optimum-rbln 0.1.1__py3-none-any.whl → 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +2 -0
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/modeling_base.py +3 -3
- optimum/rbln/transformers/__init__.py +2 -0
- optimum/rbln/transformers/models/__init__.py +1 -0
- optimum/rbln/transformers/models/llama/llama_architecture.py +49 -17
- optimum/rbln/transformers/models/llama/llama_architecture_cb.py +759 -0
- optimum/rbln/transformers/models/llama/modeling_llama.py +126 -32
- optimum/rbln/transformers/models/midm/__init__.py +32 -0
- optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py +22 -0
- optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py +303 -0
- optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py +1473 -0
- optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py +98 -0
- optimum/rbln/transformers/models/midm/midm_architecture.py +506 -0
- optimum/rbln/transformers/models/midm/modeling_midm.py +426 -0
- {optimum_rbln-0.1.1.dist-info → optimum_rbln-0.1.4.dist-info}/METADATA +5 -4
- {optimum_rbln-0.1.1.dist-info → optimum_rbln-0.1.4.dist-info}/RECORD +19 -11
- {optimum_rbln-0.1.1.dist-info → optimum_rbln-0.1.4.dist-info}/WHEEL +1 -1
- {optimum_rbln-0.1.1.dist-info → optimum_rbln-0.1.4.dist-info}/licenses/LICENSE +0 -0
@@ -39,12 +39,20 @@ from ....modeling_base import RBLNBaseModel
|
|
39
39
|
from ....modeling_config import DEFAULT_COMPILED_MODEL_NAME, RBLNConfig, RBLNRuntimeConfig
|
40
40
|
from ....utils.runtime_utils import RBLNPytorchRuntime
|
41
41
|
from ....utils.save_utils import maybe_save_preprocessors
|
42
|
+
|
43
|
+
|
44
|
+
# FIXME:: Merge Two architecture Codes
|
42
45
|
from .llama_architecture import (
|
43
46
|
LlamaWrapper,
|
44
47
|
wrap_llama,
|
45
48
|
unwrap_llama,
|
46
49
|
)
|
47
50
|
|
51
|
+
from .llama_architecture_cb import (
|
52
|
+
LlamaDynamicBatchWrapper as LlamaWrapper_cb,
|
53
|
+
wrap_llama as wrap_llama_cb,
|
54
|
+
)
|
55
|
+
|
48
56
|
|
49
57
|
logger = logging.getLogger(__name__)
|
50
58
|
|
@@ -57,24 +65,12 @@ if TYPE_CHECKING:
|
|
57
65
|
)
|
58
66
|
|
59
67
|
|
68
|
+
SUPPORTED_BATCHING_MODES = ["static", "vllm"]
|
69
|
+
|
70
|
+
|
60
71
|
class RBLNRuntimeModel(RBLNPytorchRuntime):
|
61
72
|
mandatory_members = ["main_input_name"]
|
62
73
|
|
63
|
-
# RBLN_Runtimemodule
|
64
|
-
def forward(
|
65
|
-
self,
|
66
|
-
input_ids: torch.LongTensor = None,
|
67
|
-
attention_mask: torch.LongTensor = None,
|
68
|
-
cache_position: torch.Tensor = None,
|
69
|
-
**kwargs: Dict[str, Any],
|
70
|
-
):
|
71
|
-
logits = super().forward(
|
72
|
-
input_ids=input_ids,
|
73
|
-
attention_mask=attention_mask,
|
74
|
-
cache_position=cache_position,
|
75
|
-
)
|
76
|
-
return logits
|
77
|
-
|
78
74
|
|
79
75
|
class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
