optimum-rbln 0.1.12__py3-none-any.whl → 0.1.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. optimum/rbln/__init__.py +5 -1
  2. optimum/rbln/__version__.py +1 -1
  3. optimum/rbln/diffusers/models/autoencoder_kl.py +30 -61
  4. optimum/rbln/diffusers/models/controlnet.py +36 -56
  5. optimum/rbln/diffusers/models/unet_2d_condition.py +57 -153
  6. optimum/rbln/diffusers/pipelines/__init__.py +40 -12
  7. optimum/rbln/diffusers/pipelines/controlnet/multicontrolnet.py +7 -0
  8. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -185
  9. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +8 -190
  10. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +8 -191
  11. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +8 -192
  12. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +3 -110
  13. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +12 -115
  14. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +4 -122
  15. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +4 -125
  16. optimum/rbln/modeling_base.py +12 -5
  17. optimum/rbln/modeling_diffusers.py +400 -0
  18. optimum/rbln/transformers/__init__.py +2 -0
  19. optimum/rbln/transformers/cache_utils.py +5 -9
  20. optimum/rbln/transformers/modeling_rope_utils.py +283 -0
  21. optimum/rbln/transformers/models/__init__.py +80 -31
  22. optimum/rbln/transformers/models/clip/modeling_clip.py +13 -22
  23. optimum/rbln/transformers/models/decoderonly/__init__.py +0 -2
  24. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +376 -218
  25. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +74 -16
  26. optimum/rbln/transformers/models/exaone/exaone_architecture.py +18 -9
  27. optimum/rbln/transformers/models/exaone/modeling_exaone.py +4 -29
  28. optimum/rbln/transformers/models/gemma/gemma_architecture.py +12 -2
  29. optimum/rbln/transformers/models/gemma/modeling_gemma.py +4 -28
  30. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +4 -30
  31. optimum/rbln/transformers/models/llama/modeling_llama.py +4 -28
  32. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +27 -8
  33. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -15
  34. optimum/rbln/transformers/models/midm/modeling_midm.py +4 -29
  35. optimum/rbln/transformers/models/mistral/modeling_mistral.py +4 -29
  36. optimum/rbln/transformers/models/phi/modeling_phi.py +5 -31
  37. optimum/rbln/transformers/models/phi/phi_architecture.py +75 -159
  38. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +5 -29
  39. optimum/rbln/transformers/models/t5/__init__.py +1 -1
  40. optimum/rbln/transformers/models/t5/modeling_t5.py +57 -4
  41. optimum/rbln/transformers/models/whisper/modeling_whisper.py +1 -1
  42. optimum/rbln/transformers/utils/rbln_quantization.py +8 -2
  43. optimum/rbln/utils/context.py +58 -0
  44. optimum/rbln/utils/decorator_utils.py +55 -0
  45. optimum/rbln/utils/import_utils.py +7 -0
  46. optimum/rbln/utils/runtime_utils.py +4 -4
  47. optimum/rbln/utils/timer_utils.py +2 -2
  48. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.13.dist-info}/METADATA +8 -7
  49. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.13.dist-info}/RECORD +52 -48
  50. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.13.dist-info}/WHEEL +0 -0
  51. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.13.dist-info}/entry_points.txt +0 -0
  52. {optimum_rbln-0.1.12.dist-info → optimum_rbln-0.1.13.dist-info}/licenses/LICENSE +0 -0
@@ -20,16 +20,44 @@
20
20
  # are the intellectual property of Rebellions Inc. and may not be
21
21
  # copied, modified, or distributed without prior written permission
22
22
  # from Rebellions Inc.
23
+ from typing import TYPE_CHECKING
23
24
 
