optimum-rbln 0.1.13__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +41 -38
- optimum/rbln/__version__.py +16 -1
- optimum/rbln/diffusers/__init__.py +26 -2
- optimum/rbln/{modeling_diffusers.py → diffusers/modeling_diffusers.py} +97 -126
- optimum/rbln/diffusers/models/__init__.py +36 -3
- optimum/rbln/{transformers/generation → diffusers/models/autoencoders}/__init__.py +1 -2
- optimum/rbln/diffusers/models/{autoencoder_kl.py → autoencoders/autoencoder_kl.py} +73 -61
- optimum/rbln/diffusers/models/autoencoders/vae.py +83 -0
- optimum/rbln/diffusers/models/controlnet.py +54 -14
- optimum/rbln/diffusers/models/transformers/__init__.py +24 -0
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +203 -0
- optimum/rbln/diffusers/models/unets/__init__.py +24 -0
- optimum/rbln/diffusers/models/{unet_2d_condition.py → unets/unet_2d_condition.py} +82 -22
- optimum/rbln/diffusers/pipelines/__init__.py +23 -2
- optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +13 -33
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +17 -2
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +18 -2
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -2
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +18 -2
- optimum/rbln/diffusers/pipelines/stable_diffusion/__init__.py +1 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -2
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -13
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/__init__.py +26 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +31 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/__init__.py +24 -0
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +15 -8
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +15 -8
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +31 -0
- optimum/rbln/modeling.py +238 -0
- optimum/rbln/modeling_base.py +186 -760
- optimum/rbln/modeling_config.py +31 -7
- optimum/rbln/ops/__init__.py +26 -0
- optimum/rbln/ops/attn.py +221 -0
- optimum/rbln/ops/flash_attn.py +70 -0
- optimum/rbln/ops/kv_cache_update.py +69 -0
- optimum/rbln/transformers/__init__.py +20 -2
- optimum/rbln/{modeling_alias.py → transformers/modeling_alias.py} +5 -1
- optimum/rbln/transformers/modeling_generic.py +385 -0
- optimum/rbln/transformers/models/auto/__init__.py +23 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +117 -23
- optimum/rbln/transformers/models/auto/modeling_auto.py +36 -12
- optimum/rbln/transformers/models/bart/__init__.py +0 -1
- optimum/rbln/transformers/models/bart/bart_architecture.py +107 -464
- optimum/rbln/transformers/models/bart/modeling_bart.py +10 -9
- optimum/rbln/transformers/models/bert/modeling_bert.py +3 -6
- optimum/rbln/transformers/models/clip/modeling_clip.py +8 -25
- optimum/rbln/transformers/models/decoderonly/__init__.py +0 -10
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +775 -514
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +128 -260
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +1 -1
- optimum/rbln/transformers/models/exaone/exaone_architecture.py +60 -45
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +4 -2
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +33 -104
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +50 -238
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +3 -2
- optimum/rbln/transformers/models/llama/llama_architecture.py +0 -1
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +3 -75
- optimum/rbln/transformers/models/midm/midm_architecture.py +84 -238
- optimum/rbln/transformers/models/midm/modeling_midm.py +5 -6
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +0 -1
- optimum/rbln/transformers/models/phi/phi_architecture.py +60 -261
- optimum/rbln/transformers/models/qwen2/qwen2_architecture.py +0 -1
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +58 -103
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +498 -0
- optimum/rbln/transformers/models/t5/__init__.py +0 -1
- optimum/rbln/transformers/models/t5/modeling_t5.py +106 -5
- optimum/rbln/transformers/models/t5/t5_architecture.py +106 -448
