opteryx-catalog 0.4.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of opteryx-catalog might be problematic. Click here for more details.
- opteryx_catalog/__init__.py +31 -0
- opteryx_catalog/catalog/__init__.py +4 -0
- opteryx_catalog/catalog/compaction.py +529 -0
- opteryx_catalog/catalog/dataset.py +1201 -0
- opteryx_catalog/catalog/manifest.py +438 -0
- opteryx_catalog/catalog/metadata.py +81 -0
- opteryx_catalog/catalog/metastore.py +68 -0
- opteryx_catalog/catalog/view.py +12 -0
- opteryx_catalog/exceptions.py +38 -0
- opteryx_catalog/iops/__init__.py +6 -0
- opteryx_catalog/iops/base.py +42 -0
- opteryx_catalog/iops/fileio.py +125 -0
- opteryx_catalog/iops/gcs.py +255 -0
- opteryx_catalog/opteryx_catalog.py +979 -0
- opteryx_catalog/webhooks/__init__.py +230 -0
- opteryx_catalog/webhooks/events.py +177 -0
- opteryx_catalog-0.4.13.dist-info/METADATA +466 -0
- opteryx_catalog-0.4.13.dist-info/RECORD +28 -0
- opteryx_catalog-0.4.13.dist-info/WHEEL +5 -0
- opteryx_catalog-0.4.13.dist-info/licenses/LICENSE +201 -0
- opteryx_catalog-0.4.13.dist-info/top_level.txt +3 -0
- scripts/create_dataset.py +201 -0
- scripts/read_dataset.py +268 -0
- tests/test_compaction.py +233 -0
- tests/test_dataset_metadata.py +29 -0
- tests/test_import.py +5 -0
- tests/test_pyproject.py +8 -0
- tests/test_webhooks.py +177 -0
|
@@ -0,0 +1,438 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from dataclasses import field
|
|
5
|
+
from typing import Any
|
|
6
|
+
from typing import Dict
|
|
7
|
+
|
|
8
|
+
NULL_FLAG = -(1 << 63)
|
|
9
|
+
MIN_K_HASHES = 32
|
|
10
|
+
HISTOGRAM_BINS = 32
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@dataclass
|
|
14
|
+
class DataFile:
|
|
15
|
+
file_path: str
|
|
16
|
+
file_format: str = "PARQUET"
|
|
17
|
+
record_count: int = 0
|
|
18
|
+
file_size_in_bytes: int = 0
|
|
19
|
+
partition: Dict[str, object] = field(default_factory=dict)
|
|
20
|
+
lower_bounds: Dict[int, bytes] | None = None
|
|
21
|
+
upper_bounds: Dict[int, bytes] | None = None
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@dataclass
|
|
25
|
+
class ManifestEntry:
|
|
26
|
+
snapshot_id: int
|
|
27
|
+
data_file: DataFile
|
|
28
|
+
status: str = "added" # 'added' | 'deleted'
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@dataclass
|
|
32
|
+
class ParquetManifestEntry:
|
|
33
|
+
"""Represents a single entry in a Parquet manifest with statistics."""
|
|
34
|
+
|
|
35
|
+
file_path: str
|
|
36
|
+
file_format: str
|
|
37
|
+
record_count: int
|
|
38
|
+
file_size_in_bytes: int
|
|
39
|
+
uncompressed_size_in_bytes: int
|
|
40
|
+
column_uncompressed_sizes_in_bytes: list[int]
|
|
41
|
+
null_counts: list[int]
|
|
42
|
+
min_k_hashes: list[list[int]]
|
|
43
|
+
histogram_counts: list[list[int]]
|
|
44
|
+
histogram_bins: int
|
|
45
|
+
min_values: list
|
|
46
|
+
max_values: list
|
|
47
|
+
|
|
48
|
+
def to_dict(self) -> dict:
|
|
49
|
+
return {
|
|
50
|
+
"file_path": self.file_path,
|
|
51
|
+
"file_format": self.file_format,
|
|
52
|
+
"record_count": self.record_count,
|
|
53
|
+
"file_size_in_bytes": self.file_size_in_bytes,
|
|
54
|
+
"uncompressed_size_in_bytes": self.uncompressed_size_in_bytes,
|
|
55
|
+
"column_uncompressed_sizes_in_bytes": self.column_uncompressed_sizes_in_bytes,
|
|
56
|
+
"null_counts": self.null_counts,
|
|
57
|
+
"min_k_hashes": self.min_k_hashes,
|
|
58
|
+
"histogram_counts": self.histogram_counts,
|
|
59
|
+
"histogram_bins": self.histogram_bins,
|
|
60
|
+
"min_values": self.min_values,
|
|
61
|
+
"max_values": self.max_values,
|
|
62
|
+
}
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def build_parquet_manifest_entry(
|
|
66
|
+
table: Any, file_path: str, file_size_in_bytes: int
|
|
67
|
+
) -> ParquetManifestEntry:
|
|
68
|
+
"""Build a Parquet manifest entry with statistics for a PyArrow table.