24
- from .controlnet import (
25
- RBLNMultiControlNetModel,
26
- RBLNStableDiffusionControlNetImg2ImgPipeline,
27
- RBLNStableDiffusionControlNetPipeline,
28
- RBLNStableDiffusionXLControlNetImg2ImgPipeline,
29
- RBLNStableDiffusionXLControlNetPipeline,
30
- )
31
- from .stable_diffusion import (
32
- RBLNStableDiffusionImg2ImgPipeline,
33
- RBLNStableDiffusionPipeline,
34
- )
35
- from .stable_diffusion_xl import RBLNStableDiffusionXLImg2ImgPipeline, RBLNStableDiffusionXLPipeline
25
+ from transformers.utils import _LazyModule
26
+
27
+
28
+ _import_structure = {
29
+ "controlnet": [
30
+ "RBLNMultiControlNetModel",
31
+ "RBLNStableDiffusionControlNetImg2ImgPipeline",
32
+ "RBLNStableDiffusionControlNetPipeline",
33
+ "RBLNStableDiffusionXLControlNetImg2ImgPipeline",
34
+ "RBLNStableDiffusionXLControlNetPipeline",
35
+ ],
36
+ "stable_diffusion": [
37
+ "RBLNStableDiffusionImg2ImgPipeline",
38
+ "RBLNStableDiffusionPipeline",
39
+ ],
40
+ "stable_diffusion_xl": ["RBLNStableDiffusionXLImg2ImgPipeline", "RBLNStableDiffusionXLPipeline"],
41
+ }
42
+ if TYPE_CHECKING:
43
+ from .controlnet import (
44
+ RBLNMultiControlNetModel,
45
+ RBLNStableDiffusionControlNetImg2ImgPipeline,
46
+ RBLNStableDiffusionControlNetPipeline,
47
+ RBLNStableDiffusionXLControlNetImg2ImgPipeline,
48
+ RBLNStableDiffusionXLControlNetPipeline,
49
+ )
50
+ from .stable_diffusion import (
51
+ RBLNStableDiffusionImg2ImgPipeline,
52
+ RBLNStableDiffusionPipeline,
53
+ )
54
+ from .stable_diffusion_xl import RBLNStableDiffusionXLImg2ImgPipeline, RBLNStableDiffusionXLPipeline
55
+ else:
56
+ import sys
57
+
58
+ sys.modules[__name__] = _LazyModule(
59
+ __name__,
60
+ globals()["__file__"],
61
+ _import_structure,
62
+ module_spec=__spec__,
63
+ )
@@ -52,6 +52,13 @@ class RBLNMultiControlNetModel(RBLNModel):
52
52
  self.nets = models
53
53
  self.dtype = torch.float32
54
54
 
55
+ @property
56
+ def compiled_models(self):
57
+ cm = []
58
+ for net in self.nets:
59
+ cm.extend(net.compiled_models)
60
+ return cm
61
+
55
62
  @classmethod
56
63
  def from_pretrained(cls, *args, **kwargs):
57
64
  def get_model_from_task(
@@ -26,203 +26,25 @@ from typing import Any, Callable, Dict, List, Optional, Union
26
26
 
27
27
  import torch
28
28
  import torch.nn.functional as F
29
- from diffusers import AutoencoderKL, ControlNetModel, StableDiffusionControlNetPipeline
29
+ from diffusers import StableDiffusionControlNetPipeline
30
30
  from diffusers.image_processor import PipelineImageInput
31
- from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
32
31
  from diffusers.pipelines.controlnet.pipeline_controlnet import retrieve_timesteps
33
32
  from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
34
33
  from diffusers.utils import deprecate, logging
35
34
  from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
36
- from transformers import CLIPTextModel
37
35
 
38
- from ....modeling_config import use_rbln_config
39
- from ....transformers import RBLNCLIPTextModel
40
- from ....utils.runtime_utils import ContextRblnConfig
41
- from ...models import RBLNAutoencoderKL, RBLNControlNetModel, RBLNUNet2DConditionModel
36
+ from ....modeling_diffusers import RBLNDiffusionMixin
37
+ from ....utils.decorator_utils import remove_compile_time_kwargs
38
+ from ...models import RBLNControlNetModel
42
39
  from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
43
40
 
