opsci-toolbox 0.0.2__py3-none-any.whl → 0.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -15,55 +15,115 @@ import math
15
15
  import pandas as pd
16
16
  from opsci_toolbox.helpers.nlp import sample_most_engaging_posts, create_frequency_table
17
17
  from matplotlib.colors import to_hex
18
+ import networkx as nx
18
19
 
19
20
 
20
21
 
21
- def upload_chart_studio(username,api_key,fig, title):
22
+ def upload_chart_studio(
23
+ username: str,
24
+ api_key: str,
25
+ fig,
26
+ title: str
27
+ ) -> tuple:
22
28
  """
23
- Upload Plotly viz to chart studio
29
+ Upload a Plotly visualization to Chart Studio.
30
+
31
+ Args:
32
+ username (str): The Chart Studio username.
33
+ api_key (str): The Chart Studio API key.
34
+ fig: The Plotly figure object to be uploaded.
35
+ title (str): The title for the uploaded visualization.
36
+
37
+ Returns:
38
+ tuple: A tuple containing the URL of the uploaded visualization and the embed code.
24
39
  """
25
40
  URL = ""
26
41
  EMBED = ""
27
42
 
28
- try:
43
+ try:
44
+ # Set Chart Studio credentials
29
45
  tls.set_credentials_file(username=username, api_key=api_key)
30
- URL = py.plot(fig, filename = title, auto_open=True)
46
+
47
+ # Upload the figure to Chart Studio
48
+ URL = py.plot(fig, filename=title, auto_open=True)
49
+
50
+ # Get the embed code for the uploaded figure
31
51
  EMBED = tls.get_embed(URL)
32
- print("* URL DE LA VIZ >> ",URL)
33
- print("\n*CODE EMBED A COLLER \n",EMBED)
52
+
53
+ # Print the URL and embed code
54
+ print("* URL DE LA VIZ >> ", URL)
55
+ print("\n*CODE EMBED A COLLER \n", EMBED)
34
56
 
35
57
  except Exception as e:
36
- pass
58
+ # Print the exception message and a suggestion to reduce the visualization size
37
59
  print(e, "try to reduce the dataviz size by printing less data")
38
60
 
39
- return URL,EMBED
61
+ return URL, EMBED
62
+
63
+ def scale_to_0_10(x: pd.Series) -> pd.Series:
64
+ """
65
+ Scale a pandas Series to the range [0, 10].
40
66
 
67
+ Args:
68
+ x (pd.Series): The input pandas Series to be scaled.
41
69
 
42
- def scale_to_0_10(x):
70
+ Returns:
71
+ pd.Series: The scaled pandas Series with values in the range [0, 10].
72
+ """
43
73
  return ((x - x.min()) / (x.max() - x.min()) * 10).astype(int)
44
74
 
45
- def normalize_data_size(df, col:str, coef = 20, constant = 5):
75
+ def normalize_data_size(df: pd.DataFrame, col: str, coef: int = 20, constant: int = 5) -> pd.DataFrame:
46
76
  """
47
- Function to normalize the sizes of dots
77
+ Normalize the sizes of dots based on a specified column in a DataFrame.
78
+
79
+ Args:
80
+ df (pd.DataFrame): The input DataFrame.
81
+ col (str): The column name to be normalized.
82
+ coef (int, optional): The coefficient to scale the normalized values. Defaults to 20.
83
+ constant (int, optional): The constant to add to the scaled normalized values. Defaults to 5.
84
+
85
+ Returns:
86
+ pd.DataFrame: The DataFrame with an additional column for the normalized sizes.
48
87
  """
49
- df['normalized_'+col]=((df[col]-df[col].max())/(df[col]+df[col].max())+1) * coef + constant
88
+ df['normalized_' + col] = ((df[col] - df[col].max()) / (df[col] + df[col].max()) + 1) * coef + constant
50
89
  return df
51
90
 
52
- def generate_color_palette(lst, transparency=1):
91
+ def generate_color_palette(lst: list, transparency: float = 1) -> dict:
53
92
  """
54
- Function to generate a random color palette of RGBa codes
93
+ Generate a random color palette of RGBA codes.
94
+
95
+ Args:
96
+ lst (List[str]): List of color names or identifiers.
97
+ transparency (float, optional): Transparency value for RGBA colors (0 to 1). Defaults to 1.
98
+
99
+ Returns:
100
+ dict: Dictionary containing color names or identifiers as keys and corresponding RGBA codes as values.
55
101
  """
56
- color_palette = {color: 'rgba({}, {}, {}, {})'.format(
57
- random.randrange(0, 255),
58
- random.randrange(0, 255),
59
- random.randrange(0, 255),
60
- transparency
61
- ) for color in lst}
102
+ color_palette = {
103
+ color: 'rgba({}, {}, {}, {})'.format(
104
+ random.randrange(0, 255),
105
+ random.randrange(0, 255),
106
+ random.randrange(0, 255),
107
+ transparency
108
+ )
109
+ for color in lst
110
+ }
62
111
  return color_palette
63
112
 
64
- def generate_color_palette_with_colormap(lst, colormap = "viridis"):
113
+ def generate_color_palette_with_colormap(lst: list, colormap: str = "viridis") -> dict:
114
+ """
115
+ Generate a color palette with hexadecimal codes using a specified colormap.
116
+
117
+ Args:
118
+ lst (List[str]): List of color names or identifiers.
119
+ colormap (str, optional): Name of the colormap to use. Defaults to "viridis".
120
+
121
+ Returns:
122
+ Dict[str, str]: Dictionary containing color names or identifiers as keys and corresponding hexadecimal codes as values.
123
+ """
65
124
  num_colors = len(lst)
66
- # Generate some example data
125
+
126
+ # Generate example data
67
127
  data = np.linspace(0, 1, num_colors)
68
128
 
69
129
  # Choose the colormap
@@ -76,38 +136,69 @@ def generate_color_palette_with_colormap(lst, colormap = "viridis"):
76
136
  colors = cmap(norm(data))
77
137
 
78
138
  # Convert colors to hexadecimal codes
79
- hex_colors = {item : to_hex(colors[i]) for i, item in enumerate(lst)}
139
+ hex_colors = {item: to_hex(colors[i]) for i, item in enumerate(lst)}
80
140
 