80
76
|
"""
|
@@ -95,13 +91,16 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
95
91
|
self.batch_size = self.rbln_config.meta["rbln_batch_size"]
|
96
92
|
self.max_seq_len = self.rbln_config.meta["rbln_max_seq_len"]
|
97
93
|
self.prefill_chunk_size = self.rbln_config.meta["rbln_prefill_chunk_size"]
|
94
|
+
self.use_continuous_batch = self.rbln_config.meta["rbln_batching"] == "vllm"
|
98
95
|
|
96
|
+
prefill_batch_size = self.batch_size if not self.use_continuous_batch else 1
|
99
97
|
self.prefill_attention_mask = torch.zeros(
|
100
|
-
|
98
|
+
prefill_batch_size, 1, self.prefill_chunk_size, self.max_seq_len, dtype=torch.int64
|
101
99
|
)
|
102
100
|
self.causal_mask = 1 - torch.triu(
|
103
|
-
torch.ones(
|
101
|
+
torch.ones(prefill_batch_size, 1, self.prefill_chunk_size, self.prefill_chunk_size), diagonal=1
|
104
102
|
)
|
103
|
+
self.decoder_attention_mask = torch.zeros(self.batch_size, 1, 1, self.max_seq_len, dtype=torch.int64)
|
105
104
|
|
106
105
|
self.prefill_decoder = RBLNRuntimeModel(runtime=self.runtimes[0], main_input_name="input_ids")
|
107
106
|
self.decoder = RBLNRuntimeModel(runtime=self.runtimes[1], main_input_name="input_ids")
|
@@ -164,7 +163,10 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
164
163
|
|
165
164
|
rbln_config_kwargs, rbln_constructor_kwargs = cls.pop_rbln_kwargs_from_kwargs(kwargs)
|
166
165
|
|
167
|
-
|
166
|
+
# FIXME :: This should be moved when wrapping removed.
|
167
|
+
use_continuous_batch = rbln_config_kwargs.get("rbln_batching", "static") == "vllm"
|
168
|
+
origin_mehtods = wrap_llama_cb() if use_continuous_batch else wrap_llama()
|
169
|
+
|
168
170
|
model: LlamaForCausalLM = TasksManager.get_model_from_task(
|
169
171
|
task=task,
|
170
172
|
model_name_or_path=model_id,
|
@@ -191,14 +193,18 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
191
193
|
preprocessors=preprocessors, model_config=model.config, **rbln_config_kwargs
|
192
194
|
)
|
193
195
|
|
194
|
-
def compile_llama():
|
195
|
-
wrapped_model =
|
196
|
+
def compile_llama(use_continuous_batch, wrapper_cls):
|
197
|
+
wrapped_model = wrapper_cls(model).eval()
|
196
198
|
|
197
199
|
prefill_rbln_runtime_config = rbln_config[DEFAULT_COMPILED_MODEL_NAME][0]
|
198
200
|
dec_rbln_runtime_config = rbln_config[DEFAULT_COMPILED_MODEL_NAME][1]
|
199
201
|
|
200
202
|
prefill_example_inputs = prefill_rbln_runtime_config.get_dummy_inputs(fill=0)
|
201
|
-
dec_example_inputs = dec_rbln_runtime_config.get_dummy_inputs(fill=
|
203
|
+
dec_example_inputs = dec_rbln_runtime_config.get_dummy_inputs(fill=4)
|
204
|
+
|
205
|
+
if use_continuous_batch:
|
206
|
+
batch_index_index = 3
|
207
|
+
dec_example_inputs[batch_index_index].fill_(-1) # fill batch_position -1 to indicate it is decoder.
