optimum-rbln 0.1.4__py3-none-any.whl → 0.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. optimum/rbln/__init__.py +7 -0
  2. optimum/rbln/__version__.py +1 -1
  3. optimum/rbln/diffusers/models/autoencoder_kl.py +16 -98
  4. optimum/rbln/diffusers/models/unet_2d_condition.py +1 -1
  5. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +9 -11
  6. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +8 -0
  7. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -0
  8. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -0
  9. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +8 -0
  10. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +8 -0
  11. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +9 -0
  12. optimum/rbln/modeling_base.py +172 -100
  13. optimum/rbln/modeling_seq2seq.py +58 -132
  14. optimum/rbln/transformers/__init__.py +2 -0
  15. optimum/rbln/transformers/models/__init__.py +1 -0
  16. optimum/rbln/transformers/models/clip/modeling_clip.py +0 -1
  17. optimum/rbln/transformers/models/dpt/__init__.py +24 -0
  18. optimum/rbln/transformers/models/dpt/modeling_dpt.py +89 -0
  19. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +24 -33
  20. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +52 -124
  21. optimum/rbln/transformers/models/llama/llama_architecture.py +13 -16
  22. optimum/rbln/transformers/models/llama/llama_architecture_cb.py +41 -36
  23. optimum/rbln/transformers/models/llama/modeling_llama.py +94 -120
  24. optimum/rbln/transformers/models/midm/modeling_midm.py +85 -121
  25. optimum/rbln/transformers/models/whisper/modeling_whisper.py +53 -123
  26. optimum/rbln/utils/__init__.py +1 -1
  27. optimum/rbln/utils/import_utils.py +46 -0
  28. {optimum_rbln-0.1.4.dist-info → optimum_rbln-0.1.7.dist-info}/METADATA +17 -51
  29. {optimum_rbln-0.1.4.dist-info → optimum_rbln-0.1.7.dist-info}/RECORD +31 -29
  30. {optimum_rbln-0.1.4.dist-info → optimum_rbln-0.1.7.dist-info}/WHEEL +1 -1
  31. {optimum_rbln-0.1.4.dist-info → optimum_rbln-0.1.7.dist-info}/licenses/LICENSE +0 -0
@@ -23,13 +23,10 @@
23
23
 
24
24
  import inspect
25
25
  import logging
26
- from pathlib import Path
27
- from tempfile import TemporaryDirectory
28
26
  from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
29
27
 
30
28
  import rebel
31
29
  import torch
32
- from optimum.exporters import TasksManager
33
30
  from transformers import (
34
31
  AutoModelForSpeechSeq2Seq,
35
32
  AutoProcessor,
@@ -40,10 +37,9 @@ from transformers import (
40
37
  )
41
38
  from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
42
39
 
43
- from ....modeling_base import RBLNBaseModel
40
+ from ....modeling_base import RBLNModel
44
41
  from ....modeling_config import DEFAULT_COMPILED_MODEL_NAME, RBLNConfig, RBLNRuntimeConfig
45
42
  from ....utils.runtime_utils import RBLNPytorchRuntime
46
- from ....utils.save_utils import maybe_save_preprocessors
47
43
  from .whisper_architecture import (
48
44
  _WhisperDecoderWrapper,
49
45
  _WhisperEncoderWrapper,
@@ -76,10 +72,10 @@ class RBLNRuntimeDecoder(RBLNPytorchRuntime):
76
72
  return Seq2SeqLMOutput(logits=outputs)
77
73
 
78
74
 
79
- class RBLNWhisperForConditionalGeneration(RBLNBaseModel, GenerationMixin):
75
+ class RBLNWhisperForConditionalGeneration(RBLNModel, GenerationMixin):
80
76
  """
81
77
  The Whisper Model with a language modeling head. Can be used for automatic speech recognition.
82
- This model inherits from [`RBLNBaseModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
78
+ This model inherits from [`RBLNMultiModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
83
79
 
84
80
  A class to convert and run pre-trained transformers based LlamaForCausalLM model on RBLN devices.
85
81
  It implements the methods to convert a pre-trained transformers LlamaForCausalLM model into a RBLN transformer model by:
@@ -96,8 +92,8 @@ class RBLNWhisperForConditionalGeneration(RBLNBaseModel, GenerationMixin):
96
92
  self.enc_max_seq_len = self.rbln_config.meta["input_max_length"]
97
93
  self.dec_max_seq_len = self.rbln_config.meta["rbln_dec_max_seq_len"]
98
94
 
99
- self.encoder = RBLNRuntimeEncoder(runtime=self.runtimes[0], main_input_name="input_features")
100
- self.decoder = RBLNRuntimeDecoder(runtime=self.runtimes[1], main_input_name="input_ids")
95
+ self.encoder = RBLNRuntimeEncoder(runtime=self.model[0], main_input_name="input_features")
96
+ self.decoder = RBLNRuntimeDecoder(runtime=self.model[1], main_input_name="input_ids")
101
97
  self.forced_decoder_ids = self.config.forced_decoder_ids
102
98
 