44
41
 
45
42
  logger = logging.get_logger(__name__)
46
43
 
47
44
 
48
- class RBLNStableDiffusionControlNetPipeline(StableDiffusionControlNetPipeline):
49
- @classmethod
50
- @use_rbln_config
51
- def from_pretrained(cls, model_id, **kwargs):
52
- """
53
- Pipeline for text-to-image generation using Stable Diffusion with ControlNet.
54
-
55
- This model inherits from [`StableDiffusionControlNetPipeline`]. Check the superclass documentation for the generic methods
56
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
57
-
58
- It implements the methods to convert a pre-trained Stable Diffusion Controlnet pipeline into a RBLNStableDiffusionControlNet pipeline by:
59
- - transferring the checkpoint weights of the original into an optimized RBLN graph,
60
- - compiling the resulting graph using the RBLN compiler.
61
-
62
- Args:
63
- model_id (`Union[str, Path]`):
64
- Can be either:
65
- - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
66
- - A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
67
- """
68
- export = kwargs.pop("export", None)
69
- vae = kwargs.pop("vae", None)
70
- unet = kwargs.pop("unet", None)
71
- text_encoder = kwargs.pop("text_encoder", None)
72
- controlnet = kwargs.pop("controlnet", None)
73
- model_save_dir = kwargs.pop("model_save_dir", None)
74
- rbln_config = kwargs.pop("rbln_config", None)
75
- rbln_config = {} if rbln_config is None else rbln_config
76
-
77
- device = rbln_config.get("device", None)
78
- device_map = rbln_config.get("device_map", None)
79
- create_runtimes = rbln_config.get("create_runtimes", None)
80
- optimize_host_memory = rbln_config.get("optimize_host_memory", None)
81
-
82
- kwargs_dict = {
83
- "pretrained_model_name_or_path": model_id,
84
- **kwargs,
85
- }
86
-
87
- kwargs_dict.update(
88
- {
89
- **({"vae": vae} if vae is not None and isinstance(vae, AutoencoderKL) else {}),
90
- **({"unet": unet} if unet is not None and isinstance(unet, UNet2DConditionModel) else {}),
91
- **(
92
- {"text_encoder": text_encoder}
93
- if text_encoder is not None and isinstance(text_encoder, CLIPTextModel)
94
- else {}
95
- ),
96
- **(
97
- {"controlnet": controlnet}
98
- if controlnet is not None
99
- and (
100
- isinstance(controlnet, ControlNetModel)
101
- or all(isinstance(c, ControlNetModel) for c in controlnet)
102
- )
103
- else {}
104
- ),
105
- }
106
- )
107
-
108
- with ContextRblnConfig(
109
- device=device,
110
- device_map=device_map,
111
- create_runtimes=create_runtimes,
112
- optimze_host_mem=optimize_host_memory,
113
- ):
114
- model = super().from_pretrained(**{k: v for k, v in kwargs_dict.items() if v is not None})
115
-
116
- if export is None or export is False:
117
- return model
118
-
119
- do_classifier_free_guidance = (
120
- rbln_config.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
121
- )
122
-
123
- # compile model, create runtime
124
- if not isinstance(vae, RBLNAutoencoderKL):
125
- vae = RBLNAutoencoderKL.from_pretrained(
126
- model_id=model_id,
127
- subfolder="vae",
128
- export=True,
129
- model_save_dir=model_save_dir,
130
- rbln_unet_sample_size=model.unet.config.sample_size,
131
- rbln_use_encode=False,
132
- rbln_vae_scale_factor=model.vae_scale_factor,
133
- rbln_config={**rbln_config},
134
- )
135
-
136
- if not isinstance(text_encoder, RBLNCLIPTextModel):
137
- text_encoder = RBLNCLIPTextModel.from_pretrained(
138
- model_id=model_id,
139
- subfolder="text_encoder",
140
- export=True,
141
- model_save_dir=model_save_dir,
142
- rbln_config={**rbln_config},
143
- )
144
-
145
- batch_size = rbln_config.pop("batch_size", 1)
146
- unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
147
-
148
- if not isinstance(unet, RBLNUNet2DConditionModel):
149
- unet = RBLNUNet2DConditionModel.from_pretrained(
150
- model_id=model_id,
151
- subfolder="unet",
152
- export=True,
153
- model_save_dir=model_save_dir,
154
- rbln_max_seq_len=text_encoder.config.max_position_embeddings,
155
- rbln_batch_size=unet_batch_size,
156
- rbln_use_encode=False,
157
- rbln_vae_scale_factor=model.vae_scale_factor,
158
- rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
159
- rbln_config={**rbln_config},
160
- )
161
-
162
- if not isinstance(controlnet, (RBLNControlNetModel, RBLNMultiControlNetModel)):
163
- if isinstance(controlnet, (list, tuple)):
164
- multicontrolnet = []
165
- for i, cid in enumerate(controlnet):
166
- subfolder_name = "controlnet" if i == 0 else f"controlnet_{i}"
167
- multicontrolnet.append(
168
- RBLNControlNetModel.from_model(
169
- model=cid,
170
- subfolder=subfolder_name,
171
- model_save_dir=model_save_dir,
172
- rbln_batch_size=unet_batch_size,
173
- rbln_vae_scale_factor=model.vae_scale_factor,
174
- rbln_config={**rbln_config},
175
- )
176
- )
177
- controlnet = RBLNMultiControlNetModel(multicontrolnet, config=controlnet[0].config)
178
- controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
179
- else:
180
- controlnet = RBLNControlNetModel.from_model(
181
- model=controlnet,
182
- subfolder="controlnet",
183
- model_save_dir=model_save_dir,
184
- rbln_batch_size=unet_batch_size,
185
- rbln_vae_scale_factor=model.vae_scale_factor,
186
- rbln_config={**rbln_config},
187
- )
188
- controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
189
-
190
- if model_save_dir is not None:
191
- # To skip saving original pytorch modules
192
- del (model.vae, model.text_encoder, model.unet, model.controlnet)
193
-
194
- # Direct calling of `save_pretrained` causes config.unet = (None, None).
195
- # So config must be saved again, later.
196
- model.save_pretrained(model_save_dir)
197
-
198
- # replace modules
199
- model.vae = vae
200
- model.text_encoder = text_encoder
201
- model.unet = unet
202
- model.controlnet = controlnet
203
-
204
- # update config to be able to load from file.
205
- update_dict = {
206
- "vae": ("optimum.rbln", "RBLNAutoencoderKL"),
207
- "text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
208
- "unet": ("optimum.rbln", "RBLNUNet2DConditionModel"),
209
- "controlnet": controlnet_dict,
210
- }
211
- model.register_to_config(**update_dict)
212
-
213
- if model_save_dir is not None:
214
- # overwrite to replace incorrect config
215
- model.save_config(model_save_dir)
216
-
217
- if optimize_host_memory is False:
218
- model.compiled_models = [vae.compiled_models[0], text_encoder.compiled_models[0], unet.compiled_models[0]]
219
- if isinstance(controlnet, RBLNMultiControlNetModel):
220
- for c_model in controlnet.nets:
221
- model.compiled_models.append(c_model.compiled_models[0])
222
- else:
223
- model.compiled_models.append(controlnet.compiled_models[0])
224
-
225
- return model
45
+ class RBLNStableDiffusionControlNetPipeline(RBLNDiffusionMixin, StableDiffusionControlNetPipeline):
46
+ original_class = StableDiffusionControlNetPipeline
47
+ _submodules = ["text_encoder", "unet", "vae", "controlnet"]
226
48
 
