
136
- controlnet = RBLNControlNetModel.from_pretrained(
137
- model_id=save_dir_path / "controlnet",
122
+
123
+ if not isinstance(text_encoder, RBLNCLIPTextModel):
124
+ text_encoder = RBLNCLIPTextModel.from_pretrained(
125
+ model_id=model_id,
126
+ subfolder="text_encoder",
127
+ export=True,
128
+ model_save_dir=model_save_dir,
129
+ **rbln_config_kwargs,
130
+ **rbln_constructor_kwargs,
131
+ )
132
+
133
+ batch_size = rbln_config_kwargs.pop("rbln_batch_size", 1)
134
+ unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
135
+
136
+ if not isinstance(unet, RBLNUNet2DConditionModel):
137
+ unet = RBLNUNet2DConditionModel.from_pretrained(
138
+ model_id=model_id,
139
+ subfolder="unet",
138
140
  export=True,
141
+ model_save_dir=model_save_dir,
142
+ rbln_max_seq_len=text_encoder.config.max_position_embeddings,
139
143
  rbln_batch_size=unet_batch_size,
144
+ rbln_use_encode=True,
140
145
  rbln_vae_scale_factor=model.vae_scale_factor,
146
+ rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
141
147
  **rbln_config_kwargs,
142
148
  **rbln_constructor_kwargs,
143
149
  )
144
- controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
150
+
151
+ if not isinstance(controlnet, (RBLNControlNetModel, RBLNMultiControlNetModel)):
152
+ if isinstance(controlnet, (list, tuple)):
153
+ multicontrolnet = []
154
+ for i, cid in enumerate(controlnet):
155
+ subfolder_name = "controlnet" if i == 0 else f"controlnet_{i}"
156
+ multicontrolnet.append(
157
+ RBLNControlNetModel.from_pretrained(
158
+ model_id=cid.config._name_or_path,
159
+ subfolder=subfolder_name,
160
+ export=True,
161
+ model_save_dir=model_save_dir,
162
+ rbln_batch_size=unet_batch_size,
163
+ rbln_vae_scale_factor=model.vae_scale_factor,
164
+ **rbln_config_kwargs,
165
+ **rbln_constructor_kwargs,
166
+ )
167
+ )
168
+ controlnet = RBLNMultiControlNetModel(multicontrolnet, config=controlnet[0].config)
169
+ controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
170
+ else:
171
+ controlnet = RBLNControlNetModel.from_pretrained(
172
+ model_id=controlnet.config._name_or_path,
173
+ subfolder="controlnet",
174
+ export=True,
175
+ model_save_dir=model_save_dir,
176
+ rbln_batch_size=unet_batch_size,
177
+ rbln_vae_scale_factor=model.vae_scale_factor,
178
+ **rbln_config_kwargs,
179
+ **rbln_constructor_kwargs,
180
+ )
181
+ controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
182
+
183
+ if model_save_dir is not None:
184
+ # To skip saving original pytorch modules
185
+ del (model.vae, model.text_encoder, model.unet, model.controlnet)
186
+
187
+ # Direct calling of `save_pretrained` causes config.unet = (None, None).
188
+ # So config must be saved again, later.
189
+ model.save_pretrained(model_save_dir)
145
190
 
146
191
  # replace modules
147
192
  model.vae = vae
@@ -158,16 +203,23 @@ class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2
158
203
  }
159
204
  model.register_to_config(**update_dict)
160
205
 
161
- model.models = [vae.model[0], vae.model[1], text_encoder.model[0], unet.model[0], controlnet.model[0]]
206
+ if model_save_dir is not None:
207
+ # overwrite to replace incorrect config
208
+ model.save_config(model_save_dir)
162
209
 