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -1
- optimum/rbln/transformers/models/whisper/generation_whisper.py +42 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +78 -55
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +219 -312
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +3 -35
- optimum/rbln/transformers/utils/rbln_quantization.py +120 -4
- optimum/rbln/utils/decorator_utils.py +51 -11
- optimum/rbln/utils/hub.py +131 -0
- optimum/rbln/utils/import_utils.py +22 -1
- optimum/rbln/utils/logging.py +37 -0
- optimum/rbln/utils/model_utils.py +52 -0
- optimum/rbln/utils/runtime_utils.py +10 -4
- optimum/rbln/utils/save_utils.py +17 -0
- optimum/rbln/utils/submodule.py +137 -0
- optimum_rbln-0.2.0.dist-info/METADATA +117 -0
- optimum_rbln-0.2.0.dist-info/RECORD +114 -0
- {optimum_rbln-0.1.13.dist-info → optimum_rbln-0.2.0.dist-info}/WHEEL +1 -1
- optimum_rbln-0.2.0.dist-info/licenses/LICENSE +288 -0
- optimum/rbln/transformers/cache_utils.py +0 -107
- optimum/rbln/transformers/generation/streamers.py +0 -139
- optimum/rbln/transformers/generation/utils.py +0 -397
- optimum/rbln/transformers/models/exaone/hf_hub_cached/configuration_exaone.py +0 -181
- optimum/rbln/transformers/models/exaone/hf_hub_cached/modeling_exaone.py +0 -1725
- optimum/rbln/transformers/models/midm/hf_hub_cached/configuration_midm.py +0 -22
- optimum/rbln/transformers/models/midm/hf_hub_cached/midm_bitext_tokenization.py +0 -304
- optimum/rbln/transformers/models/midm/hf_hub_cached/modeling_midm.py +0 -1469
- optimum/rbln/transformers/models/midm/hf_hub_cached/rotary_position_embedding.py +0 -98
- optimum/rbln/utils/context.py +0 -58
- optimum/rbln/utils/timer_utils.py +0 -43
- optimum_rbln-0.1.13.dist-info/METADATA +0 -120
- optimum_rbln-0.1.13.dist-info/RECORD +0 -107
- optimum_rbln-0.1.13.dist-info/entry_points.txt +0 -4
- optimum_rbln-0.1.13.dist-info/licenses/LICENSE +0 -201
@@ -0,0 +1,385 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
"""
|
25
|
+
This file defines generic base classes for various RBLN models,
|
26
|
+
such as Question Answering, Image Classification, Audio Classification,
|
27
|
+
Sequence Classification, and Masked Language Modeling. These classes
|
28
|
+
implement common functionalities and configurations to be used across
|
29
|
+
different model architectures.
|
30
|
+
"""
|
31
|
+
|
32
|
+
import inspect
|
33
|
+
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
|
34
|
+
|
35
|
+
import transformers
|
36
|
+
from transformers import (
|
37
|
+
AutoModelForAudioClassification,
|
38
|
+
AutoModelForImageClassification,
|
39
|
+
AutoModelForMaskedLM,
|
40
|
+
AutoModelForQuestionAnswering,
|
41
|
+
AutoModelForSequenceClassification,
|
42
|
+
PretrainedConfig,
|
43
|
+
)
|
44
|
+
|
45
|
+
from ..modeling import RBLNModel
|
46
|
+
from ..modeling_config import RBLNCompileConfig, RBLNConfig
|
47
|
+
from ..utils.logging import get_logger
|
48
|
+
|
49
|
+
|
50
|
+
if TYPE_CHECKING:
|
51
|
+
from transformers import (
|
52
|
+
AutoFeatureExtractor,
|
53
|
+
AutoProcessor,
|
54
|
+
AutoTokenizer,
|
55
|
+
)
|
56
|
+
|
57
|
+
logger = get_logger()
|
58
|
+
|
59
|
+
|
60
|
+
class RBLNModelForQuestionAnswering(RBLNModel):
|
61
|
+
auto_model_class = AutoModelForQuestionAnswering
|
62
|
+
rbln_model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
|
63
|
+
|
64
|
+
@classmethod
|
65
|
+
def _get_rbln_config(
|
66
|
+
cls,
|
67
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
68
|
+
model_config: Optional["PretrainedConfig"] = None,
|
69
|
+
rbln_kwargs: Dict[str, Any] = {},
|
70
|
+
) -> RBLNConfig:
|
71
|
+
rbln_max_seq_len = rbln_kwargs.get("max_seq_len", None)
|
72
|
+
rbln_batch_size = rbln_kwargs.get("batch_size", None)
|
73
|
+
rbln_model_input_names = rbln_kwargs.get("model_input_names", None)
|
74
|
+
|
75
|
+
if rbln_max_seq_len is None:
|
76
|
+
for tokenizer in preprocessors:
|
77
|
+
if hasattr(tokenizer, "model_max_length"):
|
78
|
+
rbln_max_seq_len = tokenizer.model_max_length
|
79
|
+
break
|
80
|
+
if rbln_max_seq_len is None:
|
81
|
+
raise ValueError("`rbln_max_seq_len` should be specified!")