|
|
69
|
+
|
|
70
|
+
Args:
|
|
71
|
+
table: PyArrow table to analyze
|
|
72
|
+
file_path: Path where the file is stored
|
|
73
|
+
file_size_in_bytes: Size of the parquet file in bytes
|
|
74
|
+
|
|
75
|
+
Returns:
|
|
76
|
+
ParquetManifestEntry with computed statistics
|
|
77
|
+
"""
|
|
78
|
+
import pyarrow as pa
|
|
79
|
+
|
|
80
|
+
min_k_hashes: list[list[int]] = []
|
|
81
|
+
histograms: list[list[int]] = []
|
|
82
|
+
min_values: list[int] = []
|
|
83
|
+
null_counts: list[int] = []
|
|
84
|
+
max_values: list[int] = []
|
|
85
|
+
|
|
86
|
+
# Use draken for efficient hashing and compression when available.
|
|
87
|
+
import heapq
|
|
88
|
+
|
|
89
|
+
# Try to compute additional per-column statistics when draken is available.
|
|
90
|
+
try:
|
|
91
|
+
import opteryx.draken as draken # type: ignore
|
|
92
|
+
|
|
93
|
+
for col_idx, col in enumerate(table.columns):
|
|
94
|
+
# hash column values to 64-bit via draken (new cpdef API)
|
|
95
|
+
vec = draken.Vector.from_arrow(col)
|
|
96
|
+
hashes = list(vec.hash())
|
|
97
|
+
|
|
98
|
+
# Decide whether to compute min-k/histogram for this column based
|
|
99
|
+
# on field type and, for strings, average length of values.
|
|
100
|
+
field_type = table.schema.field(col_idx).type
|
|
101
|
+
compute_min_k = False
|
|
102
|
+
if (
|
|
103
|
+
pa.types.is_integer(field_type)
|
|
104
|
+
or pa.types.is_floating(field_type)
|
|
105
|
+
or pa.types.is_decimal(field_type)
|
|
106
|
+
):
|
|
107
|
+
compute_min_k = True
|
|
108
|
+
elif (
|
|
109
|
+
pa.types.is_timestamp(field_type)
|
|
110
|
+
or pa.types.is_date(field_type)
|
|
111
|
+
or pa.types.is_time(field_type)
|
|
112
|
+
):
|
|
113
|
+
compute_min_k = True
|
|
114
|
+
elif pa.types.is_string(field_type) or pa.types.is_large_string(field_type):
|
|
115
|
+
# compute average length from non-null values; only allow
|
|
116
|
+
# min-k/histogram for short strings (avg <= 16)
|
|
117
|
+
col_py = None
|
|
118
|
+
try:
|
|
119
|
+
col_py = col.to_pylist()
|
|
120
|
+
except Exception:
|
|
121
|
+
col_py = None
|
|
122
|
+
|
|
123
|
+
if col_py is not None:
|
|
124
|
+
lens = [len(x) for x in col_py if x is not None]
|
|
125
|
+
if lens:
|
|
126
|
+
avg_len = sum(lens) / len(lens)
|
|
127
|
+
if avg_len <= 16:
|
|
128
|
+
compute_min_k = True
|
|
129
|
+
|
|
130
|
+
# KMV: take K smallest unique hashes when allowed; otherwise
|
|
131
|
+
# store an empty list for this column. Deduplicate hashes so
|
|
132
|
+
# the KMV sketch contains unique hashes (avoids duplicates
|
|
133
|
+
# skewing cardinality estimates).
|
|
134
|
+
if compute_min_k:
|
|
135
|
+
unique_hashes = set(hashes)
|
|
136
|
+
smallest = heapq.nsmallest(MIN_K_HASHES, unique_hashes)
|
|
137
|
+
col_min_k = sorted(smallest)
|
|
138
|
+
else:
|
|
139
|
+
col_min_k = []
|
|
140
|
+
|
|
141
|
+
# For histogram decisions follow the same rule as min-k
|
|
142
|
+
compute_hist = compute_min_k
|
|
143
|
+
|
|
144
|
+
# Use draken.compress() to get canonical int64 per value
|
|
145
|
+
mapped = list(vec.compress())
|
|
146
|
+
# Compute null count from compressed representation
|
|
147
|
+
null_count = sum(1 for m in mapped if m == NULL_FLAG)
|
|
148
|
+
null_counts.append(int(null_count))
|
|
149
|
+
non_nulls_mapped = [m for m in mapped if m != NULL_FLAG]
|
|
150
|
+
if non_nulls_mapped:
|
|
151
|
+
vmin = min(non_nulls_mapped)
|
|
152
|
+
vmax = max(non_nulls_mapped)
|
|
153
|
+
col_min = int(vmin)
|
|
154
|
+
col_max = int(vmax)
|
|
155
|
+
if compute_hist:
|
|
156
|
+
if vmin == vmax:
|
|
157
|
+
col_hist = [0] * HISTOGRAM_BINS
|
|
158
|
+
col_hist[-1] = len(non_nulls_mapped)
|
|
159
|
+
else:
|
|
160
|
+
col_hist = [0] * HISTOGRAM_BINS
|
|
161
|
+
span = float(vmax - vmin)
|
|
162
|
+
for m in non_nulls_mapped:
|
|
163
|
+
b = int(((float(m) - float(vmin)) / span) * (HISTOGRAM_BINS - 1))
|
|
164
|
+
if b < 0:
|
|
165
|
+
b = 0
|
|
166
|
+
if b >= HISTOGRAM_BINS:
|
|
167
|
+
b = HISTOGRAM_BINS - 1
|
|
168
|
+
col_hist[b] += 1
|
|
169
|
+
else:
|
|
170
|
+
col_hist = [0] * HISTOGRAM_BINS
|
|
171
|
+
else:
|
|
172
|
+
# no non-null values; histogram via hash buckets
|
|
173
|
+
col_min = NULL_FLAG
|
|
174
|
+
col_max = NULL_FLAG
|
|
175
|
+
if compute_hist:
|
|
176
|
+
col_hist = [0] * HISTOGRAM_BINS
|
|
177
|
+
for h in hashes:
|
|
178
|
+
b = (h >> (64 - 5)) & 0x1F
|
|
179
|
+
col_hist[b] += 1
|
|
180
|
+
else:
|
|
181
|
+
col_hist = [0] * HISTOGRAM_BINS
|
|
182
|
+
|
|
183
|
+
min_k_hashes.append(col_min_k)
|
|
184
|
+
histograms.append(col_hist)
|
|
185
|
+
min_values.append(col_min)
|
|
186
|
+
max_values.append(col_max)
|
|
187
|
+
# end for
|
|
188
|
+
except Exception:
|
|
189
|
+
# Draken not available or failed; leave min_k_hashes/histograms empty
|
|
190
|
+
min_k_hashes = [[] for _ in table.columns]
|
|
191
|
+
histograms = [[] for _ in table.columns]
|
|
192
|
+
# Attempt to compute per-column min/max from the table directly
|
|
193
|
+
try:
|
|
194
|
+
for col in table.columns:
|
|
195
|
+
try:
|
|
196
|
+
col_py = col.to_pylist()
|
|
197
|
+
non_nulls = [v for v in col_py if v is not None]
|
|
198
|
+
null_count = len(col_py) - len(non_nulls)
|
|
199
|
+
null_counts.append(int(null_count))
|
|
200
|
+
if non_nulls:
|
|
201
|
+
try:
|
|
202
|
+
min_values.append(min(non_nulls))
|
|
203
|
+
max_values.append(max(non_nulls))
|
|
204
|
+
except Exception:
|
|
205
|
+
min_values.append(None)
|
|
206
|
+
max_values.append(None)
|
|
207
|
+
else:
|
|
208
|
+
min_values.append(None)
|
|
209
|
+
max_values.append(None)
|
|
210
|
+
except Exception:
|
|
211
|
+
min_values.append(None)
|
|
212
|
+
max_values.append(None)
|
|
213
|
+
# If we couldn't introspect column values, assume 0 nulls
|
|
214
|
+
null_counts.append(0)
|
|
215
|
+
except Exception:
|
|
216
|
+
# If even direct inspection fails, ensure lists lengths match
|
|
217
|
+
min_values = [None] * len(table.columns)
|
|
218
|
+
max_values = [None] * len(table.columns)
|
|
219
|
+
null_counts = [0] * len(table.columns)