81
141
  return hex_colors
82
142
 
83
- def generate_hexadecimal_color_palette(lst, add_transparency=False, transparency=0.5):
143
+ def generate_hexadecimal_color_palette(lst: list, add_transparency: bool = False, transparency: float = 0.5) -> dict:
84
144
  """
85
- Function to generate a random color palette with hexadecimal codes and transparency
145
+ Generate a random color palette with hexadecimal codes and optional transparency.
146
+
147
+ Args:
148
+ lst (List[str]): List of color names or identifiers.
149
+ add_transparency (bool, optional): Whether to add transparency to the colors. Defaults to False.
150
+ transparency (float, optional): Transparency value for the colors (0 to 1). Defaults to 0.5.
151
+
152
+ Returns:
153
+ Dict[str, str]: Dictionary containing color names or identifiers as keys and corresponding hexadecimal codes as values.
86
154
  """
87
155
  if add_transparency:
88
156
  alpha_hex = int(transparency * 255) # Convert transparency to integer (0-255 range)
89
- color_palette = {color: "#{:02x}{:02x}{:02x}{:02x}".format(
90
- random.randint(0, 255),
91
- random.randint(0, 255),
92
- random.randint(0, 255),
93
- alpha_hex
94
- ) for color in lst}
157
+ color_palette = {
158
+ color: "#{:02x}{:02x}{:02x}{:02x}".format(
159
+ random.randint(0, 255),
160
+ random.randint(0, 255),
161
+ random.randint(0, 255),
162
+ alpha_hex
163
+ )
164
+ for color in lst
165
+ }
95
166
  else:
96
- color_palette = {color: "#{:02x}{:02x}{:02x}".format(
97
- random.randint(0, 255),
98
- random.randint(0, 255),
99
- random.randint(0, 255)
100
- ) for color in lst}
167
+ color_palette = {
168
+ color: "#{:02x}{:02x}{:02x}".format(
169
+ random.randint(0, 255),
170
+ random.randint(0, 255),
171
+ random.randint(0, 255)
172
+ )
173
+ for color in lst
174
+ }
101
175
  return color_palette
102
176
 
103
- def generate_random_hexadecimal_color():
104
- return "#{:02x}{:02x}{:02x}".format(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
177
+ def generate_random_hexadecimal_color() -> str:
178
+ """
179
+ Generate a random hexadecimal color code.
105
180
 
106
- def wrap_text(txt, lenght=50):
181
+ Returns:
182
+ str: Hexadecimal color code.
107
183
  """
108
- Function to wrap text (for hover)
184
+ return "#{:02x}{:02x}{:02x}".format(
185
+ random.randint(0, 255),
186
+ random.randint(0, 255),
187
+ random.randint(0, 255)
188
+ )
189
+
190
+ def wrap_text(txt: str, length: int = 50) -> str:
109
191
  """
110
- txt = '<br>'.join(textwrap.wrap(str(txt), width=lenght))
192
+ Wrap text to a specified length.
193
+
194
+ Args:
195
+ txt (str): The text to wrap.
196
+ length (int, optional): The maximum length of each line. Defaults to 50.
197
+
198
+ Returns:
199
+ str: The wrapped text.
200
+ """
201
+ txt = '<br>'.join(textwrap.wrap(str(txt), width=length))
111
202
  return txt
112
203
 
113
204
  def get_convex_hull_coord(points: np.array, interpolate_curve: bool = True) -> tuple:
@@ -282,31 +373,45 @@ def get_convex_hull_coord(points: np.array, interpolate_curve: bool = True) -> t
282
373
 
283
374
  # return fig
284
375
 
285
- def create_scatter_plot(df, col_x, col_y, col_category, color_palette, col_color, col_size, col_text, title="Scatter Plot", x_axis_label="X-axis", y_axis_label="Y-axis", width=1000, height=1000, xaxis_range=None, yaxis_range=None,
286
- size_value =4, opacity=0.8, maxdisplayed=0, mode = "markers", textposition="bottom center", plot_bgcolor=None, paper_bgcolor=None, yaxis_showgrid = False, xaxis_showgrid = False, color="indianred", line_width=0.5, line_color="white", colorscale='Viridis', showscale=True, template="plotly"):
376
+ def create_scatter_plot(df: pd.DataFrame, col_x: str, col_y: str, col_category: str, color_palette: dict, col_color: str, col_size: str, col_text: str, col_legend: list = [], title: str = "Scatter Plot", x_axis_label: str = "X-axis", y_axis_label: str = "Y-axis", width: int = 1000, height: int = 1000, xaxis_range: list =None, yaxis_range: list =None, size_value: int = 4, opacity: float = 0.8, maxdisplayed: int = 0, mode: str = "markers", textposition: str = "bottom center", plot_bgcolor: str = None, paper_bgcolor: str = None, yaxis_showgrid: bool = False, xaxis_showgrid: bool = False, color: str = "indianred", line_width: float = 0.5, line_color: str = "white", colorscale: str = 'Viridis', showscale: bool = True, template: str = "plotly") -> go.Figure:
287
377
  """
288
- Create a scatter plot :
289
- - df contains all data : X / Y values, category for colorization, sizes and text for hover.
290
- - col_x : name of the column containing X values
291
- - col_y : name of the column containing Y values
292
- - col_category : name of the column for colorization
293
- - color_palette : a dict mapping category with color value
294
- - col_color : name of the column for color ==> to be used only for continuous scale
295
- - col_size : name of the column for dot sizes
296
- - col_text : name of the column containing text for legend on hover
297
- - title : graph title
298
- - x_axis_label : label for X
299
- - y_axis_label : label for Y
300
- - width / height : size of the graphe
301
- - xaxis_range / y_axis_range : range values for axis. None for auto values.
302
- - size_value = minimun size (or constant) for dots
303
- - opacity : dots transparency
304
- - maxdisplayed : maximum number of dots to display. 0 = infinite
305
- - plot_bgcolor : background color for plot
306
- - paper_bgcolor : background color for the area around the plot
307
- - color : color code for dots if col_category is None
308
- - line_width : width of dots contours
309
- - line_color : color of dots contours
378
+ Create a scatter plot.
379
+
380
+ Args:
381
+ df (pd.DataFrame): DataFrame containing all data.
382
+ col_x (str): Name of the column containing X values.
383
+ col_y (str): Name of the column containing Y values.
384
+ col_category (str): Name of the column for colorization.
385
+ color_palette (dict): A dictionary mapping category with color value.
386
+ col_color (str): Name of the column for color. Only used for continuous scale.
387
+ col_size (str): Name of the column for dot sizes.
388
+ col_text (str): Name of the column containing text for legend on hover.
389
+ col_legend (List[str], optional): List of column names for legend. Defaults to [].
390
+ title (str, optional): Graph title. Defaults to "Scatter Plot".
391
+ x_axis_label (str, optional): Label for X-axis. Defaults to "X-axis".
392
+ y_axis_label (str, optional): Label for Y-axis. Defaults to "Y-axis".
393
+ width (int, optional): Size of the graph. Defaults to 1000.
394
+ height (int, optional): Size of the graph. Defaults to 1000.
395
+ xaxis_range (list, optional): Range values for X-axis. Defaults to None.
396
+ yaxis_range (list, optional): Range values for Y-axis. Defaults to None.
397
+ size_value (int, optional): Minimum size (or constant) for dots. Defaults to 4.
398
+ opacity (float, optional): Dots transparency. Defaults to 0.8.
399
+ maxdisplayed (int, optional): Maximum number of dots to display. 0 = infinite. Defaults to 0.
400
+ mode (str, optional): Mode for the scatter plot. Defaults to "markers".
401
+ textposition (str, optional): Text position for hover. Defaults to "bottom center".
402
+ plot_bgcolor (str, optional): Background color for plot. Defaults to None.
403
+ paper_bgcolor (str, optional): Background color for the area around the plot. Defaults to None.
404
+ yaxis_showgrid (bool, optional): Whether to show grid on Y-axis. Defaults to False.
405
+ xaxis_showgrid (bool, optional): Whether to show grid on X-axis. Defaults to False.
406
+ color (str, optional): Color code for dots if col_category is None. Defaults to "indianred".
407
+ line_width (float, optional): Width of dots contours. Defaults to 0.5.
408
+ line_color (str, optional): Color of dots contours. Defaults to "white".
409
+ colorscale (str, optional): Color scale for continuous color mapping. Defaults to 'Viridis'.
410
+ showscale (bool, optional): Whether to show color scale. Defaults to True.
411
+ template (str, optional): Plotly template. Defaults to "plotly".
412
+
413
+ Returns:
414
+ go.Figure: Plotly scatter plot figure.
310
415
  """
311
416
 