|
82
|
+
|
83
|
+
if rbln_batch_size is None:
|
84
|
+
rbln_batch_size = 1
|
85
|
+
|
86
|
+
if rbln_model_input_names is None:
|
87
|
+
for tokenizer in preprocessors:
|
88
|
+
if hasattr(tokenizer, "model_input_names"):
|
89
|
+
rbln_model_input_names = tokenizer.model_input_names
|
90
|
+
break
|
91
|
+
if rbln_model_input_names is None and hasattr(cls, "rbln_model_input_names"):
|
92
|
+
rbln_model_input_names = cls.rbln_model_input_names
|
93
|
+
elif rbln_model_input_names is None and hasattr(cls, "rbln_model_input_names") is False:
|
94
|
+
input_names_order = inspect.signature(cls.hf_class.forward).parameters.keys()
|
95
|
+
raise ValueError(
|
96
|
+
"Specify the model input names obtained by the tokenizer via `rbln_model_input_names`, "
|
97
|
+
f"and be sure to make the order of the inputs same as QuestionAnswering forward() arguments like ({list(input_names_order)})"
|
98
|
+
)
|
99
|
+
|
100
|
+
input_info = [
|
101
|
+
(model_input_name, [rbln_batch_size, rbln_max_seq_len], "int64")
|
102
|
+
for model_input_name in rbln_model_input_names
|
103
|
+
]
|
104
|
+
|
105
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
106
|
+
rbln_config = RBLNConfig(
|
107
|
+
rbln_cls=cls.__name__,
|
108
|
+
compile_cfgs=[rbln_compile_config],
|
109
|
+
rbln_kwargs=rbln_kwargs,
|
110
|
+
)
|
111
|
+
rbln_config.model_cfg.update({"max_seq_len": rbln_max_seq_len})
|
112
|
+
return rbln_config
|
113
|
+
|
114
|
+
|
115
|
+
class RBLNModelForImageClassification(RBLNModel):
|
116
|
+
"""
|
117
|
+
This is a generic model class that will be instantiated as one of the model classes of the library (with a image classification head) when created with the from_pretrained() class method
|
118
|
+
"""
|
119
|
+
|
120
|
+
auto_model_class = AutoModelForImageClassification
|
121
|
+
|
122
|
+
@classmethod
|
123
|
+
def _get_rbln_config(
|
124
|
+
cls,
|
125
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
126
|
+
model_config: Optional["PretrainedConfig"] = None,
|
127
|
+
rbln_kwargs: Dict[str, Any] = {},
|
128
|
+
) -> RBLNConfig:
|
129
|
+
rbln_image_size = rbln_kwargs.get("image_size", None)
|
130
|
+
rbln_batch_size = rbln_kwargs.get("batch_size", None)
|
131
|
+
|
132
|
+
if rbln_image_size is None:
|
133
|
+
for processor in preprocessors:
|
134
|
+
if hasattr(processor, "size"):
|
135
|
+
if all(required_key in processor.size.keys() for required_key in ["height", "width"]):
|
136
|
+
rbln_image_size = (processor.size["height"], processor.size["width"])
|
137
|
+
elif "shortest_edge" in processor.size.keys():
|
138
|
+
rbln_image_size = (processor.size["shortest_edge"], processor.size["shortest_edge"])
|
139
|
+
elif "longest_edge" in processor.size.keys():
|
140
|
+
rbln_image_size = (processor.size["longest_edge"], processor.size["longest_edge"])
|
141
|
+
break
|
142
|
+
|
143
|
+
if rbln_image_size is None:
|
144
|
+
rbln_image_size = model_config.image_size
|
145
|
+
|
146
|
+
if rbln_image_size is None:
|
147
|
+
raise ValueError("`rbln_image_size` should be specified!")