210
+ # use for CI to access each compiled model
163
211
  if rbln_constructor_kwargs.pop("rbln_optimize_host_memory", None) is False:
164
212
  model.compiled_models = [
165
213
  vae.compiled_models[0],
166
214
  vae.compiled_models[1],
167
215
  text_encoder.compiled_models[0],
168
216
  unet.compiled_models[0],
169
- controlnet.compiled_models[0],
170
217
  ]
218
+ if isinstance(controlnet, RBLNMultiControlNetModel):
219
+ for c_model in controlnet.nets:
220
+ model.compiled_models.append(c_model.compiled_models[0])
221
+ else:
222
+ model.compiled_models.append(controlnet.compiled_models[0])
171
223
 
172
224
  return model
173
225
 
@@ -22,17 +22,17 @@
22
22
  # from Rebellions Inc.
23
23
  """RBLNStableDiffusionXLPipeline class for inference of diffusion models on rbln devices."""
24
24
 
25
- from pathlib import Path
26
- from tempfile import TemporaryDirectory
27
25
  from typing import Any, Callable, Dict, List, Optional, Tuple, Union
28
26
 
29
27
  import torch
30
28
  import torch.nn.functional as F
31
- from diffusers import StableDiffusionXLControlNetPipeline
29
+ from diffusers import AutoencoderKL, ControlNetModel, StableDiffusionXLControlNetPipeline
32
30
  from diffusers.image_processor import PipelineImageInput
31
+ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
33
32
  from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
34
33
  from diffusers.utils import deprecate, logging
35
34
  from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
35
+ from transformers import CLIPTextModel
36
36
 
37
37
  from ....modeling_base import RBLNBaseModel
38
38
  from ....transformers import RBLNCLIPTextModel, RBLNCLIPTextModelWithProjection
@@ -63,103 +63,152 @@ class RBLNStableDiffusionXLControlNetPipeline(StableDiffusionXLControlNetPipelin
63
63
  - A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
64
64
  """
65
65
  export = kwargs.pop("export", None)
66
- text_encoder = kwargs.pop("text_encoder", None)
67
- controlnets = kwargs.pop("controlnet", None)
68
66
  vae = kwargs.pop("vae", None)
67
+ unet = kwargs.pop("unet", None)
68
+ text_encoder = kwargs.pop("text_encoder", None)
69
+ text_encoder_2 = kwargs.pop("text_encoder_2", None)
70
+ controlnet = kwargs.pop("controlnet", None)
71
+ model_save_dir = kwargs.pop("model_save_dir", None)
69
72
 
70
73
  rbln_config_kwargs, rbln_constructor_kwargs = RBLNBaseModel.pop_rbln_kwargs_from_kwargs(kwargs)
74
+
71
75
  kwargs_dict = {
72
76
  "pretrained_model_name_or_path": model_id,
73
- "vae": vae,
74
- "controlnet": controlnets,
75
- "text_encoder": text_encoder,
76
77
  **kwargs,
77
78
  }
78
79
 
80
+ kwargs_dict.update(
81
+ {
82
+ **({"vae": vae} if vae is not None and isinstance(vae, AutoencoderKL) else {}),
83
+ **({"unet": unet} if unet is not None and isinstance(unet, UNet2DConditionModel) else {}),
84
+ **(
85
+ {"text_encoder": text_encoder}
86
+ if text_encoder is not None and isinstance(text_encoder, CLIPTextModel)
87
+ else {}
88
+ ),
89
+ **(
90
+ {"controlnet": controlnet}
91
+ if controlnet is not None
92
+ and (
93
+ isinstance(controlnet, ControlNetModel)
94
+ or all(isinstance(c, ControlNetModel) for c in controlnet)
95
+ )
96
+ else {}
97
+ ),
98
+ }
99
+ )
100
+
79
101
  model = super().from_pretrained(**{k: v for k, v in kwargs_dict.items() if v is not None})
80
102
 
81
103
  if export is None or export is False:
82
104
  return model
83
105
 
84
- save_dir = TemporaryDirectory()
85
- save_dir_path = Path(save_dir.name)
86
-
87
- model.save_pretrained(save_directory=save_dir_path, **kwargs)
88
-
89
106
  do_classifier_free_guidance = (
90
107
  rbln_config_kwargs.pop("rbln_guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
91
108
  )
92
109
 