|
202
208
|
|
203
209
|
prefill_scripted_model = torch.jit.trace(wrapped_model, prefill_example_inputs)
|
204
210
|
dec_scripted_model = torch.jit.trace(wrapped_model, dec_example_inputs)
|
@@ -213,8 +219,9 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
213
219
|
)
|
214
220
|
|
215
221
|
# Caching prefill_decoder/decoder I/O
|
222
|
+
cache_index_offset = 4 if use_continuous_batch else 3
|
216
223
|
connections = [
|
217
|
-
(prefill_ir.outputs[1 + i], prefill_ir.inputs[
|
224
|
+
(prefill_ir.outputs[1 + i], prefill_ir.inputs[cache_index_offset + i])
|
218
225
|
for i in range(model.config.num_hidden_layers * 2)
|
219
226
|
]
|
220
227
|
|
@@ -229,7 +236,8 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
229
236
|
)
|
230
237
|
compiled_model.save(save_dir_path / f"{DEFAULT_COMPILED_MODEL_NAME}.rbln")
|
231
238
|
|
232
|
-
|
239
|
+
wrapper_cls = LlamaWrapper_cb if use_continuous_batch else LlamaWrapper
|
240
|
+
compile_llama(use_continuous_batch=use_continuous_batch, wrapper_cls=wrapper_cls)
|
233
241
|
unwrap_llama(origin_mehtods)
|
234
242
|
|
235
243
|
rbln_config.save(save_dir_path)
|
@@ -249,6 +257,7 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
249
257
|
model_config: "PretrainedConfig",
|
250
258
|
rbln_max_seq_len: Optional[int] = None,
|
251
259
|
rbln_batch_size: Optional[int] = None,
|
260
|
+
rbln_batching: Optional[str] = None,
|
252
261
|
) -> RBLNConfig:
|
253
262
|
meta = {}
|
254
263
|
|
@@ -256,21 +265,38 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
256
265
|
if rbln_max_seq_len is None:
|
257
266
|
rbln_max_seq_len = getattr(model_config, "max_position_embeddings", None)
|
258
267
|
rbln_batch_size = 1 if rbln_batch_size is None else rbln_batch_size
|
268
|
+
rbln_batching = "static" if rbln_batching is None else rbln_batching
|
259
269
|
|
260
270
|
meta["rbln_max_seq_len"] = rbln_max_seq_len
|
261
271
|
meta["rbln_batch_size"] = rbln_batch_size
|
262
272
|
meta["rbln_prefill_chunk_size"] = prefill_chunk_size
|
273
|
+
meta["rbln_batching"] = rbln_batching
|
274
|
+
use_continuous_batching = meta["rbln_batching"] == "vllm"
|
275
|
+
|
276
|
+
if rbln_batching not in SUPPORTED_BATCHING_MODES:
|
277
|
+
raise ValueError(
|
278
|
+
f'rbln_batching="{rbln_batching}" is not a supported batch mode, '
|
279
|
+
f"Possible: {SUPPORTED_BATCHING_MODES}"
|
280
|
+
)
|
263
281
|
|
264
|
-
def get_input_info(
|
282
|
+
def get_input_info(
|
283
|
+
batch_size, # should be 1 if continous batch prefill
|
284
|
+
query_length,
|
285
|
+
continuous_batch=False, # determines the shape of `cache position`
|
286
|
+
):
|
265
287
|
input_info = [
|
266
|
-
("input_ids", [
|
267
|
-
("attention_mask", [
|
288
|
+
("input_ids", [batch_size, query_length], "int64"),
|
289
|
+
("attention_mask", [batch_size, 1, query_length, rbln_max_seq_len], "int64"),
|
268
290
|
(
|
269
291
|
"cache_position",
|
270
|
-
[],
|
292
|
+
[batch_size, query_length] if continuous_batch else [],
|
271
293
|
"int32",
|
272
294
|
),
|
273
295
|
]
|
296
|
+
|
297
|
+
if continuous_batch:
|
298
|
+