103
99
  # used in GenerationMixin.generate()
@@ -152,123 +148,57 @@ class RBLNWhisperForConditionalGeneration(RBLNBaseModel, GenerationMixin):
152
148
  }
153
149
 
154
150
  @classmethod
155
- def _export(
156
- cls,
157
- model_id: str,
158
- config: "PretrainedConfig",
159
- use_auth_token: Optional[Union[bool, str]] = None,
160
- revision: Optional[str] = None,
161
- force_download: bool = False,
162
- cache_dir: Optional[str] = None,
163
- subfolder: str = "",
164
- local_files_only: bool = False,
165
- trust_remote_code: bool = False,
166
- model_save_dir: Optional[Union[str, Path, TemporaryDirectory]] = None,
167
- **kwargs,
168
- ) -> "RBLNWhisperForConditionalGeneration":
169
- """
170
- Exports a vanilla Transformers model into a rbln-compiled Module.
171
- """
172
- task = kwargs.pop("task", None)
173
- if task is None:
174
- task = TasksManager.infer_task_from_model(cls.auto_model_class)
175
-
176
- if model_save_dir is None:
177
- save_dir = TemporaryDirectory()
178
- save_dir_path = Path(save_dir.name)
179
- else:
180
- save_dir = model_save_dir
181
- if isinstance(save_dir, TemporaryDirectory):
182
- save_dir_path = Path(model_save_dir.name)
183
- else:
184
- save_dir_path = Path(model_save_dir)
185
- save_dir_path.mkdir(exist_ok=True)
186
-
151
+ def update_kwargs(cls, kwargs):
187
152
  kwargs.update(
188
153
  {
189
154
  "torchscript": True,
190
155
  "return_dict": False,
191
- "use_cache": False,
156
+ "use_cache": True,
192
157
  }
193
158
  )
194
- rbln_config_kwargs, rbln_constructor_kwargs = cls.pop_rbln_kwargs_from_kwargs(kwargs)
195
-
196
- model: WhisperForConditionalGeneration = TasksManager.get_model_from_task(
197
- task=task,
198
- model_name_or_path=model_id,
199
- subfolder=subfolder,
200
- revision=revision,
201
- framework="pt",
202
- cache_dir=cache_dir,
203
- use_auth_token=use_auth_token,
204
- local_files_only=local_files_only,
205
- force_download=force_download,
206
- trust_remote_code=trust_remote_code,
207
- **kwargs,
159
+ return kwargs
160
+
161
+ @classmethod
162
+ @torch.inference_mode()
163
+ def get_compiled_model(cls, model, rbln_config: RBLNConfig):
164
+ wrapped_encoder = _WhisperEncoderWrapper(model).eval()
165
+ wrapped_decoder = _WhisperDecoderWrapper(model).eval()
166
+
167
+ enc_rbln_runtime_config = rbln_config[DEFAULT_COMPILED_MODEL_NAME][0]
168
+ dec_rbln_runtime_config = rbln_config[DEFAULT_COMPILED_MODEL_NAME][1]
169
+
170
+ enc_example_inputs = enc_rbln_runtime_config.get_dummy_inputs(fill=1)
171
+ dec_example_inputs = dec_rbln_runtime_config.get_dummy_inputs(fill=1)
172
+
173
+ enc_scripted_model = torch.jit.trace(wrapped_encoder, enc_example_inputs[0], check_trace=False)
174
+ dec_scripted_model = torch.jit.trace(wrapped_decoder, dec_example_inputs, check_trace=False)
175
+
176
+ enc_ir = rebel.torchscript_to_ir(
177
+ enc_scripted_model,
178
+ input_names=[v[0] for v in enc_rbln_runtime_config.input_info],
179
+ name=enc_rbln_runtime_config.rbln_mod_name,
180
+ )
181
+ dec_ir = rebel.torchscript_to_ir(
182
+ dec_scripted_model,
183
+ input_names=[v[0] for v in dec_rbln_runtime_config.input_info],
184
+ name=dec_rbln_runtime_config.rbln_mod_name,
208
185
  )
186
+ dec_ir.batch_size = dec_rbln_runtime_config.batch_size
209
187
 