|
148
|
+
|
149
|
+
if rbln_batch_size is None:
|
150
|
+
rbln_batch_size = 1
|
151
|
+
|
152
|
+
if isinstance(rbln_image_size, int):
|
153
|
+
rbln_image_height, rbln_image_width = rbln_image_size, rbln_image_size
|
154
|
+
elif isinstance(rbln_image_size, (list, tuple)):
|
155
|
+
rbln_image_height, rbln_image_width = rbln_image_size[0], rbln_image_size[1]
|
156
|
+
elif isinstance(rbln_image_size, dict):
|
157
|
+
rbln_image_height, rbln_image_width = rbln_image_size["height"], rbln_image_size["width"]
|
158
|
+
else:
|
159
|
+
raise ValueError(
|
160
|
+
"`rbln_image_size` should be `int` (ex. 224), `tuple` (ex. 224, 224), `dict` (ex. {'height': 224, 'width': 224}) format"
|
161
|
+
)
|
162
|
+
|
163
|
+
input_info = [
|
164
|
+
(
|
165
|
+
"pixel_values",
|
166
|
+
[rbln_batch_size, 3, rbln_image_height, rbln_image_width],
|
167
|
+
"float32",
|
168
|
+
)
|
169
|
+
]
|
170
|
+
|
171
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
172
|
+
return RBLNConfig(rbln_cls=cls.__name__, compile_cfgs=[rbln_compile_config], rbln_kwargs=rbln_kwargs)
|
173
|
+
|
174
|
+
|
175
|
+
class RBLNModelForAudioClassification(RBLNModel):
|
176
|
+
"""
|
177
|
+
This is a generic model class that will be instantiated as one of the model classes of the library (with a audio classification head) when created with the from_pretrained() class method
|
178
|
+
This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
179
|
+
|
180
|
+
A class to convert and run pre-trained transformers based AudioClassification models on RBLN devices.
|
181
|
+
It implements the methods to convert a pre-trained transformers AudioClassification model into a RBLN transformer model by:
|
182
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
183
|
+
- compiling the resulting graph using the RBLN compiler.
|
184
|
+
|
185
|
+
Currently, this model class only supports the 'AST' model from the transformers library. Future updates may include support for additional model types.
|
186
|
+
"""
|
187
|
+
|
188
|
+
auto_model_class = AutoModelForAudioClassification
|
189
|
+
|
190
|
+
@classmethod
|
191
|
+
def _get_rbln_config(
|
192
|
+
cls,
|
193
|
+
preprocessors: "AutoFeatureExtractor",
|
194
|
+
model_config: "PretrainedConfig",
|
195
|
+
rbln_kwargs: Dict[str, Any] = {},
|
196
|
+
) -> RBLNConfig:
|
197
|
+
rbln_batch_size = rbln_kwargs.get("batch_size", None)
|
198
|
+
rbln_max_length = rbln_kwargs.get("max_length", None)
|
199
|
+
rbln_num_mel_bins = rbln_kwargs.get("num_mel_bins", None)
|
200
|
+
|
201
|
+
if rbln_batch_size is None:
|
202
|
+
rbln_batch_size = 1
|
203
|
+
|
204
|
+
if rbln_num_mel_bins is None:
|
205
|
+
rbln_num_mel_bins = getattr(model_config, "num_mel_bins", None)
|
206
|
+
if rbln_num_mel_bins is None:
|
207
|
+
for feature_extractor in preprocessors:
|
208
|
+
if hasattr(feature_extractor, "num_mel_bins"):
|
209
|
+
rbln_num_mel_bins = feature_extractor.num_mel_bins
|
210
|
+
break
|
211
|
+
|
212
|
+
if rbln_num_mel_bins is None:
|
213
|
+
raise ValueError("`rbln_num_mel_bins` should be specified!")
|
214
|
+
|
215
|
+
if rbln_max_length is None:
|
216
|
+
rbln_max_length = getattr(model_config, "max_length", None)
|
217
|
+
for feature_extractor in preprocessors:
|
218
|
+
if hasattr(feature_extractor, "max_length"):
|
219
|
+
rbln_max_length = feature_extractor.max_length
|
220
|
+
break
|
221
|
+
|
222
|
+
if rbln_max_length is None:
|
223
|
+
raise ValueError("`rbln_max_length` should be specified!")