227
49
  def check_inputs(
228
50
  self,
@@ -388,6 +210,7 @@ class RBLNStableDiffusionControlNetPipeline(StableDiffusionControlNetPipeline):
388
210
  )
389
211
 
390
212
  @torch.no_grad()
213
+ @remove_compile_time_kwargs
391
214
  def __call__(
392
215
  self,
393
216
  prompt: Union[str, List[str]] = None,
@@ -597,6 +420,7 @@ class RBLNStableDiffusionControlNetPipeline(StableDiffusionControlNetPipeline):
597
420
  text_encoder_lora_scale = (
598
421
  self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
599
422
  )
423
+
600
424
  prompt_embeds, negative_prompt_embeds = self.encode_prompt(
601
425
  prompt,
602
426
  device,
@@ -26,207 +26,23 @@ from typing import Any, Callable, Dict, List, Optional, Union
26
26
 
27
27
  import torch
28
28
  import torch.nn.functional as F
29
- from diffusers import AutoencoderKL, ControlNetModel, StableDiffusionControlNetImg2ImgPipeline
29
+ from diffusers import StableDiffusionControlNetImg2ImgPipeline
30
30
  from diffusers.image_processor import PipelineImageInput
31
- from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
32
31
  from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
33
32
  from diffusers.utils import deprecate, logging
34
33
  from diffusers.utils.torch_utils import is_compiled_module
35
- from transformers import CLIPTextModel
36
34
 
37
- from ....modeling_config import use_rbln_config
38
- from ....transformers import RBLNCLIPTextModel
39
- from ....utils.runtime_utils import ContextRblnConfig
40
- from ...models import RBLNAutoencoderKL, RBLNControlNetModel, RBLNUNet2DConditionModel
35
+ from ....modeling_diffusers import RBLNDiffusionMixin
36
+ from ....utils.decorator_utils import remove_compile_time_kwargs
37
+ from ...models import RBLNControlNetModel
41
38
  from ...pipelines.controlnet.multicontrolnet import RBLNMultiControlNetModel
42
39
 