93
- vae = RBLNAutoencoderKL.from_pretrained(
94
- model_id=model_id,
95
- subfolder="vae",
96
- export=True,
97
- rbln_unet_sample_size=model.unet.config.sample_size,
98
- rbln_use_encode=True,
99
- rbln_vae_scale_factor=model.vae_scale_factor,
100
- **rbln_config_kwargs,
101
- **rbln_constructor_kwargs,
102
- )
103
- text_encoder = RBLNCLIPTextModel.from_pretrained(
104
- model_id=model_id,
105
- subfolder="text_encoder",
106
- export=True,
107
- **rbln_config_kwargs,
108
- **rbln_constructor_kwargs,
109
- )
110
- text_encoder_2 = RBLNCLIPTextModelWithProjection.from_pretrained(
111
- model_id=model_id,
112
- subfolder="text_encoder_2",
113
- export=True,
114
- **rbln_config_kwargs,
115
- **rbln_constructor_kwargs,
116
- )
117
-
118
- batch_size = rbln_config_kwargs.pop("rbln_batch_size", 1)
119
- unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
110
+ if not isinstance(vae, RBLNAutoencoderKL):
111
+ vae = RBLNAutoencoderKL.from_pretrained(
112
+ model_id=model_id,
113
+ subfolder="vae",
114
+ export=True,
115
+ model_save_dir=model_save_dir,
116
+ rbln_unet_sample_size=model.unet.config.sample_size,
117
+ rbln_use_encode=False,
118
+ rbln_vae_scale_factor=model.vae_scale_factor,
119
+ **rbln_config_kwargs,
120
+ **rbln_constructor_kwargs,
121
+ )
120
122
 
121
- unet = RBLNUNet2DConditionModel.from_pretrained(
122
- model_id=model_id,
123
- subfolder="unet",
124
- export=True,
125
- rbln_max_seq_len=model.text_encoder.config.max_position_embeddings,
126
- rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
127
- rbln_batch_size=unet_batch_size,
128
- rbln_use_encode=True,
129
- rbln_vae_scale_factor=model.vae_scale_factor,
130
- rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
131
- **rbln_config_kwargs,
132
- **rbln_constructor_kwargs,
133
- )
123
+ if not isinstance(text_encoder, RBLNCLIPTextModel):
124
+ text_encoder = RBLNCLIPTextModel.from_pretrained(
125
+ model_id=model_id,
126
+ subfolder="text_encoder",
127
+ export=True,
128
+ model_save_dir=model_save_dir,
129
+ **rbln_config_kwargs,
130
+ **rbln_constructor_kwargs,
131
+ )
134
132
 
135
- if isinstance(controlnets, (list, tuple)):
136
- controlnet = RBLNMultiControlNetModel.from_pretrained(
137
- model_id=str(save_dir_path / "controlnet"),
133
+ if not isinstance(text_encoder_2, RBLNCLIPTextModel):
134
+ text_encoder_2 = RBLNCLIPTextModelWithProjection.from_pretrained(
135
+ model_id=model_id,
136
+ subfolder="text_encoder_2",
138
137
  export=True,
139
- rbln_batch_size=unet_batch_size,
140
- rbln_vae_scale_factor=model.vae_scale_factor,
138
+ model_save_dir=model_save_dir,
141
139
  **rbln_config_kwargs,
142
140
  **rbln_constructor_kwargs,
143
141
  )
144
- controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
145
- else:
146
- controlnet = RBLNControlNetModel.from_pretrained(
147
- model_id=save_dir_path / "controlnet",
142
+
143
+ batch_size = rbln_config_kwargs.pop("rbln_batch_size", 1)
144
+ unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
145
+
146
+ if not isinstance(unet, RBLNUNet2DConditionModel):
147
+ unet = RBLNUNet2DConditionModel.from_pretrained(
148
+ model_id=model_id,
149
+ subfolder="unet",
148
150
  export=True,
149
- rbln_batch_size=unet_batch_size,
151
+ model_save_dir=model_save_dir,
152
+ rbln_max_seq_len=model.text_encoder.config.max_position_embeddings,
150
153
  rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
154
+ rbln_batch_size=unet_batch_size,
155
+ rbln_use_encode=False,
151
156
  rbln_vae_scale_factor=model.vae_scale_factor,
157
+ rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
152
158
  **rbln_config_kwargs,
153
159
  **rbln_constructor_kwargs,
154
160
  )
155
- controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
156
161
 