|
224
|
+
|
225
|
+
input_info = [
|
226
|
+
(
|
227
|
+
"input_values",
|
228
|
+
[rbln_batch_size, rbln_max_length, rbln_num_mel_bins],
|
229
|
+
"float32",
|
230
|
+
),
|
231
|
+
]
|
232
|
+
|
233
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
234
|
+
rbln_config = RBLNConfig(
|
235
|
+
rbln_cls=cls.__name__,
|
236
|
+
compile_cfgs=[rbln_compile_config],
|
237
|
+
rbln_kwargs=rbln_kwargs,
|
238
|
+
)
|
239
|
+
rbln_config.model_cfg.update(
|
240
|
+
{
|
241
|
+
"batch_size": rbln_batch_size,
|
242
|
+
"max_length": rbln_max_length,
|
243
|
+
"num_mel_bins": rbln_num_mel_bins,
|
244
|
+
}
|
245
|
+
)
|
246
|
+
return rbln_config
|
247
|
+
|
248
|
+
|
249
|
+
class RBLNModelForSequenceClassification(RBLNModel):
|
250
|
+
"""
|
251
|
+
This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence classification head) when created with the from_pretrained() class method
|
252
|
+
This model inherits from [`RBLNModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
253
|
+
|
254
|
+
A class to convert and run pre-trained transformers based SequenceClassification models on RBLN devices.
|
255
|
+
It implements the methods to convert a pre-trained transformers SequenceClassification model into a RBLN transformer model by:
|
256
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
257
|
+
- compiling the resulting graph using the RBLN compiler.
|
258
|
+
|
259
|
+
Currently, this model class supports the 'XLMRoberta' and 'Roberta' model from the transformers library. Future updates may include support for additional model types.
|
260
|
+
"""
|
261
|
+
|
262
|
+
auto_model_class = AutoModelForSequenceClassification
|
263
|
+
|
264
|
+
@classmethod
|
265
|
+
def _get_rbln_config(
|
266
|
+
cls,
|
267
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
268
|
+
model_config: Optional["PretrainedConfig"] = None,
|
269
|
+
rbln_kwargs: Dict[str, Any] = {},
|
270
|
+
) -> RBLNConfig:
|
271
|
+
rbln_max_seq_len = rbln_kwargs.get("max_seq_len", None)
|
272
|
+
rbln_model_input_names = rbln_kwargs.get("model_input_names", None)
|
273
|
+
rbln_batch_size = rbln_kwargs.get("batch_size", None)
|
274
|
+
|
275
|
+
max_position_embeddings = getattr(model_config, "n_positions", None) or getattr(
|
276
|
+
model_config, "max_position_embeddings", None
|
277
|
+
)
|
278
|
+
|
279
|
+
if rbln_max_seq_len is None:
|
280
|
+
rbln_max_seq_len = max_position_embeddings
|
281
|
+
if rbln_max_seq_len is None:
|
282
|
+
for tokenizer in preprocessors:
|
283
|
+
if hasattr(tokenizer, "model_max_length"):
|
284
|
+
rbln_max_seq_len = tokenizer.model_max_length
|
285
|
+
break
|
286
|
+
if rbln_max_seq_len is None:
|
287
|
+
raise ValueError("`rbln_max_seq_len` should be specified!")
|
288
|
+
|
289
|
+
if max_position_embeddings is not None and rbln_max_seq_len > max_position_embeddings:
|
290
|
+
raise ValueError("`rbln_enc_max_seq_len` should be less or equal than max_position_embeddings!")