|
|
220
|
+
|
|
221
|
+
# Calculate uncompressed size from table buffers — must be accurate.
|
|
222
|
+
column_uncompressed: list[int] = []
|
|
223
|
+
uncompressed_size = 0
|
|
224
|
+
for col in table.columns:
|
|
225
|
+
col_total = 0
|
|
226
|
+
for chunk in col.chunks:
|
|
227
|
+
try:
|
|
228
|
+
buffs = chunk.buffers()
|
|
229
|
+
except Exception as exc:
|
|
230
|
+
raise RuntimeError(
|
|
231
|
+
f"Unable to access chunk buffers to calculate uncompressed size for {file_path}: {exc}"
|
|
232
|
+
) from exc
|
|
233
|
+
for buffer in buffs:
|
|
234
|
+
if buffer is not None:
|
|
235
|
+
col_total += buffer.size
|
|
236
|
+
column_uncompressed.append(int(col_total))
|
|
237
|
+
uncompressed_size += col_total
|
|
238
|
+
|
|
239
|
+
return ParquetManifestEntry(
|
|
240
|
+
file_path=file_path,
|
|
241
|
+
file_format="parquet",
|
|
242
|
+
record_count=int(table.num_rows),
|
|
243
|
+
file_size_in_bytes=file_size_in_bytes,
|
|
244
|
+
uncompressed_size_in_bytes=uncompressed_size,
|
|
245
|
+
column_uncompressed_sizes_in_bytes=column_uncompressed,
|
|
246
|
+
null_counts=null_counts,
|
|
247
|
+
min_k_hashes=min_k_hashes,
|
|
248
|
+
histogram_counts=histograms,
|
|
249
|
+
histogram_bins=HISTOGRAM_BINS,
|
|
250
|
+
min_values=min_values,
|
|
251
|
+
max_values=max_values,
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
def build_parquet_manifest_minmax_entry(data: bytes, file_path: str) -> ParquetManifestEntry:
|
|
256
|
+
"""Build a Parquet manifest entry with min/max statistics using fast rugo reader.
|
|
257
|
+
|
|
258
|
+
This is much faster than build_parquet_manifest_entry (microseconds per file)
|
|
259
|
+
and is suitable for bulk file operations where full statistics are not needed.
|
|
260
|
+
|
|
261
|
+
Args:
|
|
262
|
+
data: Raw parquet file bytes
|
|
263
|
+
file_path: Path where the file is stored
|
|
264
|
+
|
|
265
|
+
Returns:
|
|
266
|
+
ParquetManifestEntry with min/max statistics only (no histograms or k-hashes)
|
|
267
|
+
"""
|
|
268
|
+
file_size = len(data)