input_info.append(("batch_position", [], "int16"))
|
299
|
+
|
274
300
|
input_info.extend(
|
275
301
|
[
|
276
302
|
(
|
@@ -286,10 +312,19 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
286
312
|
for i in range(model_config.num_hidden_layers * 2)
|
287
313
|
]
|
288
314
|
)
|
315
|
+
|
289
316
|
return input_info
|
290
317
|
|
291
|
-
prefill_input_info = get_input_info(
|
292
|
-
|
318
|
+
prefill_input_info = get_input_info(
|
319
|
+
batch_size=1 if use_continuous_batching else rbln_batch_size,
|
320
|
+
query_length=prefill_chunk_size,
|
321
|
+
continuous_batch=use_continuous_batching,
|
322
|
+
)
|
323
|
+
dec_input_info = get_input_info(
|
324
|
+
batch_size=rbln_batch_size,
|
325
|
+
query_length=1,
|
326
|
+
continuous_batch=use_continuous_batching,
|
327
|
+
)
|
293
328
|
|
294
329
|
prefill_rbln_runtime_config = RBLNRuntimeConfig(input_info=prefill_input_info)
|
295
330
|
dec_rbln_runtime_config = RBLNRuntimeConfig(input_info=dec_input_info)
|
@@ -337,7 +372,6 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
337
372
|
|
338
373
|
# In greedy decoding
|
339
374
|
if past_cached_length == 0:
|
340
|
-
|
341
375
|
# padding with prefill_chunk_size
|
342
376
|
# TODO left padding + left padding has issue on stoppingcriteria(max_len)
|
343
377
|
if cur_len % self.prefill_chunk_size != 0:
|
@@ -384,7 +418,13 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
384
418
|
|
385
419
|
return model_inputs
|
386
420
|
|
387
|
-
def forward(
|
421
|
+
def forward(self, *args, **kwargs):
|
422
|
+
if self.use_continuous_batch:
|
423
|
+
return self.forward_cb(*args, **kwargs)
|
424
|
+
else:
|
425
|
+
return self.forward_static(*args, **kwargs)
|
426
|
+
|
427
|
+
def forward_static(
|
388
428
|
self,
|
389
429
|
input_ids: torch.LongTensor = None,
|
390
430
|
attention_mask: Optional[torch.Tensor] = None,
|
@@ -393,7 +433,6 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
393
433
|
query_length: Optional[torch.Tensor] = None,
|
394
434
|
**kwargs,
|
395
435
|
) -> Tuple[torch.FloatTensor]:
|
396
|
-
|
397
436
|
if past_key_values is not None:
|
398
437
|
past_key_values += query_length
|
399
438
|
|
@@ -425,3 +464,58 @@ class RBLNLlamaForCausalLM(RBLNBaseModel, RBLNGenerationMixin):
|
|
425
464
|
logits=outputs,
|
426
465
|
past_key_values=past_key_values,
|
427
466
|
)
|
467
|
+
|
468
|
+
def forward_cb(
|
469
|
+
self,
|
470
|
+
input_ids: torch.LongTensor = None,
|
471
|
+
cache_position: Optional[torch.Tensor] = None, # torch.tensor(,dtype=int32) (1,64) // (4,1)
|
472
|
+
batch_idx: int = None,
|
473
|
+
**kwargs,
|
474
|
+
) -> Tuple[torch.FloatTensor]:
|
475
|
+
# prefill_decoder
|
476
|
+
if cache_position.shape[1] > 1:
|
477
|
+
query_length = input_ids.shape[1]
|
478
|
+
attention_mask = self.prefill_attention_mask.clone()
|
479
|
+
for step in range(0, query_length, self.prefill_chunk_size):
|
480
|
+
if step + self.prefill_chunk_size > query_length:
|
481
|
+
input_ids = torch.nn.functional.pad(input_ids, (0, step + self.prefill_chunk_size - query_length))
|
482
|
+
cache_position = torch.cat(
|
483