|
291
|
+
|
292
|
+
if rbln_model_input_names is None:
|
293
|
+
for tokenizer in preprocessors:
|
294
|
+
if hasattr(tokenizer, "model_input_names"):
|
295
|
+
rbln_model_input_names = tokenizer.model_input_names
|
296
|
+
break
|
297
|
+
if rbln_model_input_names is None and hasattr(cls, "rbln_model_input_names"):
|
298
|
+
rbln_model_input_names = cls.rbln_model_input_names
|
299
|
+
elif rbln_model_input_names is None and hasattr(cls, "rbln_model_input_names") is False:
|
300
|
+
original_model_class = getattr(transformers, model_config.architectures[0])
|
301
|
+
input_names_order = inspect.signature(original_model_class.forward).parameters.keys()
|
302
|
+
raise ValueError(
|
303
|
+
"Specify the model input names obtained by the tokenizer via `rbln_model_input_names`, "
|
304
|
+
f"and be sure to make the order of the inputs same as SequenceClassification forward() arguments like ({list(input_names_order)})"
|
305
|
+
)
|
306
|
+
|
307
|
+
if rbln_batch_size is None:
|
308
|
+
rbln_batch_size = 1
|
309
|
+
|
310
|
+
input_info = [
|
311
|
+
(model_input_name, [rbln_batch_size, rbln_max_seq_len], "int64")
|
312
|
+
for model_input_name in rbln_model_input_names
|
313
|
+
]
|
314
|
+
|
315
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
316
|
+
rbln_config = RBLNConfig(
|
317
|
+
rbln_cls=cls.__name__,
|
318
|
+
compile_cfgs=[rbln_compile_config],
|
319
|
+
rbln_kwargs=rbln_kwargs,
|
320
|
+
)
|
321
|
+
rbln_config.model_cfg.update({"max_seq_len": rbln_max_seq_len})
|
322
|
+
return rbln_config
|
323
|
+
|
324
|
+
|
325
|
+
class RBLNModelForMaskedLM(RBLNModel):
|
326
|
+
auto_model_class = AutoModelForMaskedLM
|
327
|
+
|
328
|
+
@classmethod
|
329
|
+
def _get_rbln_config(
|
330
|
+
cls,
|
331
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
332
|
+
model_config: Optional["PretrainedConfig"] = None,
|
333
|
+
rbln_kwargs: Dict[str, Any] = {},
|
334
|
+
) -> RBLNConfig:
|
335
|
+
rbln_max_seq_len = rbln_kwargs.get("max_seq_len", None)
|
336
|
+
rbln_model_input_names = rbln_kwargs.get("model_input_names", None)
|
337
|
+
rbln_batch_size = rbln_kwargs.get("batch_size", None)
|
338
|
+
|
339
|
+
max_position_embeddings = getattr(model_config, "n_positions", None) or getattr(
|
340
|
+
model_config, "max_position_embeddings", None
|
341
|
+
)
|
342
|
+
|
343
|
+
if rbln_max_seq_len is None:
|
344
|
+
rbln_max_seq_len = max_position_embeddings
|
345
|
+
if rbln_max_seq_len is None:
|
346
|
+
for tokenizer in preprocessors:
|
347
|
+
if hasattr(tokenizer, "model_max_length"):
|
348
|
+
rbln_max_seq_len = tokenizer.model_max_length
|
349
|
+
break
|
350
|
+
if rbln_max_seq_len is None:
|
351
|
+
raise ValueError("`rbln_max_seq_len` should be specified!")
|
352
|
+
|
353
|
+
if max_position_embeddings is not None and rbln_max_seq_len > max_position_embeddings:
|
354
|
+
raise ValueError("`rbln_enc_max_seq_len` should be less or equal than max_position_embeddings!")
|
355
|
+
|
356
|
+
if rbln_model_input_names is None:
|
357
|
+
for tokenizer in preprocessors:
|
358
|
+
if hasattr(tokenizer, "model_input_names"):
|
359
|
+
rbln_model_input_names = tokenizer.model_input_names
|
360
|
+
break
|
361
|
+
if rbln_model_input_names is None and hasattr(cls, "rbln_model_input_names"):
|
362
|
+
rbln_model_input_names = cls.rbln_model_input_names
|
363
|
+
elif rbln_model_input_names is None and hasattr(cls, "rbln_model_input_names") is False:
|
364
|
+
input_names_order = inspect.signature(cls.hf_class.forward).parameters.keys()
|
365
|
+
raise ValueError(
|
366
|
+
"Specify the model input names obtained by the tokenizer via `rbln_model_input_names`, "
|
367
|
+
f"and be sure to make the order of the inputs same as MaskedLM forward() arguments like ({list(input_names_order)})"
|
368
|
+
)
|
369
|
+
|
370
|
+
if rbln_batch_size is None:
|
371
|
+
rbln_batch_size = 1
|
372
|
+
|
373
|
+
input_info = [
|
374
|
+
(model_input_name, [rbln_batch_size, rbln_max_seq_len], "int64")
|
375
|
+
for model_input_name in rbln_model_input_names
|
376
|
+
]
|
377
|
+
|
378
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
379
|
+
rbln_config = RBLNConfig(
|
380
|
+
rbln_cls=cls.__name__,
|
381
|
+
compile_cfgs=[rbln_compile_config],
|
382
|
+
rbln_kwargs=rbln_kwargs,
|
383
|
+
)
|
384
|
+
rbln_config.model_cfg.update({"max_seq_len": rbln_max_seq_len})