312
417
  if line_color is None :
@@ -327,8 +432,9 @@ def create_scatter_plot(df, col_x, col_y, col_category, color_palette, col_color
327
432
  size = df[df[col_category] == category][col_size]
328
433
  hovertemplate += '<br><b>'+col_size+'</b>:'+size.astype(str)
329
434
 
330
- if col_text is not None:
331
- hovertemplate +='<br><b>'+col_text+'</b>:'+ df[df[col_category]==category][col_text].apply(wrap_text)
435
+ if len(col_legend)>0:
436
+ for c in col_legend:
437
+ hovertemplate +='<br><b>'+str(c)+'</b>:'+ df[df[col_category]==category][c].astype(str).apply(wrap_text)
332
438
 
333
439
  fig.add_trace(
334
440
  go.Scatter(
@@ -365,13 +471,16 @@ def create_scatter_plot(df, col_x, col_y, col_category, color_palette, col_color
365
471
  else :
366
472
  if color is None:
367
473
  color = generate_random_hexadecimal_color()
368
- if col_text is not None:
369
- hovertemplate +='<br><b>'+col_text+'</b>:'+ df[col_text].apply(wrap_text)
474
+ if len(col_legend)>0:
475
+ for c in col_legend:
476
+ hovertemplate +='<br><b>'+str(c)+'</b>:'+ df[c].astype(str).apply(wrap_text)
370
477
 
371
478
  fig = go.Figure( go.Scatter(
372
479
  x=df[col_x],
373
480
  y=df[col_y],
374
481
  mode=mode,
482
+ text = df[col_text],
483
+ textposition=textposition,
375
484
  marker=dict(color=color, #dots color
376
485
  size=size, #dots size
377
486
  opacity=opacity, #dots opacity
@@ -418,52 +527,83 @@ def create_scatter_plot(df, col_x, col_y, col_category, color_palette, col_color
418
527
  )
419
528
  return fig
420
529
 
421
- def add_annotations(fig, df, col_x, col_y, col_txt, width=1000, label_size_ratio=100, bordercolor = "#C7C7C7", arrowcolor = "SlateGray", bgcolor ="#FFFFFF", font_color = "SlateGray"):
422
- df[col_txt]=df[col_txt].fillna("").astype(str)
530
+ def add_annotations(fig: go.Figure, df: pd.DataFrame, col_x: str, col_y: str, col_txt: str, width: int = 1000, label_size_ratio: int = 100, bordercolor: str = "#C7C7C7", arrowcolor: str = "SlateGray", bgcolor: str = "#FFFFFF", font_color: str = "SlateGray") -> go.Figure:
531
+ """
532
+ Add annotations to a Plotly figure.
533
+
534
+ Args:
535
+ fig (go.Figure): Plotly figure object.
536
+ df (pd.DataFrame): DataFrame containing annotation data.
537
+ col_x (str): Name of the column containing X values.
538
+ col_y (str): Name of the column containing Y values.
539
+ col_txt (str): Name of the column containing text for annotations.
540
+ width (int, optional): Width of the figure. Defaults to 1000.
541
+ label_size_ratio (int, optional): Ratio of label size to figure width. Defaults to 100.
542
+ bordercolor (str, optional): Color of annotation borders. Defaults to "#C7C7C7".
543
+ arrowcolor (str, optional): Color of annotation arrows. Defaults to "SlateGray".
544
+ bgcolor (str, optional): Background color of annotations. Defaults to "#FFFFFF".
545
+ font_color (str, optional): Color of annotation text. Defaults to "SlateGray".
546
+
547
+ Returns:
548
+ go.Figure: Plotly figure object with annotations added.
549
+ """
550
+ df[col_txt] = df[col_txt].fillna("").astype(str)
551
+
423
552
  for i, row in df.iterrows():
424
- fig.add_annotation(x=row[col_x],
425
- y=row[col_y],
426
- text='<b>'+wrap_text(row[col_txt])+'</b>',
427
- showarrow=True,
428
- arrowhead=1,
429
- font=dict(
430
- family="Helvetica, Sans-serif",
431
- size=width / label_size_ratio,
432
- color=font_color
433
- ),
434
- bordercolor=bordercolor,
435
- borderwidth=width / 1000,
436
- borderpad=width / 500,
437
- bgcolor=bgcolor,
438
- opacity=1,
439
- arrowcolor=arrowcolor
440
- )
553
+ fig.add_annotation(
554
+ x=row[col_x],
555
+ y=row[col_y],
556
+ text='<b>'+wrap_text(row[col_txt])+'</b>',
557
+ showarrow=True,
558
+ arrowhead=1,
559
+ font=dict(
560
+ family="Helvetica, Sans-serif",
561
+ size=width / label_size_ratio,
562
+ color=font_color
563
+ ),
564
+ bordercolor=bordercolor,
565
+ borderwidth=width / 1000,
566
+ borderpad=width / 500,
567
+ bgcolor=bgcolor,
568
+ opacity=1,
569
+ arrowcolor=arrowcolor
570
+ )
441
571
 