|
|
269
|
+
|
|
270
|
+
# Prefer rugo fast metadata reader when available, otherwise fall back
|
|
271
|
+
# to pyarrow ParquetFile to extract row-group statistics.
|
|
272
|
+
try:
|
|
273
|
+
import opteryx.rugo.parquet as parquet_meta
|
|
274
|
+
from opteryx.compiled.structures.relation_statistics import to_int
|
|
275
|
+
|
|
276
|
+
if isinstance(data, memoryview):
|
|
277
|
+
metadata = parquet_meta.read_metadata_from_memoryview(data, include_statistics=True)
|
|
278
|
+
else:
|
|
279
|
+
metadata = parquet_meta.read_metadata_from_memoryview(
|
|
280
|
+
memoryview(data), include_statistics=True
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
record_count = metadata["num_rows"]
|
|
284
|
+
except ImportError:
|
|
285
|
+
# Fallback: use pyarrow to read Parquet metadata
|
|
286
|
+
import pyarrow as pa
|
|
287
|
+
import pyarrow.parquet as pq
|
|
288
|
+
|
|
289
|
+
pf = pq.ParquetFile(pa.BufferReader(data))
|
|
290
|
+
record_count = int(pf.metadata.num_rows or 0)
|
|
291
|
+
|
|
292
|
+
# Construct minimal metadata structure compatible with expected shape
|
|
293
|
+
metadata = {"num_rows": record_count, "row_groups": []}
|
|
294
|
+
for rg in range(pf.num_row_groups):
|
|
295
|
+
rg_entry = {"columns": []}
|
|
296
|
+
for ci in range(pf.metadata.num_columns):
|
|
297
|
+
col_meta = pf.metadata.row_group(rg).column(ci)
|
|
298
|
+
col_entry = {"name": pf.schema.names[ci]}
|
|
299
|
+
stats = getattr(col_meta, "statistics", None)
|
|
300
|
+
if stats:
|
|
301
|
+
col_entry["min"] = getattr(stats, "min", None)
|
|
302
|
+
col_entry["max"] = getattr(stats, "max", None)
|
|
303
|
+
rg_entry["columns"].append(col_entry)
|
|
304
|
+
# total_byte_size may not be available; leave out to trigger full-table calculation later
|
|
305
|
+
metadata["row_groups"].append(rg_entry)
|
|
306
|
+
|
|
307
|
+
# Define a simple to_int fallback for the pyarrow path
|
|
308
|
+
def to_int(v: object) -> int:
|
|
309
|
+
try:
|
|
310
|
+
return int(v)
|
|
311
|
+
except Exception:
|
|
312
|
+
try:
|
|
313
|
+
if isinstance(v, (bytes, bytearray)):
|
|
314
|
+
s = v.decode("utf-8", errors="ignore")
|
|
315
|
+
return int(float(s)) if s else 0
|
|
316
|
+
return int(float(v))
|
|
317
|
+
except Exception:
|
|
318
|
+
return 0
|
|
319
|
+
|
|
320
|
+
# Gather min/max per column across all row groups
|
|
321
|
+
column_stats = {}
|
|
322
|
+
for row_group in metadata["row_groups"]:
|
|
323
|
+
for column in row_group["columns"]:
|
|
324
|
+
column_name = column["name"]
|
|
325
|
+
|
|
326
|
+
if column_name not in column_stats:
|
|
327
|
+
column_stats[column_name] = {"min": None, "max": None}
|
|
328
|
+
|
|
329
|
+
min_value = column.get("min")
|
|
330
|
+
if min_value is not None:
|
|
331
|
+
# Compress value to int using to_int
|
|
332
|
+
min_compressed = to_int(min_value)
|
|
333
|
+
if column_stats[column_name]["min"] is None:
|
|
334
|
+
column_stats[column_name]["min"] = min_compressed
|
|
335
|
+
else:
|
|
336
|
+
column_stats[column_name]["min"] = min(
|
|
337
|
+
column_stats[column_name]["min"], min_compressed
|
|
338
|
+
)
|
|
339
|
+
|
|
340
|
+
max_value = column.get("max")
|
|
341
|
+
if max_value is not None:
|
|
342
|
+
# Compress value to int using to_int
|
|
343
|
+
max_compressed = to_int(max_value)
|
|
344
|
+
if column_stats[column_name]["max"] is None:
|
|
345
|
+
column_stats[column_name]["max"] = max_compressed
|
|
346
|
+
else:
|
|
347
|
+
column_stats[column_name]["max"] = max(
|
|
348
|
+
column_stats[column_name]["max"], max_compressed
|
|
349
|
+
)
|
|
350
|
+
|
|
351
|
+
# Extract min/max values (filter out None)
|
|
352
|
+
min_values = [stats["min"] for stats in column_stats.values() if stats["min"] is not None]
|
|
353
|
+
max_values = [stats["max"] for stats in column_stats.values() if stats["max"] is not None]
|
|
354
|
+
|
|
355
|
+
# Attempt to gather null counts from metadata row groups if available
|
|
356
|
+
column_nulls: dict = {}
|
|
357
|
+
for row_group in metadata["row_groups"]:
|
|
358
|
+
for column in row_group["columns"]:
|
|
359
|
+
cname = column["name"]
|
|
360
|
+
if cname not in column_nulls:
|
|
361
|
+
column_nulls[cname] = 0
|
|
362
|
+
nc = column.get("null_count")
|
|
363
|
+
if nc is not None:
|
|
364
|
+
try:
|
|
365
|
+
column_nulls[cname] += int(nc)
|
|
366
|
+
except Exception:
|
|
367
|
+
pass
|
|
368
|
+
|
|
369
|
+
if column_nulls:
|
|
370
|
+
null_counts = [column_nulls.get(n, 0) for n in column_stats.keys()]
|
|
371
|
+
else:
|
|
372
|
+
null_counts = []