|
385
|
+
return rbln_config
|
@@ -1,3 +1,26 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
1
24
|
from .modeling_auto import (
|
2
25
|
RBLNAutoModel,
|
3
26
|
RBLNAutoModelForAudioClassification,
|
@@ -22,8 +22,16 @@
|
|
22
22
|
# from Rebellions Inc.
|
23
23
|
|
24
24
|
import importlib
|
25
|
+
import inspect
|
26
|
+
import warnings
|
25
27
|
|
26
|
-
from transformers import AutoConfig
|
28
|
+
from transformers import AutoConfig, PretrainedConfig
|
29
|
+
from transformers.dynamic_module_utils import get_class_from_dynamic_module
|
30
|
+
from transformers.models.auto.auto_factory import _get_model_class
|
31
|
+
|
32
|
+
from optimum.rbln.modeling_base import RBLNBaseModel
|
33
|
+
from optimum.rbln.modeling_config import RBLNConfig
|
34
|
+
from optimum.rbln.utils.model_utils import convert_hf_to_rbln_model_name, convert_rbln_to_hf_model_name
|
27
35
|
|
28
36
|
|
29
37
|
class _BaseAutoModelClass:
|
@@ -33,46 +41,132 @@ class _BaseAutoModelClass:
|
|
33
41
|
def __init__(self, *args, **kwargs):
|
34
42
|
raise EnvironmentError(
|
35
43
|
f"{self.__class__.__name__} is designed to be instantiated "
|
36
|
-
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)`
|
37
|
-
f"`{self.__class__.__name__}.from_config(config)` methods."
|
44
|
+
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)`"
|
38
45
|
)
|
39
46
|
|
40
47
|
@classmethod
|
41
48
|
def get_rbln_cls(
|
42
49
|
cls,
|
43
|
-
|
50
|
+
pretrained_model_name_or_path,
|
44
51
|
*args,
|
52
|
+
export=True,
|
45
53
|
**kwargs,
|
46
54
|
):
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
55
|
+
"""
|
56
|
+
Determine the appropriate RBLN model class based on the given model ID and configuration.
|
57
|
+
|
58
|
+
Args:
|
59
|
+
pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
|
60
|
+
export (bool): Whether to infer the class based on Hugging Face (HF) architecture.
|
61
|
+
kwargs: Additional arguments for configuration and loading.
|
62
|
+
|
63
|
+
Returns:
|
64
|
+
RBLNBaseModel: The corresponding RBLN model class.
|
65
|
+
"""
|
66
|
+
if export:
|
67
|
+
hf_model_class = cls.infer_hf_model_class(pretrained_model_name_or_path, **kwargs)
|
68
|
+
rbln_class_name = convert_hf_to_rbln_model_name(hf_model_class.__name__)
|
69
|
+
else:
|
70
|
+
rbln_class_name = cls.get_rbln_model_class_name(pretrained_model_name_or_path, **kwargs)
|
71
|
+
|
72
|
+
if convert_rbln_to_hf_model_name(rbln_class_name) not in cls._model_mapping_names.values():
|
73
|
+
raise ValueError(
|
74
|
+
f"The architecture '{rbln_class_name}' is not supported by the `{cls.__name__}.from_pretrained()` method. "
|
75
|
+
"Please use the `from_pretrained()` method of the appropriate class to load this model, "
|
76
|
+
f"or directly use '{rbln_class_name}.from_pretrained()`."
|
77
|
+
)
|
65
78
|
|
66
79
|
try:
|
80
|
+
module = importlib.import_module("optimum.rbln")
|
67
81
|
rbln_cls = getattr(module, rbln_class_name)
|
68
82
|
except AttributeError as e:
|
69
83
|
raise AttributeError(
|
70
|
-
f"Class '{rbln_class_name}' not found in 'optimum.rbln' module for model ID '{
|
84
|
+
f"Class '{rbln_class_name}' not found in 'optimum.rbln' module for model ID '{pretrained_model_name_or_path}'. "
|
71
85
|
"Ensure that the class name is correctly mapped and available in the 'optimum.rbln' module."