442
572
  return fig
443
573
 
444
- def scatter3D(df, col_x, col_y, col_z, col_category, color_palette, col_size, col_text, title="3D Scatter Plot", x_axis_label="X-axis", y_axis_label="Y-axis", z_axis_label="Z-axis", width=1000, height=1000, xaxis_range=None, yaxis_range=None,
445
- zaxis_range=None, size_value =4, opacity=0.8, plot_bgcolor=None, paper_bgcolor=None, color="indianred", line_width=0.5, line_color="white", template = "plotly"):
574
+ def scatter3D(df: pd.DataFrame, col_x: str, col_y: str, col_z: str, col_category: str, color_palette: dict, col_size: str, col_text: str, title: str = "3D Scatter Plot", x_axis_label: str = "X-axis", y_axis_label: str = "Y-axis", z_axis_label: str = "Z-axis", width: int = 1000, height: int = 1000, xaxis_range: list = None, yaxis_range: list = None, zaxis_range: list = None, size_value: int = 4, opacity: float = 0.8, plot_bgcolor: str = None, paper_bgcolor: str = None, color: str = "indianred", line_width: float = 0.5, line_color: str = "white", template: str = "plotly") -> go.Figure:
446
575
  """
447
- Create a 3D scatter plot :
448
- - df contains all data : X / Y values, category for colorization, sizes and text for hover.
449
- - col_x : name of the column containing X values
450
- - col_y : name of the column containing Y values
451
- - col_z : name of the column containing Z values
452
- - col_category : name of the column for colorization
453
- - color_palette : a dict mapping category with color value
454
- - col_size : name of the column for dot sizes
455
- - col_text : name of the column containing text for legend on hover
456
- - title : graph title
457
- - x_axis_label / y_axis_label / z_axis_label : label for X, Y, Z axis
458
- - width / height : size of the graphe
459
- - xaxis_range / y_axis_range / z_axis_range : range values for axis. None for auto values.
460
- - size_value = minimun size (or constant) for dots
461
- - opacity : dots transparency
462
- - plot_bgcolor : background color for plot
463
- - paper_bgcolor : background color for the area around the plot
464
- - color : color code for dots if col_category is None
465
- - line_width : width of dots contours
466
- - line_color : color of dots contours
576
+ Create a 3D scatter plot.
577
+
578
+ Args:
579
+ df (pd.DataFrame): DataFrame containing all data.
580
+ col_x (str): Name of the column containing X values.
581
+ col_y (str): Name of the column containing Y values.
582
+ col_z (str): Name of the column containing Z values.
583
+ col_category (str): Name of the column for colorization.
584
+ color_palette (dict): A dictionary mapping categories with color values.
585
+ col_size (str): Name of the column for dot sizes.
586
+ col_text (str): Name of the column containing text for legend on hover.
587
+ title (str, optional): Graph title. Defaults to "3D Scatter Plot".
588
+ x_axis_label (str, optional): Label for X-axis. Defaults to "X-axis".
589
+ y_axis_label (str, optional): Label for Y-axis. Defaults to "Y-axis".
590
+ z_axis_label (str, optional): Label for Z-axis. Defaults to "Z-axis".
591
+ width (int, optional): Width of the graph. Defaults to 1000.
592
+ height (int, optional): Height of the graph. Defaults to 1000.
593
+ xaxis_range (list, optional): Range values for the X-axis. Defaults to None.
594
+ yaxis_range (list, optional): Range values for the Y-axis. Defaults to None.
595
+ zaxis_range (list, optional): Range values for the Z-axis. Defaults to None.
596
+ size_value (int, optional): Minimum size (or constant) for dots. Defaults to 4.
597
+ opacity (float, optional): Dots transparency. Defaults to 0.8.
598
+ plot_bgcolor (str, optional): Background color for the plot. Defaults to None.
599
+ paper_bgcolor (str, optional): Background color for the area around the plot. Defaults to None.
600
+ color (str, optional): Color code for dots if col_category is None. Defaults to "indianred".
601
+ line_width (float, optional): Width of dots contours. Defaults to 0.5.
602
+ line_color (str, optional): Color of dots contours. Defaults to "white".
603
+ template (str, optional): Plotly template. Defaults to "plotly".
604
+
605
+ Returns:
606
+ go.Figure: Plotly figure object.
467
607
  """
468
608
  fig=go.Figure()
469
609
  if col_category is not None:
@@ -582,57 +722,71 @@ def scatter3D(df, col_x, col_y, col_z, col_category, color_palette, col_size, co
582
722
 
583
723
  return fig
584
724
 
585
- def fig_bar_trend(x, bar_measure, trend_measure, x_name="X", bar_name ="metric1", trend_name = "metric2", marker_color='lightpink', line_color='indianred', title_text="Couverture & Résonance", width=1500, height=700, xaxis_tickangle=0, opacity=0.8, plot_bgcolor=None, paper_bgcolor=None, template = "plotly"):
725
+
726
+ def fig_bar_trend(df: pd.DataFrame, col_x: str, bar_measure: str, trend_measure: str, x_name: str = "X", bar_name: str = "metric1", trend_name: str = "metric2", marker_color: str = 'lightpink', line_color: str = 'indianred', title_text: str = "Couverture & Résonance", width: int = 1500, height: int = 700, xaxis_tickangle: int = 0, opacity: float = 0.8, plot_bgcolor: str = None, paper_bgcolor: str = None, template: str = "plotly") -> go.Figure:
586
727
  """
587
- Display a graph that combine bar and trend chart to compare 2 metrics :
588
- - x = x axis data
589
- - bar_measure = data represented as bar diagram
590
- - trend_measure = data represented as trend line
591
- - x_name / bar_name / trend_name : axis labels
592
- - marker_color = color code for bars
593
- - line_color = color code for trend line
594
- - title_text = graph title
595
- - width / height = size of plot
596
- - xaxis_tickangle = angle for x ticks
597
- - opacity = opacity of bars
728
+ Display a graph that combines bar and trend chart to compare 2 metrics.
729
+
730
+ Args:
731
+ df (pd.DataFrame): DataFrame containing all data.
732
+ col_x (str): Name of the column containing X values.
733
+ bar_measure (str): Data represented as bar diagram.
734
+ trend_measure (str): Data represented as trend line.
735
+ x_name (str, optional): Label for X-axis. Defaults to "X".
736
+ bar_name (str, optional): Label for the bar measure. Defaults to "metric1".
737
+ trend_name (str, optional): Label for the trend measure. Defaults to "metric2".
738
+ marker_color (str, optional): Color code for bars. Defaults to 'lightpink'.
739
+ line_color (str, optional): Color code for trend line. Defaults to 'indianred'.
740
+ title_text (str, optional): Graph title. Defaults to "Couverture & Résonance".
741
+ width (int, optional): Width of the graph. Defaults to 1500.
742
+ height (int, optional): Height of the graph. Defaults to 700.
743
+ xaxis_tickangle (int, optional): Angle for x ticks. Defaults to 0.
744
+ opacity (float, optional): Opacity of bars. Defaults to 0.8.
745
+ plot_bgcolor (str, optional): Background color for the plot. Defaults to None.
746
+ paper_bgcolor (str, optional): Background color for the area around the plot. Defaults to None.
747
+ template (str, optional): Plotly template. Defaults to "plotly".
748
+
749
+ Returns:
750
+ go.Figure: Plotly figure object.
598
751
  """
599
752
 