|
+
[
|
484
|
+
cache_position,
|
485
|
+
torch.arange(
|
486
|
+
query_length,
|
487
|
+
step + self.prefill_chunk_size,
|
488
|
+
dtype=torch.int32,
|
489
|
+
).unsqueeze(0),
|
490
|
+
],
|
491
|
+
dim=-1,
|
492
|
+
)
|
493
|
+
|
494
|
+
sliced_input_ids = input_ids[:, step : step + self.prefill_chunk_size]
|
495
|
+
sliced_cache_positions = cache_position[:, step : step + self.prefill_chunk_size]
|
496
|
+
attention_mask[:, :, :, :step] = 1
|
497
|
+
attention_mask[:, :, :, step : step + self.prefill_chunk_size] = self.causal_mask
|
498
|
+
|
499
|
+
outputs, _ = self.prefill_decoder(
|
500
|
+
sliced_input_ids.contiguous(),
|
501
|
+
attention_mask.contiguous(),
|
502
|
+
sliced_cache_positions.contiguous(),
|
503
|
+
torch.tensor(batch_idx, dtype=torch.int16),
|
504
|
+
)
|
505
|
+
outputs = outputs[:, query_length % self.prefill_chunk_size - 1].unsqueeze(1)
|
506
|
+
# decoder
|
507
|
+
else:
|
508
|
+
attention_mask = self.decoder_attention_mask.clone()
|
509
|
+
for b_idx in range(self.batch_size):
|
510
|
+
attention_mask[b_idx, :, :, : cache_position[b_idx].item() + 1] = 1
|
511
|
+
|
512
|
+
outputs = self.decoder(
|
513
|
+
input_ids.contiguous(),
|
514
|
+
attention_mask.contiguous(),
|
515
|
+
cache_position.contiguous(),
|
516
|
+
torch.tensor(0, dtype=torch.int16),
|
517
|
+
)[0]
|
518
|
+
|
519
|
+
return CausalLMOutputWithPast(
|
520
|
+
logits=outputs,
|
521
|
+
)
|
@@ -0,0 +1,32 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
import os
|
25
|
+
from os import environ
|
26
|
+
|
27
|
+
|
28
|
+
this_path = os.path.abspath(__file__)
|
29
|
+
local_dir = "/" + os.path.join(*this_path.split("/")[:-1]) + "/hf_hub_cached"
|
30
|
+
environ["LOCAL_CACHE_ROOT_CUSTOM_CODE_MIDM"] = local_dir
|
31
|
+
|
32
|
+
from .modeling_midm import RBLNMidmLMHeadModel
|
@@ -0,0 +1,22 @@
|
|
1
|
+
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
2
|
+
|
3
|
+
|
4
|
+
class MidmBitextConfig(GPT2Config):
|
5
|
+
model_type = "midm-bitext-S"
|
6
|
+
|
7
|
+
def __init__(
|
8
|
+
self,
|
9
|
+
use_absolute_position_embedding: bool = True,
|
10
|
+
use_rotary_position_embedding: bool = False,
|
11
|
+
rotary_percentage: float = 1.0,
|
12
|
+
normalization_type: str = "layernorm",
|
13
|
+
scale_qk_by_inverse_layer_idx: bool = False,
|
14
|
+
*args,
|
15
|
+
**kwargs,
|
16
|
+
):
|
17
|
+
super().__init__(*args, **kwargs)
|
18
|
+
self.use_absolute_position_embedding = use_absolute_position_embedding
|
19
|
+
self.use_rotary_position_embedding = use_rotary_position_embedding
|
20
|
+
self.rotary_percentage = rotary_percentage
|
21
|
+
self.normalization_type = normalization_type
|
22
|
+
self.scale_qk_by_inverse_layer_idx = scale_qk_by_inverse_layer_idx
|
@@ -0,0 +1,303 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
#
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
+
#
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
+
# See the License for the specific language governing permissions and
|
12
|
+
# limitations under the License.
|
13
|
+
""" Tokenization class for model Midm_bitext_tonkenizer."""