162
+ if not isinstance(controlnet, (RBLNControlNetModel, RBLNMultiControlNetModel)):
163
+ if isinstance(controlnet, (list, tuple)):
164
+ multicontrolnet = []
165
+ for i, cid in enumerate(controlnet):
166
+ subfolder_name = "controlnet" if i == 0 else f"controlnet_{i}"
167
+ multicontrolnet.append(
168
+ RBLNControlNetModel.from_pretrained(
169
+ model_id=cid.config._name_or_path,
170
+ subfolder=subfolder_name,
171
+ export=True,
172
+ model_save_dir=model_save_dir,
173
+ rbln_batch_size=unet_batch_size,
174
+ rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
175
+ rbln_vae_scale_factor=model.vae_scale_factor,
176
+ **rbln_config_kwargs,
177
+ **rbln_constructor_kwargs,
178
+ )
179
+ )
180
+ controlnet = RBLNMultiControlNetModel(multicontrolnet, config=controlnet[0].config)
181
+ controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
182
+ else:
183
+ controlnet = RBLNControlNetModel.from_pretrained(
184
+ model_id=controlnet.config._name_or_path,
185
+ subfolder="controlnet",
186
+ export=True,
187
+ model_save_dir=model_save_dir,
188
+ rbln_batch_size=unet_batch_size,
189
+ rbln_text_model_hidden_size=model.text_encoder_2.config.hidden_size,
190
+ rbln_vae_scale_factor=model.vae_scale_factor,
191
+ **rbln_config_kwargs,
192
+ **rbln_constructor_kwargs,
193
+ )
194
+ controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
195
+
196
+ if model_save_dir is not None:
197
+ # To skip saving original pytorch modules
198
+ del (model.vae, model.text_encoder, model.unet, model.controlnet)
199
+
200
+ # Direct calling of `save_pretrained` causes config.unet = (None, None).
201
+ # So config must be saved again, later.
202
+ model.save_pretrained(model_save_dir)
203
+
204
+ # replace modules
157
205
  model.vae = vae
158
206
  model.text_encoder = text_encoder
159
207
  model.unet = unet
160
208
  model.text_encoder_2 = text_encoder_2
161
209
  model.controlnet = controlnet
162
210
 
211
+ # update config to be able to load from file
163
212
  update_dict = {
164
213
  "vae": ("optimum.rbln", "RBLNAutoencoderKL"),
165
214
  "text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
@@ -169,13 +218,23 @@ class RBLNStableDiffusionXLControlNetPipeline(StableDiffusionXLControlNetPipelin
169
218
  }
170
219
  model.register_to_config(**update_dict)
171
220
 
172
- model.models = [
173
- vae.model[0],
174
- unet.model[0],
175
- text_encoder.model[0],
176
- text_encoder_2.model[0],
177
- controlnet.model[0],
178
- ]
221
+ if model_save_dir is not None:
222
+ # overwrite to replace incorrect config
223
+ model.save_config(model_save_dir)
224
+
225
+ # use for CI to access each compiled model
226
+ if rbln_constructor_kwargs.pop("rbln_optimize_host_memory", None) is False:
227
+ model.compiled_models = [
228
+ vae.compiled_models[0],
229
+ text_encoder.compiled_models[0],
230
+ text_encoder_2.compiled_models[0],
231
+ unet.compiled_models[0],
232
+ ]
233
+ if isinstance(controlnet, RBLNMultiControlNetModel):
234
+ for c_model in controlnet.nets:
235
+ model.compiled_models.append(c_model.compiled_models[0])
236
+ else:
237
+ model.compiled_models.append(controlnet.compiled_models[0])
179
238
 
180
239
  return model
181
240