210
- if config is None:
211
- config = model.config
212
-
213
- config.save_pretrained(save_dir_path)
214
- preprocessors = maybe_save_preprocessors(model_id, save_dir_path, src_subfolder=subfolder)
215
-
216
- # Get compilation arguments
217
- if rbln_config_kwargs.get("rbln_config", None) is None:
218
- rbln_config = cls.get_rbln_config(
219
- preprocessors=preprocessors, model_config=model.config, **rbln_config_kwargs
220
- )
221
-
222
- def compile_whisper():
223
- wrapped_encoder = _WhisperEncoderWrapper(model).eval()
224
- wrapped_decoder = _WhisperDecoderWrapper(model).eval()
225
-
226
- enc_rbln_runtime_config = rbln_config[DEFAULT_COMPILED_MODEL_NAME][0]
227
- dec_rbln_runtime_config = rbln_config[DEFAULT_COMPILED_MODEL_NAME][1]
228
-
229
- enc_example_inputs = enc_rbln_runtime_config.get_dummy_inputs(fill=1)
230
- dec_example_inputs = dec_rbln_runtime_config.get_dummy_inputs(fill=1)
231
-
232
- enc_scripted_model = torch.jit.trace(wrapped_encoder, enc_example_inputs[0]).eval()
233
- dec_scripted_model = torch.jit.trace(wrapped_decoder, dec_example_inputs).eval()
234
-
235
- enc_ir = rebel.torchscript_to_ir(
236
- enc_scripted_model,
237
- input_names=[v[0] for v in enc_rbln_runtime_config.input_info],
238
- name=enc_rbln_runtime_config.rbln_mod_name,
239
- )
240
- dec_ir = rebel.torchscript_to_ir(
241
- dec_scripted_model,
242
- input_names=[v[0] for v in dec_rbln_runtime_config.input_info],
243
- name=dec_rbln_runtime_config.rbln_mod_name,
244
- )
245
- dec_ir.batch_size = dec_rbln_runtime_config.batch_size
246
-
247
- # Caching encoder/decoder I/O
248
- connections = [
249
- (enc_ir.outputs[0], dec_ir.inputs[4]),
250
- (dec_ir.outputs[1], dec_ir.inputs[3]),
251
- ]
252
- compiled_model = rebel.compile(
253
- enc_ir,
254
- dec_ir,
255
- connections=connections,
256
- fusion=enc_rbln_runtime_config.fusion,
257
- npu=enc_rbln_runtime_config.npu,
258
- tensor_parallel_size=enc_rbln_runtime_config.tensor_parallel_size,
259
- )
260
- compiled_model.save(save_dir_path / f"{DEFAULT_COMPILED_MODEL_NAME}.rbln")
261
-
262
- compile_whisper()
263
- rbln_config.save(save_dir_path)
264
-
265
- return cls._from_pretrained(
266
- model_id=save_dir_path,
267
- config=config,
268
- model_save_dir=save_dir,
269
- **rbln_constructor_kwargs,
270
- **kwargs,
188
+ # Caching encoder/decoder I/O
189
+ connections = [
190
+ (enc_ir.outputs[0], dec_ir.inputs[4]),
191
+ (dec_ir.outputs[1], dec_ir.inputs[3]),
192
+ ]
193
+ compiled_model = rebel.compile(
194
+ enc_ir,
195
+ dec_ir,
196
+ connections=connections,
197
+ fusion=enc_rbln_runtime_config.fusion,
198
+ npu=enc_rbln_runtime_config.npu,
199
+ tensor_parallel_size=enc_rbln_runtime_config.tensor_parallel_size,
271
200
  )
201
+ return compiled_model
272
202
 
273
203
  @classmethod
274
204
  def _get_rbln_config(
@@ -357,11 +287,14 @@ class RBLNWhisperForConditionalGeneration(RBLNBaseModel, GenerationMixin):
357
287
 
358
288
  return rbln_config
359
289
 
360
- def _create_runtimes(self, rbln_device_map: Dict[str, int]) -> List[rebel.Runtime]:
290
+ @classmethod
291
+ def _create_runtimes(
292
+ cls, compiled_models: List[rebel.RBLNCompiledModel], rbln_device_map: Dict[str, int]
293
+ ) -> List[rebel.Runtime]:
361
294
  device_val = rbln_device_map[DEFAULT_COMPILED_MODEL_NAME]
362
295
  return [
363
- self.compiled_models[0].create_runtime("encoder", tensor_type="pt", device=device_val),
364
- self.compiled_models[0].create_runtime("decoder", tensor_type="pt", device=device_val),
296
+ compiled_models[0].create_runtime("encoder", tensor_type="pt", device=device_val),
297
+ compiled_models[0].create_runtime("decoder", tensor_type="pt", device=device_val),
365
298
  ]
366
299
 
367
300
  def forward(
@@ -379,6 +312,3 @@ class RBLNWhisperForConditionalGeneration(RBLNBaseModel, GenerationMixin):
379
312
  lm_logits = decoder_output.logits
380
313
 
381
314
  return Seq2SeqLMOutput(logits=lm_logits)
382
-
383
- def __repr__(self):
384
- return repr(self.runtimes[0]) + "\n" + repr(self.runtimes[1])
@@ -21,5 +21,5 @@
21
21
  # copied, modified, or distributed without prior written permission
22
22
  # from Rebellions Inc.
23
23
 
24
- from .import_utils import is_rbln_available
24
+ from .import_utils import check_version_compats, is_rbln_available
25
25
  from .runtime_utils import RBLNPytorchRuntime
@@ -21,8 +21,54 @@
21
21
  # copied, modified, or distributed without prior written permission
22
22
  # from Rebellions Inc.
23
23
 