|
|
373
|
+
|
|
374
|
+
# Get uncompressed size from metadata; if missing, read full table and
|
|
375
|
+
# compute accurate uncompressed size from buffers. Also attempt to
|
|
376
|
+
# compute per-column uncompressed byte counts when reading the table.
|
|
377
|
+
uncompressed_size = 0
|
|
378
|
+
column_uncompressed: list[int] = []
|
|
379
|
+
missing = False
|
|
380
|
+
for row_group in metadata["row_groups"]:
|
|
381
|
+
v = row_group.get("total_byte_size", None)
|
|
382
|
+
if v is None:
|
|
383
|
+
missing = True
|
|
384
|
+
break
|
|
385
|
+
uncompressed_size += v
|
|
386
|
+
|
|
387
|
+
if missing or uncompressed_size == 0:
|
|
388
|
+
try:
|
|
389
|
+
import pyarrow as pa
|
|
390
|
+
import pyarrow.parquet as pq
|
|
391
|
+
|
|
392
|
+
table = pq.read_table(pa.BufferReader(data))
|
|
393
|
+
uncompressed_size = 0
|
|
394
|
+
# Compute per-column uncompressed sizes and null counts from the table
|
|
395
|
+
for col in table.columns:
|
|
396
|
+
col_total = 0
|
|
397
|
+
null_total = 0
|
|
398
|
+
for chunk in col.chunks:
|
|
399
|
+
for buffer in chunk.buffers():
|
|
400
|
+
if buffer is not None:
|
|
401
|
+
col_total += buffer.size
|
|
402
|
+
try:
|
|
403
|
+
null_total += int(chunk.null_count)
|
|
404
|
+
except Exception:
|
|
405
|
+
# Fallback to slow python inspection
|
|
406
|
+
try:
|
|
407
|
+
col_py = col.to_pylist()
|
|
408
|
+
null_total = len(col_py) - len([v for v in col_py if v is not None])
|
|
409
|
+
except Exception:
|
|
410
|
+
null_total = 0
|
|
411
|
+
|
|
412
|
+
column_uncompressed.append(int(col_total))
|
|
413
|
+
uncompressed_size += col_total
|
|
414
|
+
null_counts = null_counts or []
|
|
415
|
+
null_counts.append(int(null_total))
|
|
416
|
+
except Exception as exc:
|
|
417
|
+
raise RuntimeError(
|
|
418
|
+
f"Unable to determine uncompressed size for {file_path}: {exc}"
|
|
419
|
+
) from exc
|
|
420
|
+
else:
|
|
421
|
+
# If we didn't read the table and null_counts is still empty, default to zeros
|
|
422
|
+
if not null_counts:
|
|
423
|
+
null_counts = [0] * len(column_stats)
|
|
424
|
+
|
|
425
|
+
return ParquetManifestEntry(
|
|
426
|
+
file_path=file_path,
|
|
427
|
+
file_format="parquet",
|
|
428
|
+
record_count=int(record_count),
|
|
429
|
+
file_size_in_bytes=file_size,
|
|
430
|
+
uncompressed_size_in_bytes=uncompressed_size,
|
|
431
|
+
column_uncompressed_sizes_in_bytes=column_uncompressed,
|
|
432
|
+
null_counts=null_counts,
|
|
433
|
+
min_k_hashes=[],
|
|
434
|
+
histogram_counts=[],
|
|
435
|
+
histogram_bins=0,
|
|
436
|
+
min_values=min_values,
|
|
437
|
+
max_values=max_values,
|
|
438
|
+
)
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from dataclasses import field
|
|
5
|
+
from typing import Any
|
|
6
|
+
from typing import List
|
|
7
|
+
from typing import Optional
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@dataclass
|
|
11
|
+
class Snapshot:
|
|
12
|
+
snapshot_id: int
|
|
13
|
+
timestamp_ms: int
|
|
14
|
+
author: Optional[str] = None
|
|
15
|
+
# Indicates whether this snapshot was created by a user (True) or internally (False)
|
|
16
|
+
user_created: Optional[bool] = None
|
|
17
|
+
# Monotonic sequence number for writes
|
|
18
|
+
sequence_number: Optional[int] = None
|
|
19
|
+
manifest_list: Optional[str] = None
|
|
20
|
+
# Operation metadata
|
|
21
|
+
operation_type: Optional[str] = None # e.g., 'append', 'overwrite', 'compact'
|
|
22
|
+
parent_snapshot_id: Optional[int] = None
|
|
23
|
+
schema_id: Optional[str] = None
|
|
24
|
+
# Commit message for the snapshot
|
|
25
|
+
commit_message: Optional[str] = None
|
|
26
|
+