43
40
 
44
41
  logger = logging.get_logger(__name__)
45
42
 
46
43
 
47
- class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2ImgPipeline):
48
- @classmethod
49
- @use_rbln_config
50
- def from_pretrained(cls, model_id, **kwargs):
51
- """
52
- Pipeline for image-to-image generation using Stable Diffusion with ControlNet.
53
-
54
- This model inherits from [`StableDiffusionControlNetImg2ImgPipeline`]. Check the superclass documentation for the generic methods
55
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
56
-
57
- It implements the methods to convert a pre-trained Stable Diffusion Controlnet pipeline into a RBLNStableDiffusionControlNetImg2Img pipeline by:
58
- - transferring the checkpoint weights of the original into an optimized RBLN graph,
59
- - compiling the resulting graph using the RBLN compiler.
60
-
61
- Args:
62
- model_id (`Union[str, Path]`):
63
- Can be either:
64
- - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
65
- - A path to a *directory* containing a model saved using [`~OptimizedModel.save_pretrained`],
66
- """
67
- export = kwargs.pop("export", None)
68
- vae = kwargs.pop("vae", None)
69
- unet = kwargs.pop("unet", None)
70
- text_encoder = kwargs.pop("text_encoder", None)
71
- controlnet = kwargs.pop("controlnet", None)
72
- model_save_dir = kwargs.pop("model_save_dir", None)
73
- rbln_config = kwargs.pop("rbln_config", None)
74
- rbln_config = {} if rbln_config is None else rbln_config
75
-
76
- device = rbln_config.get("device", None)
77
- device_map = rbln_config.get("device_map", None)
78
- create_runtimes = rbln_config.get("create_runtimes", None)
79
- optimize_host_memory = rbln_config.get("optimize_host_memory", None)
80
-
81
- kwargs_dict = {
82
- "pretrained_model_name_or_path": model_id,
83
- **kwargs,
84
- }
85
-
86
- kwargs_dict.update(
87
- {
88
- **({"vae": vae} if vae is not None and isinstance(vae, AutoencoderKL) else {}),
89
- **({"unet": unet} if unet is not None and isinstance(unet, UNet2DConditionModel) else {}),
90
- **(
91
- {"text_encoder": text_encoder}
92
- if text_encoder is not None and isinstance(text_encoder, CLIPTextModel)
93
- else {}
94
- ),
95
- **(
96
- {"controlnet": controlnet}
97
- if controlnet is not None
98
- and (
99
- isinstance(controlnet, ControlNetModel)
100
- or all(isinstance(c, ControlNetModel) for c in controlnet)
101
- )
102
- else {}
103
- ),
104
- }
105
- )
106
-
107
- with ContextRblnConfig(
108
- device=device,
109
- device_map=device_map,
110
- create_runtimes=create_runtimes,
111
- optimze_host_mem=optimize_host_memory,
112
- ):
113
- model = super().from_pretrained(**{k: v for k, v in kwargs_dict.items() if v is not None})
114
-
115
- if export is None or export is False:
116
- return model
117
-
118
- do_classifier_free_guidance = (
119
- rbln_config.pop("guidance_scale", 5.0) > 1.0 and model.unet.config.time_cond_proj_dim is None
120
- )
121
-
122
- # compile model, create runtime
123
- if not isinstance(vae, RBLNAutoencoderKL):
124
- vae = RBLNAutoencoderKL.from_pretrained(
125
- model_id=model_id,
126
- subfolder="vae",
127
- export=True,
128
- model_save_dir=model_save_dir,
129
- rbln_unet_sample_size=model.unet.config.sample_size,
130
- rbln_use_encode=True,
131
- rbln_vae_scale_factor=model.vae_scale_factor,
132
- rbln_config={**rbln_config},
133
- )
134
-
135
- if not isinstance(text_encoder, RBLNCLIPTextModel):
136
- text_encoder = RBLNCLIPTextModel.from_pretrained(
137
- model_id=model_id,
138
- subfolder="text_encoder",
139
- export=True,
140
- model_save_dir=model_save_dir,
141
- rbln_config={**rbln_config},
142
- )
143
-
144
- batch_size = rbln_config.pop("batch_size", 1)
145
- unet_batch_size = batch_size * 2 if do_classifier_free_guidance else batch_size
146
-
147
- if not isinstance(unet, RBLNUNet2DConditionModel):
148