24
+ import importlib.metadata
24
25
  import importlib.util
26
+ import warnings
27
+ from dataclasses import dataclass
28
+
29
+ from packaging.version import Version
30
+
31
+
32
+ @dataclass
33
+ class VersionCompat:
34
+ package_name: str
35
+ min_version: str
36
+ max_version: str
37
+
38
+
39
+ RBLN_VERSION_COMPATS = {
40
+ "0.1.5": [
41
+ VersionCompat(
42
+ package_name="rebel-compiler",
43
+ min_version="0.5.7",
44
+ max_version="0.5.8",
45
+ ),
46
+ ],
47
+ "0.0.0": [],
48
+ }
25
49
 
26
50
 
27
51
  def is_rbln_available() -> bool:
28
52
  return importlib.util.find_spec("rebel-compiler") is not None
53
+
54
+
55
+ def check_version_compats() -> None:
56
+ warnings.filterwarnings(action="always", category=ImportWarning)
57
+
58
+ my_version = importlib.metadata.version("optimum-rbln")
59
+ target_version = list(filter(lambda v: Version(my_version) > Version(v), RBLN_VERSION_COMPATS.keys()))[0]
60
+ for compat in RBLN_VERSION_COMPATS[target_version]:
61
+ try:
62
+ dep_version = importlib.metadata.version(compat.package_name)
63
+ except importlib.metadata.PackageNotFoundError:
64
+ warnings.warn(f"optimum-rbln requires {compat.package_name} to be installed.", ImportWarning)
65
+ continue
66
+
67
+ if not Version(compat.min_version) <= Version(dep_version) < Version(compat.max_version):
68
+ warnings.warn(
69
+ f"optimum-rbln v{my_version} is compatible to {compat.package_name} v{compat.min_version} to v{compat.max_version}. (you are currently using v{dep_version})\n"
70
+ "Please refer to our SDK release notes at https://docs.rbln.ai/about_atom/release_note.html",
71
+ ImportWarning,
72
+ )
73
+
74
+ warnings.resetwarnings()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: optimum-rbln
3
- Version: 0.1.4
3
+ Version: 0.1.7
4
4
  Summary: Optimum RBLN is the interface between the Hugging Face Transformers and Diffusers libraries and RBLN accelerators.
5
5
  It provides a set of tools enabling easy model loading and inference on single and multiple rbln device settings for different downstream tasks.
6
6
  Keywords: transformers,diffusers,inference,rbln,atom,rebel
@@ -20,13 +20,13 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
20
20
  Project-URL: Homepage, https://rebellions.ai
21
21
  Project-URL: Documentation, https://docs.rbln.ai
22
22
  Requires-Python: <3.11,>=3.8
23
- Requires-Dist: torch==2.2.1
23
+ Requires-Dist: torch<=2.2.1
24
24
  Requires-Dist: optimum>=1.17.1
25
25
  Requires-Dist: accelerate>=0.28.0
26
- Requires-Dist: transformers==4.40.2
27
- Requires-Dist: diffusers==0.27.2
26
+ Requires-Dist: transformers<=4.40.2
27
+ Requires-Dist: diffusers<=0.29.2
28
28
  Requires-Dist: einops>=0.8.0
29
- Requires-Dist: diffusers>=0.27.1; extra == "diffusers"
29
+ Requires-Dist: packaging>=24.1
30
30
  Requires-Dist: pytest>=8.1.1; extra == "tests"
31
31
  Requires-Dist: psutil>=5.9.8; extra == "tests"
32
32
  Requires-Dist: parameterized>=0.9.0; extra == "tests"
@@ -34,13 +34,11 @@ Requires-Dist: GitPython>=3.1.42; extra == "tests"
34
34
  Requires-Dist: sentencepiece>=0.2.0; extra == "tests"
35
35
  Requires-Dist: datasets>=2.18.0; extra == "tests"
36
36
  Requires-Dist: sacremoses>=0.1.1; extra == "tests"
37
- Requires-Dist: diffusers>=0.27.1; extra == "tests"
38
37
  Requires-Dist: safetensors>=0.4.2; extra == "tests"
39
38
  Requires-Dist: black>=24.3.0; extra == "quality"
40
39
  Requires-Dist: ruff>=0.3.3; extra == "quality"
41
40
  Requires-Dist: isort>=5.13.2; extra == "quality"
42
41
  Requires-Dist: hf-doc-builder>=0.5.0; extra == "quality"
43
- Provides-Extra: diffusers
44
42
  Provides-Extra: tests
45
43
  Provides-Extra: quality
46
44
  Description-Content-Type: text/markdown
@@ -65,26 +63,28 @@ limitations under the License.
65
63
 