600
- nk = np.empty(shape=(len(x), 3, 1), dtype="object")
601
- nk[:, 0] = np.array(x.apply(lambda txt: '<br>'.join(textwrap.wrap(str(txt), width=50)))).reshape(-1, 1)
602
- nk[:, 1] = np.array(bar_measure).reshape(-1, 1)
603
- nk[:, 2] = np.array(trend_measure).reshape(-1, 1)
753
+ # nk = np.empty(shape=(len(x), 3, 1), dtype="object")
754
+ # nk[:, 0] = np.array(x.apply(lambda txt: '<br>'.join(textwrap.wrap(str(txt), width=50)))).reshape(-1, 1)
755
+ # nk[:, 1] = np.array(bar_measure).reshape(-1, 1)
756
+ # nk[:, 2] = np.array(trend_measure).reshape(-1, 1)
604
757
 
605
758
  fig = make_subplots(specs=[[{"secondary_y": True}]])
606
759
 
607
760
  fig.add_trace(
608
761
  go.Scatter(
609
- x=x,
610
- y=trend_measure,
762
+ x=df[col_x].apply(wrap_text),
763
+ y=df[trend_measure],
611
764
  name=trend_name,
612
765
  mode='lines',
613
766
  line_color=line_color,
614
767
  line_width=4,
615
768
  textfont=dict(size=8),
616
- customdata=nk,
617
- hovertemplate=("<br>"+x_name+" :%{customdata[0]}<br>"+bar_name+" - %{customdata[1]}<br>"+trend_name+":%{customdata[2]}"+"<extra></extra>"),
769
+ # customdata=nk,
770
+ hovertemplate=("<br>"+x_name+" :"+df[col_x].astype(str)+"<br>"+bar_name+" - "+df[bar_measure].astype(str)+"<br>"+trend_name+" : "+df[trend_measure].astype(str)+"<extra></extra>"),
618
771
  ),
619
772
  secondary_y=True,
620
773
  )
621
774
  # Add traces
622
775
  fig.add_trace(
623
776
  go.Bar(
624
- x=x,
625
- y = bar_measure,
777
+ x=df[col_x].apply(wrap_text),
778
+ y = df[bar_measure],
626
779
  name=bar_name,
627
780
  marker_color=marker_color,
628
781
  opacity=opacity,
629
- hovertemplate=("<br>"+x_name+" :%{customdata[0]}<br>"+bar_name+" - %{customdata[1]}<br>"+trend_name+":%{customdata[2]}"+"<extra></extra>"),
782
+ # customdata=nk,
783
+ hovertemplate=("<br>"+x_name+" :"+df[col_x].astype(str)+"<br>"+bar_name+" - "+df[bar_measure].astype(str)+"<br>"+trend_name+" : "+df[trend_measure].astype(str)+"<extra></extra>"),
630
784
  ),
631
785
  secondary_y=False,
632
786
 
633
787
  )
634
- first_axis_range=[-0.5,bar_measure.max()*1.01]
635
- secondary_axis_range=[-0.5,trend_measure.max()*1.01]
788
+ first_axis_range=[-0.5,df[bar_measure].max()*1.01]
789
+ secondary_axis_range=[-0.5,df[trend_measure].max()*1.01]
636
790
 
637
791
  # Add figure title
638
792
  fig.update_layout(
@@ -668,54 +822,150 @@ def fig_bar_trend(x, bar_measure, trend_measure, x_name="X", bar_name ="metric1"
668
822
  return fig
669
823
 