# Summary metrics (store zeros when not applicable)
|
|
27
|
+
summary: dict = field(
|
|
28
|
+
default_factory=lambda: {
|
|
29
|
+
"added-data-files": 0,
|
|
30
|
+
"added-files-size": 0,
|
|
31
|
+
"added-records": 0,
|
|
32
|
+
"deleted-data-files": 0,
|
|
33
|
+
"deleted-files-size": 0,
|
|
34
|
+
"deleted-records": 0,
|
|
35
|
+
"total-data-files": 0,
|
|
36
|
+
"total-files-size": 0,
|
|
37
|
+
"total-records": 0,
|
|
38
|
+
}
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
@dataclass
|
|
43
|
+
class DatasetMetadata:
|
|
44
|
+
dataset_identifier: str
|
|
45
|
+
format_version: int = 2
|
|
46
|
+
location: str = ""
|
|
47
|
+
schema: Any = None
|
|
48
|
+
properties: dict = field(default_factory=dict)
|
|
49
|
+
# Dataset-level created/updated metadata
|
|
50
|
+
timestamp_ms: Optional[int] = None
|
|
51
|
+
author: Optional[str] = None
|
|
52
|
+
description: Optional[str] = None
|
|
53
|
+
describer: Optional[str] = None
|
|
54
|
+
sort_orders: List[int] = field(default_factory=list)
|
|
55
|
+
# Maintenance policy: retention settings grouped under a single block
|
|
56
|
+
maintenance_policy: dict = field(
|
|
57
|
+
default_factory=lambda: {
|
|
58
|
+
"retained-snapshot-count": None,
|
|
59
|
+
"retained-snapshot-age-days": None,
|
|
60
|
+
"compaction-policy": "performance",
|
|
61
|
+
}
|
|
62
|
+
)
|
|
63
|
+
# Compaction policy lives under maintenance_policy as 'compaction-policy'
|
|
64
|
+
snapshots: List[Snapshot] = field(default_factory=list)
|
|
65
|
+
current_snapshot_id: Optional[int] = None
|
|
66
|
+
# Schema management: schemas are stored in a subcollection in Firestore.
|
|
67
|
+
# `schemas` contains dicts with keys: schema_id, columns (list of {id,name,type}).
|
|
68
|
+
# Each schema dict may also include `timestamp-ms` and `author`.
|
|
69
|
+
schemas: List[dict] = field(default_factory=list)
|
|
70
|
+
current_schema_id: Optional[str] = None
|
|
71
|
+
|
|
72
|
+
def current_snapshot(self) -> Optional[Snapshot]:
|
|
73
|
+
if self.current_snapshot_id is None:
|
|
74
|
+
return self.snapshots[-1] if self.snapshots else None
|
|
75
|
+
for s in self.snapshots:
|
|
76
|
+
if s.snapshot_id == self.current_snapshot_id:
|
|
77
|
+
return s
|
|
78
|
+
return None
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# Dataset terminology: TableMetadata renamed to DatasetMetadata
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import Any
|
|
4
|
+
from typing import Iterable
|
|
5
|
+
from typing import Optional
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class Metastore:
|
|
9
|
+
"""Abstract catalog interface.
|
|
10
|
+
|
|
11
|
+
Implementations should provide methods to create, load and manage
|
|
12
|
+
datasets and views. Terminology in this project follows the mapping:
|
|
13
|
+
`catalog -> workspace -> collection -> dataset|view`.
|
|
14
|
+
Signatures are intentionally simple and similar to other catalog
|
|
15
|
+
implementations to ease future compatibility.
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
def load_dataset(self, identifier: str) -> "Dataset":
|
|
19
|
+
raise NotImplementedError()
|
|
20
|
+
|
|
21
|
+
def create_dataset(
|
|
22
|
+
self, identifier: str, schema: Any, properties: dict | None = None
|
|
23
|
+
) -> "Dataset":
|
|
24
|
+
raise NotImplementedError()
|
|
25
|
+
|
|
26
|
+
def drop_dataset(self, identifier: str) -> None:
|
|
27
|
+
raise NotImplementedError()
|
|
28
|
+
|
|
29
|
+
def list_datasets(self, namespace: str) -> Iterable[str]:
|
|
30
|
+
raise NotImplementedError()
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class Dataset:
|
|
34
|
+
"""Abstract dataset interface.