66
64
  🤗 Optimum RBLN is the interface between the 🤗 Transformers library and RBLN Accelerators including [ATOM](https://atom_link) and [REBEL](https://rebel_link).
67
65
  It provides a set of tools enabling easy model loading and inference on single- and multi-Accelerator settings for different downstream tasks.
68
- The list of officially validated models and tasks is available [here](TODO:). Users can try other models and tasks with only few changes.
66
+ The list of officially validated models and tasks is available [here](https://docs.rbln.ai/software/optimum/optimum_rbln.html). Users can try other models and tasks with only few changes.
69
67
 
70
68
  ## Install from PyPI
71
69
 
72
70
  To install the latest release of this package:
73
71
 
74
- ```bash
75
- pip install --index-url https://pypi.rebellions.in/simple optimum-rbln
76
- ```
72
+ - Export environment variables to access to RBLN private PyPI.
73
+ ```bash
74
+ export REBEL_PYPI_USERNAME=<username>
75
+ export REBEL_PYPI_PASSWORD=<password>
76
+ ```
77
+
78
+ - Install optimum-rbln package:
79
+ ```bash
80
+ pip install --index-url https://pypi.rebellions.in/simple optimum-rbln
81
+ ```
77
82
 
78
83
  ## Install from source
79
84
 
80
85
  ### Prerequisites
81
86
 
82
87
  - Install [PDM](https://pdm-project.org/latest/) (refer [this link](https://pdm-project.org/latest/#installation) for detailed commands)
83
- - Export environment variables to access to RBLN private PyPI.
84
- ```bash
85
- export REBEL_PYPI_USERNAME=<username>
86
- export REBEL_PYPI_PASSWORD=<password>
87
- ```
88
88
 
89
89
  The below command installs optimum-rbln along with its dependencies.
90
90
 
@@ -106,40 +106,6 @@ pdm install -G:all
106
106
 
107
107
  🤗 Optimum RBLN was designed with one goal in mind: **to make inference straightforward for any 🤗 Transformers user while leveraging the complete power of RBLN Accelerators**.
108
108
 
109
- #### Transformers Interface
110
-
111
- <!--
112
- There are two main classes one needs to know:
113
- - TrainiumArgumentParser: inherits the original [HfArgumentParser](https://huggingface.co/docs/transformers/main/en/internal/trainer_utils#transformers.HfArgumentParser) in Transformers with additional checks on the argument values to make sure that they will work well with AWS Trainium instances.
114
- - [NeuronTrainer](https://huggingface.co/docs/optimum/neuron/package_reference/trainer): this version trainer takes care of doing the proper checks and changes to the supported models to make them trainable on AWS Trainium instances.
115
-
116
- The [NeuronTrainer](https://huggingface.co/docs/optimum/neuron/package_reference/trainer) is very similar to the [🤗 Transformers Trainer](https://huggingface.co/docs/transformers/main_classes/trainer), and adapting a script using the Trainer to make it work with Trainium will mostly consist in simply swapping the Trainer class for the NeuronTrainer one.
117
- That's how most of the [example scripts](https://github.com/huggingface/optimum-neuron/tree/main/examples) were adapted from their [original counterparts](https://github.com/huggingface/transformers/tree/main/examples/pytorch).
118
-
119
- ```diff
120
- from transformers import TrainingArguments
121
- +from optimum.neuron import NeuronTrainer as Trainer
122
-
123
- training_args = TrainingArguments(
124
- # training arguments...
125
- )
126
-
127
- # A lot of code here
128
-
129
- # Initialize our Trainer
130
- trainer = Trainer(
131
- model=model,
132
- args=training_args, # Original training arguments.
133
- train_dataset=train_dataset if training_args.do_train else None,
134
- eval_dataset=eval_dataset if training_args.do_eval else None,
135
- compute_metrics=compute_metrics,
136
- tokenizer=tokenizer,
137
- data_collator=data_collator,
138
- )
139
- ``` -->
140
-
141
109
  ### Documentation
142
110
 