670
824
 
671
- def density_map(df_posts,
672
- df_dots,
673
- df_topics,
674
- col_topic,
675
- col_engagement,
676
- col_text,
677
- col_text_dots,
678
- colorscale = "Portland",
679
- marker_color = "#ff7f0e",
680
- arrow_color = "#ff7f0e",
681
- width=1000,
682
- height=1000,
683
- show_text=True,
684
- show_topics=True,
685
- show_halo=False,
686
- show_histogram =True,
687
- label_size_ratio=100,
688
- n_words = 3,
689
- title_text = "Clustering",
690
- max_dots_displayed=0,
691
- max_topics_displayed=20,
692
- opacity=0.3,
693
- plot_bgcolor=None,
694
- paper_bgcolor=None,
695
- template = "plotly"):
825
+ # def fig_bar_trend(x, bar_measure, trend_measure, x_name="X", bar_name ="metric1", trend_name = "metric2", marker_color='lightpink', line_color='indianred', title_text="Couverture & Résonance", width=1500, height=700, xaxis_tickangle=0, opacity=0.8, plot_bgcolor=None, paper_bgcolor=None, template = "plotly"):
826
+ # """
827
+ # Display a graph that combine bar and trend chart to compare 2 metrics :
828
+ # - x = x axis data
829
+ # - bar_measure = data represented as bar diagram
830
+ # - trend_measure = data represented as trend line
831
+ # - x_name / bar_name / trend_name : axis labels
832
+ # - marker_color = color code for bars
833
+ # - line_color = color code for trend line
834
+ # - title_text = graph title
835
+ # - width / height = size of plot
836
+ # - xaxis_tickangle = angle for x ticks
837
+ # - opacity = opacity of bars
838
+ # """
839
+
840
+ # nk = np.empty(shape=(len(x), 3, 1), dtype="object")
841
+ # nk[:, 0] = np.array(x.apply(lambda txt: '<br>'.join(textwrap.wrap(str(txt), width=50)))).reshape(-1, 1)
842
+ # nk[:, 1] = np.array(bar_measure).reshape(-1, 1)
843
+ # nk[:, 2] = np.array(trend_measure).reshape(-1, 1)
844
+
845
+ # fig = make_subplots(specs=[[{"secondary_y": True}]])
846
+
847
+ # fig.add_trace(
848
+ # go.Scatter(
849
+ # x=x,
850
+ # y=trend_measure,
851
+ # name=trend_name,
852
+ # mode='lines',
853
+ # line_color=line_color,
854
+ # line_width=4,
855
+ # textfont=dict(size=8),
856
+ # customdata=nk,
857
+ # hovertemplate=("<br>"+x_name+" :%{customdata[0]}<br>"+bar_name+" - %{customdata[1]}<br>"+trend_name+":%{customdata[2]}"+"<extra></extra>"),
858
+ # ),
859
+ # secondary_y=True,
860
+ # )
861
+ # # Add traces
862
+ # fig.add_trace(
863
+ # go.Bar(
864
+ # x=x,
865
+ # y = bar_measure,
866
+ # name=bar_name,
867
+ # marker_color=marker_color,
868
+ # opacity=opacity,
869
+ # hovertemplate=("<br>"+x_name+" :%{customdata[0]}<br>"+bar_name+" - %{customdata[1]}<br>"+trend_name+":%{customdata[2]}"+"<extra></extra>"),
870
+ # ),
871
+ # secondary_y=False,
872
+
873
+ # )
874
+ # first_axis_range=[-0.5,bar_measure.max()*1.01]
875
+ # secondary_axis_range=[-0.5,trend_measure.max()*1.01]
876
+
877
+ # # Add figure title
878
+ # fig.update_layout(
879
+
880
+ # title_text=title_text,
881
+ # showlegend=True,
882
+ # width = width,
883
+ # height= height,
884
+ # xaxis_tickangle=xaxis_tickangle,
885
+ # xaxis_showline=False,
886
+ # xaxis_showgrid=False,
887
+ # yaxis_showline=False,
888
+ # yaxis_showgrid=False,
889
+ # font_family="Segoe UI Semibold",
890
+ # template=template,
891
+ # plot_bgcolor=plot_bgcolor, #background color (plot)
892
+ # paper_bgcolor=paper_bgcolor, #background color (around plot)
893
+ # margin=dict(
894
+ # t=width / 15,
895
+ # b=width / 20,
896
+ # r=width / 20,
897
+ # l=width / 20,
898
+ # ),
899
+ # )
900
+
901
+ # # # Set x-axis title
902
+ # fig.update_xaxes(title_text=x_name)
903
+
904
+ # # Set y-axes titles
905
+ # fig.update_yaxes(title_text=bar_name, range = first_axis_range, secondary_y=False)
906
+ # fig.update_yaxes(title_text=trend_name, range = secondary_axis_range, secondary_y=True)
907
+
908
+ # return fig
909
+
910
+
911
+ def density_map(df_posts: pd.DataFrame,
912
+ df_dots: pd.DataFrame,
913
+ df_topics: pd.DataFrame,
914
+ col_topic: str,
915
+ col_engagement: str,
916
+ col_text: str,
917
+ col_text_dots: str,
918
+ colorscale: str = "Portland",
919
+ marker_color: str = "#ff7f0e",
920
+ arrow_color: str = "#ff7f0e",
921
+ width: int = 1000,
922
+ height: int = 1000,
923
+ show_text: bool = True,
924
+ show_topics: bool = True,
925
+ show_halo: bool = False,
926
+ show_histogram: bool = True,
927
+ label_size_ratio: int = 100,
928
+ n_words: int = 3,
929
+ title_text: str = "Clustering",
930
+ max_dots_displayed: int = 0,
931
+ max_topics_displayed: int = 20,
932
+ opacity: float = 0.3,
933
+ plot_bgcolor: str = None,
934
+ paper_bgcolor: str = None,
935
+ template: str = "plotly") -> go.Figure:
936
+ """
937
+ Display a 2D histogram with contours and scattered dots.
938
+
939
+ Args:
940
+ df_posts (pd.DataFrame): DataFrame containing all data points to plot (corresponding to contours).
941
+ df_dots (pd.DataFrame): DataFrame containing a sample of points to plot as dots.
942
+ df_topics (pd.DataFrame): DataFrame containing topics representations.
943
+ col_topic (str): Column name corresponding to category.
944
+ col_engagement (str): Column name corresponding to a metric.
945
+ col_text (str): Column name corresponding to a text separated by |.
946
+ col_text_dots (str): Column name corresponding to the text for dots.
947
+ colorscale (str, optional): Possible values are https://plotly.com/python/builtin-colorscales/. Defaults to "Portland".
948
+ marker_color (str, optional): Dots color value. Defaults to "#ff7f0e".
949
+ arrow_color (str, optional): Arrow pointing to topic centroid color value. Defaults to "#ff7f0e".
950
+ width (int, optional): Width of the plot. Defaults to 1000.
951
+ height (int, optional): Height of the plot. Defaults to 1000.
952
+ show_text (bool, optional): Show dots. Defaults to True.
953
+ show_topics (bool, optional): Show topics labels. Defaults to True.
954
+ show_halo (bool, optional): Show circles around topics. Defaults to False.
955
+ show_histogram (bool, optional): Show 2D histogram with contours. Defaults to True.
956
+ label_size_ratio (int, optional): Influence the size of the topics labels. Higher value means smaller topics labels. Defaults to 100.
957
+ n_words (int, optional): Number of words to display. Defaults to 3.
958
+ title_text (str, optional): Graph title. Defaults to "Clustering".
959
+ max_dots_displayed (int, optional): Number of dots to display. Defaults to 0.
960
+ max_topics_displayed (int, optional): Number of topics to display. Defaults to 20.
961
+ opacity (float, optional): Opacity of dots. Defaults to 0.3.
962
+ plot_bgcolor (str, optional): Background color for the plot. Defaults to None.
963
+ paper_bgcolor (str, optional): Background color for the area around the plot. Defaults to None.
964
+ template (str, optional): Plotly template. Defaults to "plotly".
965
+
966
+ Returns:
967
+ go.Figure: Plotly figure object.
696
968
  """
697
- Display a 2Dhistogram with contours :
698
- - df_posts : dataframe containing all data points to plot (corresponding to contours)
699
- - df_dots : dataframe containing a sample of points to plot as dots
700
- - df_topics : dataframe containing topics representations
701
- - col_topic : column name corresponding to category
702
- - col_engagement : column name corresponding to a metric
703
- - col_text : column name corresponding to a text separated by |
704
- - colorscale : possible values are https://plotly.com/python/builtin-colorscales/
705
- - marker_color : dots color value
706
- - arrow_color : arrow pointing to topic centroid color value
707
- - width / height = size of plot
708
- - show_text : show dots
709
- - show_topic : show topics labels
710
- - show_halo : show circles around topics
711
- - show_histogram : show 2Dhistogram with contours
712
- - label_size_ratio : influence the size of the topics labels, higher value means smaller topics labels
713
- - n_words : number of words to display (words should be separated by | in col_text)
714
- - title_text = graph title
715
- - max_dots_displayed : number of dots to display,
716
- - max_topics_displayed : number of topics to display
717
- - opacity : opacity of dots
718
- """
719
969
 
720
970
  # df_topics = df_distrib_sample.copy()
721
971
  df_topics= df_topics.dropna(subset=col_text)
@@ -834,9 +1084,25 @@ def density_map(df_posts,
834
1084
 
835
1085
 
836
1086
 
837
- def topic_heatmap(df, col_x = "topic_x", col_y = "topic_y", col_topic = "soft_topic", color_continuous_scale='GnBu', title ="Similarity between topics"):
1087
+ def topic_heatmap(df: pd.DataFrame,
1088
+ col_x: str = "topic_x",
1089
+ col_y: str = "topic_y",
1090
+ col_topic: str = "soft_topic",
1091
+ color_continuous_scale: str = 'GnBu',
1092
+ title: str = "Similarity between topics") -> go.Figure:
838
1093
  """
839
-
1094
+ Display a heatmap representing the similarity between topics.
1095
+
1096
+ Args:
1097
+ df (pd.DataFrame): DataFrame containing the topic data.
1098
+ col_x (str, optional): Column name for x-axis coordinates. Defaults to "topic_x".
1099
+ col_y (str, optional): Column name for y-axis coordinates. Defaults to "topic_y".
1100
+ col_topic (str, optional): Column name for the topic labels. Defaults to "soft_topic".
1101
+ color_continuous_scale (str, optional): Plotly color scale. Defaults to 'GnBu'.
1102
+ title (str, optional): Title of the heatmap. Defaults to "Similarity between topics".
1103
+
1104
+ Returns:
1105
+ go.Figure: Plotly figure object representing the heatmap.
840
1106
  """
841
1107
 