|
14
|
+
import os
|
15
|
+
import re
|
16
|
+
import warnings
|
17
|
+
from shutil import copyfile
|
18
|
+
from typing import Any, Dict, List, Optional, Tuple
|
19
|
+
|
20
|
+
import sentencepiece as spm
|
21
|
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
22
|
+
from transformers.utils import logging
|
23
|
+
|
24
|
+
|
25
|
+
logger = logging.get_logger(__name__)
|
26
|
+
|
27
|
+
VOCAB_FILES_NAMES = {"vocab_file": "midm_bitext_tokenizer.model"}
|
28
|
+
|
29
|
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
30
|
+
|
31
|
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
32
|
+
|
33
|
+
|
34
|
+
class Midm_bitext_Tokenizer(PreTrainedTokenizer):
|
35
|
+
"""
|
36
|
+
Construct a Midm bitext tonkenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
37
|
+
|
38
|
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
39
|
+
this superclass for more information regarding those methods.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
vocab_file (`str`):
|
43
|
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
44
|
+
contains the vocabulary necessary to instantiate a tokenizer.
|
45
|
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
46
|
+
The end of sequence token.
|
47
|
+
|
48
|
+
<Tip>
|
49
|
+
|
50
|
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
51
|
+
The token used is the `sep_token`.
|
52
|
+
|
53
|
+
</Tip>
|
54
|
+
|
55
|
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
56
|
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
57
|
+
token instead.
|
58
|
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
59
|
+
The token used for padding, for example when batching sequences of different lengths.
|
60
|
+
extra_ids (`int`, *optional*, defaults to 100):
|
61
|
+
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are
|
62
|
+
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are
|
63
|
+
indexed from the end of the vocabulary up to beginning.
|
64
|
+
additional_special_tokens (`List[str]`, *optional*):
|
65
|
+
Additional special tokens used by the tokenizer.
|
66
|
+
sp_model_kwargs (`dict`, *optional*):
|
67
|
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
68
|
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
69
|
+
to set:
|
70
|
+
|
71
|
+
- `enable_sampling`: Enable subword regularization.
|
72
|
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
73
|
+
|
74
|
+
- `nbest_size = {0,1}`: No sampling is performed.
|
75
|
+
- `nbest_size > 1`: samples from the nbest_size results.
|
76
|
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
77
|
+
using forward-filtering-and-backward-sampling algorithm.
|
78
|
+
|
79
|
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
80
|
+
BPE-dropout.
|
81
|
+
|
82
|
+
Attributes:
|
83
|
+
sp_model (`SentencePieceProcessor`):
|
84
|
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
85
|
+
"""
|
86
|
+
|
87
|
+
vocab_files_names = VOCAB_FILES_NAMES
|
88
|
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
89
|
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
90
|
+
model_input_names = ["input_ids", "attention_mask"]
|
91
|
+
|
92
|
+
def __init__(
|
93
|
+
self,
|
94
|
+
vocab_file,
|
95
|
+
eos_token="</s>",
|
96
|
+
unk_token="<unk>",
|
97
|
+
pad_token="<pad>",
|
98
|
+
extra_ids=100,
|
99
|
+
additional_special_tokens=None,
|
100
|
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
101
|
+
**kwargs,
|
102
|
+
) -> None:
|
103
|
+
# Add extra_ids to the special token list
|
104
|
+
if extra_ids > 0 and additional_special_tokens is None:
|
105
|
+
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
|
106
|
+
elif extra_ids > 0 and additional_special_tokens is not None:
|
107
|
+
# Check that we have the right number of extra_id special tokens
|
108
|
+
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
|
109
|
+
if extra_tokens != extra_ids:
|
110
|
+
raise ValueError(
|
111
|
+
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are provided to Midm_bitext_Tonkenizer. "