143
- Check out [the documentation of Optimum RBLN](https://huggingface.co/docs/optimum-rbln/index) for more advanced usage.
144
-
145
- If you find any issue while using those, please open an issue or a pull request.
111
+ Check out [the documentation of Optimum RBLN](https://docs.rbln.ai/software/optimum/optimum_rbln.html) for more advanced usage.
@@ -1,63 +1,65 @@
1
- optimum/rbln/__init__.py,sha256=J9OmYkTDCm3a4TmmBbOOScMQA23SJFwZzE4InpwKePg,4111
2
- optimum/rbln/__version__.py,sha256=K0nJliLE8urvUSONsZC4x-EeWHUpKHvT74DFSIT6PZI,21
1
+ optimum/rbln/__init__.py,sha256=m2CcYYJw98tSvIFSNJJc5yzrjYKsUdEeBBvsX3a5koI,4251
2
+ optimum/rbln/__version__.py,sha256=V7LnX330m3uiAO0EYQbPUYETPj2br2y1Pv-a7ApMj40,21
3
3
  optimum/rbln/diffusers/__init__.py,sha256=JWeu2ihHKiYD0Uzs9jXbaAq-bA1G86UCMPPx_oiJYFU,2606
4
4
  optimum/rbln/diffusers/models/__init__.py,sha256=aY6Llq_31dZjdB9HPBDvi7sXVtdQT9r11gokXG5ffxA,1139
5
- optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=ifgsAoqZE1dOlJv6z7HJv7rp_IJ8KXMEmI_LOg98ITU,12566
5
+ optimum/rbln/diffusers/models/autoencoder_kl.py,sha256=qIhXCfEADNTm2U9I5ZFN1IfA01zwupUY0IBnJwvxLwI,9506
6
6
  optimum/rbln/diffusers/models/controlnet.py,sha256=7T5E-RvGawT2uEtuJYxGTrzIDbApcF13zuXbVCcoQVI,9224
7
- optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=dWDgeWhj2Q2LXHFy7iCnmPSJA4rSMCLeqwAIkYa7Hnk,14422
7
+ optimum/rbln/diffusers/models/unet_2d_condition.py,sha256=tdNQHSdN92MlErpsvPpiUleRGhRa9GH0FSFZoSA6-wk,14468
8
8
  optimum/rbln/diffusers/pipelines/__init__.py,sha256=Xr_bQbpbC5HbJB2NuUcVQu2BGebDkc2bhsGJmL6jgps,1449
9
9
  optimum/rbln/diffusers/pipelines/controlnet/__init__.py,sha256=k0govvSBxBUR5qpxUGxRMHuQCMX7hXHVZ4EqVRw1LWk,1377
10
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=y-CZhtywVnvnWloCqKaYVS94_QprslZpA_EFEY6pHpU,9466
11
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=qwpFqmhuNvxonMwtGyZU0d2bvknJloQRk_Sasi9b_gc,39622
12
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=iGJQM6JltALuqSamj9WVojDjtPlJXbJeT7RQuu0Hu4w,38127
10
+ optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py,sha256=-Mtot-EJbYnySLKX7v0Im9UQyo2H2HjlZiO31SosbbQ,9592
11
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py,sha256=QK8C9mCgCCPTy_sj6PjiwlQzj8sKwUSDWKYeMT3Vb7A,39936
12
+ optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py,sha256=8wUn937eZvr8uVLhTtw-OwF9r_iwdQ1_RpD4XNkarAU,38481
13
13
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py,sha256=qe2ZW-ugpnfatx7bx1a21C_40kVMSp8DsQ5fl2DFoKM,49849
14
14
  optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py,sha256=DKai4mdW_fkhdD4yjIGKyKv00COFH-Nz5ux9jmatjWE,51196
15
15
  optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py,sha256=qf_uMWSwD-CyRMRC73y1QsTMyl_qCMreIdg0a8rhJuA,1142
16
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=i_i3729IE4X19gTu163hzJZqb93pu-VaaJj_gbzoLG8,5195
17
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=ZyaEsC7uGa9W8uV7U61wGd88JxkAy78FWwrx5SekHOM,5440
16
+ optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py,sha256=rVryl7riAgkkNJzbXQHKRDYEyR7ZhsF_aF_MkMnerco,5399
17
+ optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py,sha256=VfOOybXQnotWIS1ch0a-eMSM-BDrPlZdGwtsYtsH0JQ,5747
18
18
  optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py,sha256=8MDMHIVsDrM6lZAyvpjFtWOFwiY_IoSxzCQe-gJYTPI,159
19
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=RZ7xHD4Yo3Ls8hH9bGbjokZd7gTPV7Dz7Cj3z-_t17M,5366
20
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=rGJFKMo6aKbJwwLTS-N3fkFUrRXHr-2hWdatiFzySYk,5516
19
+ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py,sha256=aCJSoXks7IpjX4rcH6q0TjXtIPzNrbvAvz0KbIEmMr8,5684
20
+ optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py,sha256=Cv9L4El2GOE-3IRQKHNEMuSdWGmtVsRnQJShcv2hOo0,5874
21
21
  optimum/rbln/modeling.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
22
  optimum/rbln/modeling_alias.py,sha256=pyYGME31QaiBaLqnjQq3LwUF1T6dLeb8QLB91gzNsLM,1574
23
- optimum/rbln/modeling_base.py,sha256=2A6BJKwrGKMJvlPy4fCFP8OUGJ6-wszak1adIuOR8qE,26552
23
+ optimum/rbln/modeling_base.py,sha256=779VbQy6gxCkCaa75KAbP87EqBkTQV4RW_roqjxrNMg,29564
24
24
  optimum/rbln/modeling_config.py,sha256=R0GBd-upavJrpR-2SvfgCCxP7f5Zr0NxIqdKmwBfVCk,6439
25
- optimum/rbln/modeling_seq2seq.py,sha256=eLPiUnei0XGFK01JbIsfS03-hJ_5EkazpoBONv65JNI,19549
26
- optimum/rbln/transformers/__init__.py,sha256=loWV0nNu8woMq4WJbV7IbhYZW8VkbBM9uT5THDkW47M,1920
25
+ optimum/rbln/modeling_seq2seq.py,sha256=XXYu_hpxOgQmMgayUy9URQwgMl9Ci2AfWyVHm7tMP5o,16783
26
+ optimum/rbln/transformers/__init__.py,sha256=fgRvfcQps-YEpXV3h0uz0VBXB1Ts9t-DZRwjS0zHUNU,1992
27
27
  optimum/rbln/transformers/generation/__init__.py,sha256=6MmqS9D21ir4dcH6_fq8kRsX1VK3QspSn6Qw83F4ORE,1081
28
28
  optimum/rbln/transformers/generation/streamers.py,sha256=X-dEmL1L_0Oy0QSFj2RNdamb_xbDWLXd-Ms8ckx6OZ4,5778
29
29
  optimum/rbln/transformers/generation/utils.py,sha256=F8gnVYG79kzg_IvQynD-p409E_5loy5VaIXvfi094u0,19464
30
- optimum/rbln/transformers/models/__init__.py,sha256=ysQWodX3tHE--R54KGerEmoUHh5IFPiCI4EmXtt1ZIE,1276
30
+ optimum/rbln/transformers/models/__init__.py,sha256=8sOIypsvyrKk3bxsdiibCspmQVxc-xMx3WsUbDyMOfM,1319
31
31
  optimum/rbln/transformers/models/bart/__init__.py,sha256=SGUcpQ_5iLsVxySxtbwhRpmGt7BgVUTxHAjxAjQStdU,1063
32
32
  optimum/rbln/transformers/models/bart/bart_architecture.py,sha256=H8yVoBFa5uMXQv_wYCHKRW6tIIjdD50ho9C0vcMsbSo,14956
33
33
  optimum/rbln/transformers/models/clip/__init__.py,sha256=tbco8qW9QhBe3dtWoKgslLZMsXu9dg_KfJ4IgjvK248,1071
34
- optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=SMiMtSWW4EFbhQsHRHKZarTW6u209FTqa0FkM8zN2Tw,4019
34
+ optimum/rbln/transformers/models/clip/modeling_clip.py,sha256=WEXc9LWbClEzxeIw-LliI1A5OpiL7nnDm0G2IzYdqp4,3990
35
+ optimum/rbln/transformers/models/dpt/__init__.py,sha256=R8OHDxOAYPjkk5t8osaPqRh85Pf1Cg1BtzqesqFRcTI,1045
36
+ optimum/rbln/transformers/models/dpt/modeling_dpt.py,sha256=uN_5DhjGbFmTbpm1JUBgPsDhMP_vIyc0QM2UK5DoRqc,3537
35
37
  optimum/rbln/transformers/models/gpt2/__init__.py,sha256=jsOKYXUclG9G6cwUTUX4eeKqjCPfQUwev7TTFIMXS4Y,1040
36
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=RQ0Y5f7IKQ73onmuIRB-aw379asSR7kfhUPclLHCOkY,10348
37
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=UbVUmegs-v2jBUQUYwxIQ50EpT2dHDzBiPXshLHtuCQ,15079
38
+ optimum/rbln/transformers/models/gpt2/gpt2_architecture.py,sha256=QiNKLhBZ_-1bcq-7WQ4Bd2MK5xj9XR35IdkwEgCA6lk,10004
39
+ optimum/rbln/transformers/models/gpt2/modeling_gpt2.py,sha256=coWguusgbBhQ8yUfl7EFOCPnzeujDQpepRdd09czRZg,12471
38
40
  optimum/rbln/transformers/models/llama/__init__.py,sha256=5mX-MuKzVBj6WQeVxyPhtvFTv0jeZXAFfg4RZ2nVUh0,1042
39
- optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=VAJqz1rsS2tEk2ECb7VjPCrrQn3VP29LpsStpoHz6Uk,27123
40
- optimum/rbln/transformers/models/llama/llama_architecture_cb.py,sha256=6Ih0rIBuOLAgV7NmW3aOhafAat6x6AGkWqvkKpRf5yc,32664
41
- optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=_b_3jE-uxkqE5oAXlRHdDY5m_mTHU3A2AVun3gAo2Bk,21027
41
+ optimum/rbln/transformers/models/llama/llama_architecture.py,sha256=bBUZBAsBvsvxY-_gGUofm5zn-piu61pooZr86Ib2CuI,27086