842
1108
  distance_matrix = cosine_similarity(np.array(df[[col_x,col_y]]))
@@ -871,7 +1137,34 @@ def topic_heatmap(df, col_x = "topic_x", col_y = "topic_y", col_topic = "soft_to
871
1137
  fig.update_layout(legend_title_text='Trend')
872
1138
  return fig
873
1139
 
874
- def generate_wordcloud(df, col_word, col_metric, width=3000, height=1500, dpi=300, background_color='white', font_path = "font/SEGUIEMJ.TTF", colormap="Viridis", show=False):
1140
+ def generate_wordcloud(df: pd.DataFrame,
1141
+ col_word: str,
1142
+ col_metric: str,
1143
+ width: int = 3000,
1144
+ height: int = 1500,
1145
+ dpi: int = 300,
1146
+ background_color: str = 'white',
1147
+ font_path: str = "font/SEGUIEMJ.TTF",
1148
+ colormap: str = "Viridis",
1149
+ show: bool = False) -> WordCloud:
1150
+ """
1151
+ Generate a word cloud from a DataFrame.
1152
+
1153
+ Args:
1154
+ df (pd.DataFrame): DataFrame containing word frequency data.
1155
+ col_word (str): Column name containing words.
1156
+ col_metric (str): Column name containing frequency metrics for each word.
1157
+ width (int, optional): Width of the word cloud image. Defaults to 3000.
1158
+ height (int, optional): Height of the word cloud image. Defaults to 1500.
1159
+ dpi (int, optional): Dots per inch for image resolution. Defaults to 300.
1160
+ background_color (str, optional): Background color of the word cloud image. Defaults to 'white'.
1161
+ font_path (str, optional): Path to the font file to be used in the word cloud. Defaults to "font/SEGUIEMJ.TTF".
1162
+ colormap (str, optional): Colormap for the word cloud image. Defaults to "Viridis".
1163
+ show (bool, optional): Whether to display the word cloud image. Defaults to False.
1164
+
1165
+ Returns:
1166
+ WordCloud: WordCloud object representing the generated word cloud.
1167
+ """
875
1168
 
876
1169
  top_n_words={row[col_word]:row[col_metric] for i,row in df.iterrows()}
877
1170
 
@@ -882,12 +1175,36 @@ def generate_wordcloud(df, col_word, col_metric, width=3000, height=1500, dpi=30
882
1175
  plt.imshow(wordcloud, interpolation='bilinear')
883
1176
  plt.axis('off')
884
1177
  plt.show()
885
-
886
1178
  return wordcloud
887
1179
 
1180
+ def create_radar(df: pd.DataFrame,
1181
+ col_topic: str,
1182
+ col_metrics: list,
1183
+ title: str = "Radar",
1184
+ opacity: float = 0.6,
1185
+ width: int = 1000,
1186
+ height: int = 1000,
1187
+ template: str = "ggplot2",
1188
+ plot_bgcolor: str = None,
1189
+ paper_bgcolor: str = None) -> go.Figure:
1190
+ """
1191
+ Create a radar chart.
888
1192
 
1193
+ Args:
1194
+ df (pd.DataFrame): DataFrame containing data for radar chart.
1195
+ col_topic (str): Column name containing topics.
1196
+ col_metrics (List[str]): List of column names containing metric values.
1197
+ title (str, optional): Title of the radar chart. Defaults to "Radar".
1198
+ opacity (float, optional): Opacity of radar area. Defaults to 0.6.
1199
+ width (int, optional): Width of the radar chart. Defaults to 1000.
1200
+ height (int, optional): Height of the radar chart. Defaults to 1000.
1201
+ template (str, optional): Plotly template to use. Defaults to "ggplot2".
1202
+ plot_bgcolor (Optional[str], optional): Background color of the plot. Defaults to None.
1203
+ paper_bgcolor (Optional[str], optional): Background color of the paper. Defaults to None.
889
1204
 
890
- def create_radar(df, col_topic, col_metrics, title="Radar", opacity=0.6, width = 1000, height= 1000, template = "ggplot2" , plot_bgcolor=None, paper_bgcolor=None):
1205
+ Returns:
1206
+ go.Figure: Plotly Figure object representing the radar chart.
1207
+ """
891
1208
 
892
1209
  df = df[[col_topic] + col_metrics]
893
1210
  col_metrics.append(col_metrics[0])
@@ -934,12 +1251,54 @@ def create_radar(df, col_topic, col_metrics, title="Radar", opacity=0.6, width =
934
1251
  template=template,
935
1252
  margin=dict(l=100, r=100, t=100, b=100)
936
1253
  )
1254
+ return fig
937
1255
 
1256
+ def bar_subplots(df: pd.DataFrame,
1257
+ col_x: str,
1258
+ col_y: str,
1259
+ col_cat: str,
1260
+ color_palette: dict = None,
1261
+ n_cols: int = 4,
1262
+ n_top_words: int = 20,
1263
+ horizontal_spacing: float = 0.2,
1264
+ vertical_spacing: float = 0.08,
1265
+ textposition: str = None,
1266
+ color: str = None,
1267
+ title: str = "Top words per topic",
1268
+ template: str = "plotly",
1269
+ bargap: float = 0.4,
1270
+ width: int = 500,
1271
+ height: int = 35,
1272
+ plot_bgcolor: str = None,
1273
+ paper_bgcolor: str = None,
1274
+ showlegend: bool = True) -> go.Figure:
1275
+ """
1276
+ Create subplots of horizontal bar charts.
938
1277
 
939
- return fig
1278
+ Args:
1279
+ df (pd.DataFrame): DataFrame containing data for bar charts.
1280
+ col_x (str): Name of the column containing x-axis values.
1281
+ col_y (str): Name of the column containing y-axis values.
1282
+ col_cat (str): Name of the column containing categories.
1283
+ color_palette (Optional[Dict[str, str]], optional): Dictionary mapping categories to colors. Defaults to None.
1284
+ n_cols (int, optional): Number of columns in the subplot grid. Defaults to 4.
1285
+ n_top_words (int, optional): Number of top words to display in each bar chart. Defaults to 20.
1286
+ horizontal_spacing (float, optional): Spacing between subplots horizontally. Defaults to 0.2.
1287
+ vertical_spacing (float, optional): Spacing between subplots vertically. Defaults to 0.08.
1288
+ textposition (Optional[str], optional): Position of the text relative to the bars ('inside', 'outside', or None). Defaults to None.
1289
+ color (Optional[str], optional): Color of the bars. Defaults to None.
1290
+ title (str, optional): Title of the subplot. Defaults to "Top words per topic".
1291
+ template (str, optional): Plotly template to use. Defaults to "plotly".
1292
+ bargap (float, optional): Space between bars in the same cluster. Defaults to 0.4.
1293
+ width (int, optional): Width of each subplot. Defaults to 500.
1294
+ height (int, optional): Height of each bar in the subplot. Defaults to 35.
1295
+ plot_bgcolor (Optional[str], optional): Background color of the plot. Defaults to None.
1296
+ paper_bgcolor (Optional[str], optional): Background color of the paper. Defaults to None.
1297
+ showlegend (bool, optional): Whether to display the legend. Defaults to True.
940
1298
 