|
112
|
+
"In this case the additional_special_tokens must include the extra_ids tokens"
|
113
|
+
)
|
114
|
+
|
115
|
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
116
|
+
|
117
|
+
# custom special tokens
|
118
|
+
# convert \n, \t in input text -> <[!newline]>, <[!tab]>
|
119
|
+
self.newline_token = "<[!newline]>"
|
120
|
+
self.tab_token = "<[!tab]>"
|
121
|
+
|
122
|
+
self.vocab_file = vocab_file
|
123
|
+
self._extra_ids = extra_ids
|
124
|
+
|
125
|
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
126
|
+
self.sp_model.Load(vocab_file)
|
127
|
+
super().__init__(
|
128
|
+
eos_token=eos_token,
|
129
|
+
unk_token=unk_token,
|
130
|
+
pad_token=pad_token,
|
131
|
+
extra_ids=extra_ids,
|
132
|
+
additional_special_tokens=additional_special_tokens,
|
133
|
+
sp_model_kwargs=self.sp_model_kwargs,
|
134
|
+
**kwargs,
|
135
|
+
)
|
136
|
+
|
137
|
+
@property
|
138
|
+
def vocab_size(self):
|
139
|
+
return self.sp_model.get_piece_size() + self._extra_ids
|
140
|
+
|
141
|
+
def get_vocab(self):
|
142
|
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
143
|
+
vocab.update(self.added_tokens_encoder)
|
144
|
+
return vocab
|
145
|
+
|
146
|
+
def get_special_tokens_mask(
|
147
|
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
148
|
+
) -> List[int]:
|
149
|
+
"""
|
150
|
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
151
|
+
special tokens using the tokenizer `prepare_for_model` method.
|
152
|
+
|
153
|
+
Args:
|
154
|
+
token_ids_0 (`List[int]`):
|
155
|
+
List of IDs.
|
156
|
+
token_ids_1 (`List[int]`, *optional*):
|
157
|
+
Optional second list of IDs for sequence pairs.
|
158
|
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
159
|
+
Whether or not the token list is already formatted with special tokens for the model.
|
160
|
+
|
161
|
+
Returns:
|
162
|
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
163
|
+
"""
|
164
|
+
if already_has_special_tokens:
|
165
|
+
return super().get_special_tokens_mask(
|
166
|
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
167
|
+
)
|
168
|
+
|
169
|
+
# normal case: some special tokens
|
170
|
+
if token_ids_1 is None:
|
171
|
+
return ([0] * len(token_ids_0)) + [1]
|
172
|
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
173
|
+
|
174
|
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
175
|
+
"""Do not add eos again if user already added it."""
|
176
|
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
177
|
+
warnings.warn(
|
178
|
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated eos tokens being added."
|
179
|
+
)
|
180
|
+
return token_ids
|
181
|
+
else:
|
182
|
+
return token_ids + [self.eos_token_id]
|
183
|
+
|
184
|
+
def create_token_type_ids_from_sequences(
|
185
|
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
186
|
+
) -> List[int]:
|
187
|
+
"""
|
188
|
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. Midm does not make
|
189
|
+
use of token type ids, therefore a list of zeros is returned.
|
190
|
+
|
191
|
+
Args:
|
192
|
+
token_ids_0 (`List[int]`):
|
193
|
+
List of IDs.
|
194
|
+
token_ids_1 (`List[int]`, *optional*):
|
195
|
+
Optional second list of IDs for sequence pairs.
|
196
|
+
|
197
|
+
Returns:
|
198
|
+
`List[int]`: List of zeros.
|
199
|
+
"""
|
200
|
+
eos = [self.eos_token_id]
|
201
|
+
|
202
|
+
if token_ids_1 is None:
|
203
|
+
return len(token_ids_0 + eos) * [0]
|
204
|
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
205
|
+
|
206
|
+
def build_inputs_with_special_tokens(
|
207
|
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
208
|
+
) -> List[int]:
|
209
|
+
"""
|
210
|
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
211
|
+
adding special tokens. A sequence has the following format:
|
212
|
+
|
213
|
+
- single sequence: `X </s>`
|
214
|
+
- pair of sequences: `A </s> B </s>`
|
215
|
+
|
216
|
+
Args:
|
217
|
+
token_ids_0 (`List[int]`):
|
218
|
+
List of IDs to which the special tokens will be added.