42
+ optimum/rbln/transformers/models/llama/llama_architecture_cb.py,sha256=bhbi0MAee0k1cHeB20c0maD89fxT-53DSf1Mn8ZhgjA,32719
43
+ optimum/rbln/transformers/models/llama/modeling_llama.py,sha256=kTMxJwHRdK0XJFu_OfVWq3iWdOXZkDf4TdKzsi0uQWQ,19821
42
44
  optimum/rbln/transformers/models/midm/__init__.py,sha256=_6kYchy47frGMZ8uoUspZ9IwrmCBQJ-8kVfXM7xOMew,1249
43
45
  optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py,sha256=P5JqTTcx56HOccxKbR14ZjA67BI0RNnJycG738JMaJ4,833
44
46
  optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py,sha256=p8U2Owo8KJzOnrI5vAcDkT2DCt3r-05zFDD2m6D4pEg,12835
45
47
  optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py,sha256=v5M_uQsdRUyPaiWEATv_FHp-2Duq2moyQJKSFVY-k1U,61035
46
48
  optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py,sha256=5ywaUVKTvqO8GRsHOSXOOGlbiEn-DbGkpJs59_dFb18,4059
47
49
  optimum/rbln/transformers/models/midm/midm_architecture.py,sha256=G3fSKuh9CGZXyjM1UPZ3wQAYDDLJZcRlKmV_NgcyfJE,19138
48
- optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=y2qFgBrE11_MT9-a3LdFfmAc_3lEcy0b3YRbYLkdtlQ,16174
50
+ optimum/rbln/transformers/models/midm/modeling_midm.py,sha256=UAZRE9PIVomfA7XgCc1quXl3Kfb2J1rKH-dmSf50EdE,15214
49
51
  optimum/rbln/transformers/models/t5/__init__.py,sha256=dK6F1jbBf001h79WZiVdiNZoXm5kOe2fskzhREhu0EE,1057
50
52
  optimum/rbln/transformers/models/t5/t5_architecture.py,sha256=2nFovfOdiJdY9jdAR9BngwPO3d2Oofn9jqVWgZ-YYZ0,18091
51
53
  optimum/rbln/transformers/models/wav2vec2/__init__.py,sha256=mz4cXqG9b0tDpTAw3qYn3FaJuolX601VmKBE3gohLSw,1043
52
54
  optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py,sha256=kooQ1CC6p2mHvRHkFE48d69yNTnkG_V6g9Beu6Sy3XU,4063
53
55
  optimum/rbln/transformers/models/whisper/__init__.py,sha256=PZ8qeAAFMas2MizwVYFxlpFWd5k1Pe1x-0IJfYAMhT8,1059
54
- optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=WV3pcxeXJSw74U4Xc0wW8VFmwdEIdbqrZmcjBQixEN4,14726
56
+ optimum/rbln/transformers/models/whisper/modeling_whisper.py,sha256=L49ThCv5sqidNevBGsCpGrOSH4H6wzXOCmON1PCmY9M,11996
55
57
  optimum/rbln/transformers/models/whisper/whisper_architecture.py,sha256=QX1Nmq26F_82EYgKmdgXEpE2F8ry-inkn2BB9Lx5M38,15885
56
- optimum/rbln/utils/__init__.py,sha256=wr7ep1WliFYR0825f7BbHevtT3xhlMSwpDkvAPzShgE,1083
57
- optimum/rbln/utils/import_utils.py,sha256=OL3aBy3XLWj7KDb6VZKBPJWiEcktL4qRxlpQpDBcMRg,1116
58
+ optimum/rbln/utils/__init__.py,sha256=F6hJP00eV1_hT_IVwqqYwLWcLQAvZbmmrNMJTia3mjI,1106
59
+ optimum/rbln/utils/import_utils.py,sha256=i2GmQJC9kl4BvXncVUrqx8VCqfv1omaHiWyCliBxChg,2632
58
60
  optimum/rbln/utils/runtime_utils.py,sha256=EzEabg2E18nq2WZRDZWsZ_hgrdgQ7u_NElTMAYpSDvM,2545
59
61
  optimum/rbln/utils/save_utils.py,sha256=eFIPtmiblCJ3MvtxEPxmAR3iuLEUrzpyzwtVotDauhw,3283
60
- optimum_rbln-0.1.4.dist-info/METADATA,sha256=dh0AyheyqiCICYYtofJApo2-DDp4W1ymrzay6f2VzVw,6197
61
- optimum_rbln-0.1.4.dist-info/WHEEL,sha256=SOP-4bEE0jbVaCHQGVvF08uWxk5rcSsfEybvoQVHlD8,90
62
- optimum_rbln-0.1.4.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
63
- optimum_rbln-0.1.4.dist-info/RECORD,,
62
+ optimum_rbln-0.1.7.dist-info/METADATA,sha256=5B8Cx1-EWbf1C9VoUUiFJ2iXqIk8e-CExfgKgSZMGwU,4360
63
+ optimum_rbln-0.1.7.dist-info/WHEEL,sha256=rSwsxJWe3vzyR5HCwjWXQruDgschpei4h_giTm0dJVE,90
64
+ optimum_rbln-0.1.7.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
65
+ optimum_rbln-0.1.7.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: pdm-backend (2.3.1)
2
+ Generator: pdm-backend (2.3.3)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any