|
72
86
|
) from e
|
73
87
|
|
74
88
|
return rbln_cls
|
75
89
|
|
90
|
+
@classmethod
|
91
|
+
def infer_hf_model_class(
|
92
|
+
cls,
|
93
|
+
pretrained_model_name_or_path,
|
94
|
+
*args,
|
95
|
+
**kwargs,
|
96
|
+
):
|
97
|
+
"""
|
98
|
+
Infer the Hugging Face model class based on the configuration or model name.
|
99
|
+
|
100
|
+
Args:
|
101
|
+
pretrained_model_name_or_path (str): Identifier or path to the pretrained model.
|
102
|
+
kwargs: Additional arguments for configuration and loading.
|
103
|
+
|
104
|
+
Returns:
|
105
|
+
PretrainedModel: The inferred Hugging Face model class.
|
106
|
+
"""
|
107
|
+
|
108
|
+
# Try to load configuration if provided or retrieve it from the model ID
|
109
|
+
config = kwargs.pop("config", None)
|
110
|
+
kwargs.update({"trust_remote_code": True})
|
111
|
+
kwargs["_from_auto"] = True
|
112
|
+
|
113
|
+
# Load configuration if not already provided
|
114
|
+
if not isinstance(config, PretrainedConfig):
|
115
|
+
config, kwargs = AutoConfig.from_pretrained(
|
116
|
+
pretrained_model_name_or_path,
|
117
|
+
return_unused_kwargs=True,
|
118
|
+
**kwargs,
|
119
|
+
)
|
120
|
+
|
121
|
+
# Get hf_model_class from Config
|
122
|
+
has_remote_code = (
|
123
|
+
hasattr(config, "auto_map") and convert_rbln_to_hf_model_name(cls.__name__) in config.auto_map
|
124
|
+
)
|
125
|
+
if has_remote_code:
|
126
|
+
class_ref = config.auto_map[convert_rbln_to_hf_model_name(cls.__name__)]
|
127
|
+
model_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
|
128
|
+
elif type(config) in cls._model_mapping.keys():
|
129
|
+
model_class = _get_model_class(config, cls._model_mapping)
|
130
|
+
else:
|
131
|
+
raise ValueError(
|
132
|
+
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
|
133
|
+
f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
|
134
|
+
)
|
135
|
+
|
136
|
+
if model_class.__name__ != config.architectures[0]:
|
137
|
+
warnings.warn(
|
138
|
+
f"`{cls.__name__}.from_pretrained()` is invoking `{convert_hf_to_rbln_model_name(model_class.__name__)}.from_pretrained()`, which does not match the "
|
139
|
+
f"expected architecture `RBLN{config.architectures[0]}` from config. This mismatch could cause some operations to not be properly loaded "
|
140
|
+
f"from the checkpoint, leading to potential unintended behavior. If this is not intentional, consider calling the "
|
141
|
+
f"`from_pretrained()` method directly from the `RBLN{config.architectures[0]}` class instead.",
|
142
|
+
UserWarning,
|
143
|
+
)
|
144
|
+
|
145
|
+
return model_class
|
146
|
+
|
147
|
+
@classmethod
|
148
|
+
def get_rbln_model_class_name(cls, pretrained_model_name_or_path, **kwargs):
|
149
|
+
"""
|
150
|
+
Retrieve the path to the compiled model directory for a given RBLN model.
|
151
|
+
|
152
|
+
Args:
|
153
|
+
pretrained_model_name_or_path (str): Identifier of the model.
|
154
|
+
kwargs: Additional arguments that match the parameters of `_load_compiled_model_dir`.
|
155
|
+
|
156
|
+
Returns:
|
157
|
+
str: Path to the compiled model directory.
|
158
|
+
"""
|
159
|
+
sig = inspect.signature(RBLNBaseModel._load_compiled_model_dir)
|
160
|
+
valid_params = sig.parameters.keys()
|
161
|
+
filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params}
|
162
|
+
|
163
|
+
model_path_subfolder = RBLNBaseModel._load_compiled_model_dir(
|
164
|
+
model_id=pretrained_model_name_or_path, **filtered_kwargs
|
165
|
+
)
|
166
|
+
rbln_config = RBLNConfig.load(model_path_subfolder)
|
167
|
+
|
168
|
+
return rbln_config.meta["cls"]
|
169
|
+
|
76
170
|
@classmethod
|
77
171
|
def from_pretrained(
|
78
172
|
cls,
|