|
219
|
+
token_ids_1 (`List[int]`, *optional*):
|
220
|
+
Optional second list of IDs for sequence pairs.
|
221
|
+
|
222
|
+
Returns:
|
223
|
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
224
|
+
"""
|
225
|
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
226
|
+
if token_ids_1 is None:
|
227
|
+
return token_ids_0
|
228
|
+
else:
|
229
|
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
230
|
+
return token_ids_0 + token_ids_1
|
231
|
+
|
232
|
+
def __getstate__(self):
|
233
|
+
state = self.__dict__.copy()
|
234
|
+
state["sp_model"] = None
|
235
|
+
return state
|
236
|
+
|
237
|
+
def __setstate__(self, d):
|
238
|
+
self.__dict__ = d
|
239
|
+
|
240
|
+
# for backward compatibility
|
241
|
+
if not hasattr(self, "sp_model_kwargs"):
|
242
|
+
self.sp_model_kwargs = {}
|
243
|
+
|
244
|
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
245
|
+
self.sp_model.Load(self.vocab_file)
|
246
|
+
|
247
|
+
def _tokenize(self, text: str) -> List[str]:
|
248
|
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
249
|
+
text = text.replace("\n", self.newline_token)
|
250
|
+
text = text.replace("\t", self.tab_token)
|
251
|
+
|
252
|
+
return self.sp_model.encode(text, out_type=str)
|
253
|
+
|
254
|
+
def _convert_token_to_id(self, token):
|
255
|
+
"""Converts a token (str) in an id using the vocab."""
|
256
|
+
if token.startswith("<extra_id_"):
|
257
|
+
match = re.match(r"<extra_id_(\d+)>", token)
|
258
|
+
num = int(match.group(1))
|
259
|
+
return self.vocab_size - num - 1
|
260
|
+
return self.sp_model.piece_to_id(token)
|
261
|
+
|
262
|
+
def _convert_id_to_token(self, index):
|
263
|
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
264
|
+
if index < self.sp_model.get_piece_size():
|
265
|
+
token = self.sp_model.IdToPiece(index)
|
266
|
+
else:
|
267
|
+
token = f"<extra_id_{self.vocab_size - 1 - index}>"
|
268
|
+
return token
|
269
|
+
|
270
|
+
def convert_tokens_to_string(self, tokens):
|
271
|
+
"""Converts a sequence of tokens (string) in a single string."""
|
272
|
+
current_sub_tokens = []
|
273
|
+
out_string = ""
|
274
|
+
for token in tokens:
|
275
|
+
# make sure that special tokens are not decoded using sentencepiece model
|
276
|
+
if token in self.all_special_tokens:
|
277
|
+
out_string += self.sp_model.decode_pieces(current_sub_tokens) + token + " "
|
278
|
+
current_sub_tokens = []
|
279
|
+
else:
|
280
|
+
current_sub_tokens.append(token)
|
281
|
+
out_string += self.sp_model.decode_pieces(current_sub_tokens)
|
282
|
+
|
283
|
+
out_string.replace(self.newline_token, "\n")
|
284
|
+
out_string.replace(self.tab_token, "\t")
|
285
|
+
|
286
|
+
return out_string.strip()
|
287
|
+
|
288
|
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
289
|
+
if not os.path.isdir(save_directory):
|
290
|
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
291
|
+
return
|
292
|
+
out_vocab_file = os.path.join(
|
293
|
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
294
|
+
)
|
295
|
+
|
296
|
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
297
|
+
copyfile(self.vocab_file, out_vocab_file)
|
298
|
+
elif not os.path.isfile(self.vocab_file):
|
299
|
+
with open(out_vocab_file, "wb") as fi:
|
300
|
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
301
|
+
fi.write(content_spiece_model)
|
302
|
+
|
303
|
+
return (out_vocab_file,)
|