|
|
35
|
+
|
|
36
|
+
Minimal methods needed by the Opteryx engine and tests: access metadata,
|
|
37
|
+
list snapshots, append data, and produce a data scan object.
|
|
38
|
+
"""
|
|
39
|
+
|
|
40
|
+
@property
|
|
41
|
+
def metadata(self) -> Any:
|
|
42
|
+
raise NotImplementedError()
|
|
43
|
+
|
|
44
|
+
def snapshots(self) -> Iterable[Any]:
|
|
45
|
+
raise NotImplementedError()
|
|
46
|
+
|
|
47
|
+
def snapshot(self, snapshot_id: Optional[int] = None) -> Optional[Any]:
|
|
48
|
+
"""Return a specific snapshot by id or the current snapshot when
|
|
49
|
+
called with `snapshot_id=None`.
|
|
50
|
+
"""
|
|
51
|
+
raise NotImplementedError()
|
|
52
|
+
|
|
53
|
+
def append(self, table):
|
|
54
|
+
"""Append data (implementations can accept pyarrow.Table or similar)."""
|
|
55
|
+
raise NotImplementedError()
|
|
56
|
+
|
|
57
|
+
def scan(
|
|
58
|
+
self, row_filter=None, snapshot_id: Optional[int] = None, row_limit: Optional[int] = None
|
|
59
|
+
) -> Any:
|
|
60
|
+
raise NotImplementedError()
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class View:
|
|
64
|
+
"""Abstract view metadata representation."""
|
|
65
|
+
|
|
66
|
+
@property
|
|
67
|
+
def definition(self) -> str:
|
|
68
|
+
raise NotImplementedError()
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
"""Catalog-specific exceptions for opteryx_catalog.
|
|
2
|
+
|
|
3
|
+
Exceptions mirror previous behavior (they subclass KeyError where callers
|
|
4
|
+
may expect KeyError) but provide explicit types for datasets, views and
|
|
5
|
+
namespaces.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class CatalogError(Exception):
|
|
10
|
+
"""Base class for catalog errors."""
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class DatasetError(KeyError, CatalogError):
|
|
14
|
+
pass
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class DatasetAlreadyExists(DatasetError):
|
|
18
|
+
pass
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class DatasetNotFound(DatasetError):
|
|
22
|
+
pass
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class ViewError(KeyError, CatalogError):
|
|
26
|
+
pass
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class ViewAlreadyExists(ViewError):
|
|
30
|
+
pass
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class ViewNotFound(ViewError):
|
|
34
|
+
pass
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class CollectionAlreadyExists(KeyError, CatalogError):
|
|
38
|
+
pass
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from io import BytesIO
|
|
4
|
+
from typing import BinaryIO
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class InputFile:
|
|
8
|
+
def __init__(self, location: str, content: bytes | None = None):
|
|
9
|
+
self.location = location
|
|
10
|
+
self._content = content
|
|
11
|
+
|
|
12
|
+
def open(self) -> BinaryIO:
|
|
13
|
+
if self._content is None:
|
|
14
|
+
raise FileNotFoundError(self.location)
|
|
15
|
+
return BytesIO(self._content)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class OutputFile:
|
|
19
|
+
def __init__(self, location: str):
|
|
20
|
+
self.location = location
|
|
21
|
+
|
|
22
|
+
def create(self):
|
|
23
|
+
"""Return a file-like object with a `write` method.
|
|
24
|
+
|
|
25
|
+
Implementations may return a buffer or a writer that persists on write/close.
|
|
26
|
+
"""
|
|
27
|
+
raise NotImplementedError()
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class FileIO:
|
|
31
|
+
"""Minimal FileIO abstraction used by the `opteryx_catalog` layer.
|
|
32
|
+
|
|
33
|
+
Concrete implementations should implement `new_input`, `new_output`, and
|
|
34
|
+
optionally `delete`/`exists`. The abstraction intentionally keeps only the
|
|
35
|
+
small surface needed by the catalog (read bytes, write bytes).
|
|
36
|
+
"""
|
|
37
|
+
|
|
38
|
+
def new_input(self, location: str) -> InputFile:
|
|
39
|
+
return InputFile(location)
|
|
40
|
+
|
|
41
|
+
def new_output(self, location: str) -> OutputFile:
|
|
42
|
+
return OutputFile(location)
|