- unet = RBLNUNet2DConditionModel.from_pretrained(
149
- model_id=model_id,
150
- subfolder="unet",
151
- export=True,
152
- model_save_dir=model_save_dir,
153
- rbln_max_seq_len=text_encoder.config.max_position_embeddings,
154
- rbln_batch_size=unet_batch_size,
155
- rbln_use_encode=True,
156
- rbln_vae_scale_factor=model.vae_scale_factor,
157
- rbln_is_controlnet=True if "controlnet" in model.config.keys() else False,
158
- rbln_config={**rbln_config},
159
- )
160
-
161
- if not isinstance(controlnet, (RBLNControlNetModel, RBLNMultiControlNetModel)):
162
- if isinstance(controlnet, (list, tuple)):
163
- multicontrolnet = []
164
- for i, cid in enumerate(controlnet):
165
- subfolder_name = "controlnet" if i == 0 else f"controlnet_{i}"
166
- multicontrolnet.append(
167
- RBLNControlNetModel.from_model(
168
- model=cid,
169
- subfolder=subfolder_name,
170
- model_save_dir=model_save_dir,
171
- rbln_batch_size=unet_batch_size,
172
- rbln_vae_scale_factor=model.vae_scale_factor,
173
- rbln_config={**rbln_config},
174
- )
175
- )
176
- controlnet = RBLNMultiControlNetModel(multicontrolnet, config=controlnet[0].config)
177
- controlnet_dict = ("optimum.rbln", "RBLNMultiControlNetModel")
178
- else:
179
- controlnet = RBLNControlNetModel.from_model(
180
- model=controlnet,
181
- subfolder="controlnet",
182
- model_save_dir=model_save_dir,
183
- rbln_batch_size=unet_batch_size,
184
- rbln_vae_scale_factor=model.vae_scale_factor,
185
- rbln_config={**rbln_config},
186
- )
187
- controlnet_dict = ("optimum.rbln", "RBLNControlNetModel")
188
-
189
- if model_save_dir is not None:
190
- # To skip saving original pytorch modules
191
- del (model.vae, model.text_encoder, model.unet, model.controlnet)
192
-
193
- # Direct calling of `save_pretrained` causes config.unet = (None, None).
194
- # So config must be saved again, later.
195
- model.save_pretrained(model_save_dir)
196
-
197
- # replace modules
198
- model.vae = vae
199
- model.text_encoder = text_encoder
200
- model.unet = unet
201
- model.controlnet = controlnet
202
-
203
- # update config to be able to load from file.
204
- update_dict = {
205
- "vae": ("optimum.rbln", "RBLNAutoencoderKL"),
206
- "text_encoder": ("optimum.rbln", "RBLNCLIPTextModel"),
207
- "unet": ("optimum.rbln", "RBLNUNet2DConditionModel"),
208
- "controlnet": controlnet_dict,
209
- }
210
- model.register_to_config(**update_dict)
211
-
212
- if model_save_dir is not None:
213
- # overwrite to replace incorrect config
214
- model.save_config(model_save_dir)
215
-
216
- if optimize_host_memory is False:
217
- model.compiled_models = [
218
- vae.compiled_models[0],
219
- vae.compiled_models[1],
220
- text_encoder.compiled_models[0],
221
- unet.compiled_models[0],
222
- ]
223
- if isinstance(controlnet, RBLNMultiControlNetModel):
224
- for c_model in controlnet.nets:
225
- model.compiled_models.append(c_model.compiled_models[0])
226
- else:
227
- model.compiled_models.append(controlnet.compiled_models[0])
228
-
229
- return model
44
+ class RBLNStableDiffusionControlNetImg2ImgPipeline(RBLNDiffusionMixin, StableDiffusionControlNetImg2ImgPipeline):
45
+ _submodules = ["text_encoder", "unet", "vae", "controlnet"]
230
46
 
231
47
  def check_inputs(
232
48
  self,
@@ -386,6 +202,7 @@ class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2
386
202
  )
387
203
 
388
204
  @torch.no_grad()
205
+ @remove_compile_time_kwargs
389
206
  def __call__(
390
207
  self,
391
208
  prompt: Union[str, List[str]] = None,
@@ -594,6 +411,7 @@ class RBLNStableDiffusionControlNetImg2ImgPipeline(StableDiffusionControlNetImg2
594
411
  text_encoder_lora_scale = (
595
412
  self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
596
413
  )
414
+
597
415
  prompt_embeds, negative_prompt_embeds = self.encode_prompt(
598
416
  prompt,
599
417
  device,