941
- def bar_subplots(df, col_x, col_y, col_cat, color_palette, n_cols=4, n_top_words = 20, horizontal_spacing = 0.2, vertical_spacing = 0.08, textposition=None, color = None, title = "Top words per topic", template = "plotly", bargap = 0.4, width = 500, height = 35, plot_bgcolor=None, paper_bgcolor=None, showlegend = True):
942
-
1299
+ Returns:
1300
+ go.Figure: Plotly Figure object representing the subplots of horizontal bar charts.
1301
+ """
943
1302
  categories = df[col_cat].unique()
944
1303
 
945
1304
  # user define a number of columns, we compute the number of rows requires
@@ -947,16 +1306,16 @@ def bar_subplots(df, col_x, col_y, col_cat, color_palette, n_cols=4, n_top_words
947
1306
 
948
1307
  # fine tune parameter according to the text position provided
949
1308
  if textposition == 'inside':
950
- horizontal_spacing = (horizontal_spacing / n_rows)/2
1309
+ horizontal_spacing = (horizontal_spacing / n_cols)/2
951
1310
  else:
952
- horizontal_spacing = (horizontal_spacing / n_rows)
1311
+ horizontal_spacing = (horizontal_spacing / n_cols)
953
1312
 
954
1313
  # create subplots
955
1314
  fig = make_subplots(
956
1315
  rows = n_rows, # number of rows
957
1316
  cols = n_cols, # number of columns
958
1317
  subplot_titles = list(categories), # title for each subplot
959
- vertical_spacing = vertical_spacing / n_cols, # space between subplots
1318
+ vertical_spacing = vertical_spacing / n_rows, # space between subplots
960
1319
  horizontal_spacing = horizontal_spacing # space between subplots
961
1320
  )
962
1321
 
@@ -1034,14 +1393,48 @@ def bar_subplots(df, col_x, col_y, col_cat, color_palette, n_cols=4, n_top_words
1034
1393
  )
1035
1394
  return fig
1036
1395
 
1037
- def pie_subplots(df, col_x, col_y, col_cat, col_color, n_cols=4, horizontal_spacing = 0.2, vertical_spacing = 0.08, title = "Top words per topic", template = "plotly", width = 500, height = 150, plot_bgcolor=None, paper_bgcolor=None, showlegend = True):
1038
-
1396
+ def pie_subplots(df: pd.DataFrame,
1397
+ col_x: str,
1398
+ col_y: str,
1399
+ col_cat: str,
1400
+ col_color: str,
1401
+ n_cols: int = 4,
1402
+ horizontal_spacing: float = 0.2,
1403
+ vertical_spacing: float = 0.08,
1404
+ title: str = "Top words per topic",
1405
+ template: str = "plotly",
1406
+ width: int = 500,
1407
+ height: int = 150,
1408
+ plot_bgcolor: str = None,
1409
+ paper_bgcolor: str = None,
1410
+ showlegend: bool = True) -> go.Figure:
1411
+ """
1412
+ Create subplots of pie charts.
1413
+
1414
+ Args:
1415
+ df (pd.DataFrame): DataFrame containing data for pie charts.
1416
+ col_x (str): Name of the column containing labels.
1417
+ col_y (str): Name of the column containing values.
1418
+ col_cat (str): Name of the column containing categories.
1419
+ col_color (str): Name of the column containing colors.
1420
+ n_cols (int, optional): Number of columns in the subplot grid. Defaults to 4.
1421
+ horizontal_spacing (float, optional): Spacing between subplots horizontally. Defaults to 0.2.
1422
+ vertical_spacing (float, optional): Spacing between subplots vertically. Defaults to 0.08.
1423
+ title (str, optional): Title of the subplot. Defaults to "Top words per topic".
1424
+ template (str, optional): Plotly template to use. Defaults to "plotly".
1425
+ width (int, optional): Width of each subplot. Defaults to 500.
1426
+ height (int, optional): Height of each subplot. Defaults to 150.
1427
+ plot_bgcolor (Optional[str], optional): Background color of the plot. Defaults to None.
1428
+ paper_bgcolor (Optional[str], optional): Background color of the paper. Defaults to None.
1429
+ showlegend (bool, optional): Whether to display the legend. Defaults to True.
1430
+
1431
+ Returns:
1432
+ go.Figure: Plotly Figure object representing the subplots of pie charts.
1433
+ """
1039
1434
  categories = df[col_cat].unique()
1040
1435
 
1041
1436
  # user define a number of columns, we compute the number of rows requires
1042
1437
  n_rows = math.ceil(len(categories) / n_cols)
1043
-
1044
- horizontal_spacing = (horizontal_spacing / n_rows)
1045
1438
 
1046
1439
  specs = [[{'type':'domain'}] * n_cols] * n_rows
1047
1440
  # create subplots
@@ -1049,8 +1442,8 @@ def pie_subplots(df, col_x, col_y, col_cat, col_color, n_cols=4, horizontal_spac
1049
1442
  rows=n_rows,
1050
1443
  cols=n_cols,
1051
1444
  subplot_titles=list(categories),
1052
- horizontal_spacing=horizontal_spacing,
1053
- vertical_spacing=vertical_spacing,
1445
+ horizontal_spacing=horizontal_spacing / n_cols,
1446
+ vertical_spacing=vertical_spacing / n_rows,
1054
1447
  specs=specs
1055
1448
  )
1056
1449
 
@@ -1103,8 +1496,44 @@ def pie_subplots(df, col_x, col_y, col_cat, col_color, n_cols=4, horizontal_spac
1103
1496
  return fig
1104
1497
 
1105
1498
 
1106
- def horizontal_stacked_bars(df, col_x, col_y, col_percentage, col_cat, col_color, title_text = "Sentiment per topic", width=1200, height=1200, xaxis_tickangle=0, horizontal_spacing = 0.2, vertical_spacing = 0.08, plot_bgcolor=None, paper_bgcolor=None, template = "plotly"):
1499
+ def horizontal_stacked_bars(df: pd.DataFrame,
1500
+ col_x: str,
1501
+ col_y: str,
1502
+ col_percentage: str,
1503
+ col_cat: str,
1504
+ col_color: str,
1505
+ title_text: str = "Sentiment per topic",
1506
+ width: int = 1200,
1507
+ height: int = 1200,
1508
+ xaxis_tickangle: int = 0,
1509
+ horizontal_spacing: float = 0,
1510
+ vertical_spacing: float = 0.08,
1511
+ plot_bgcolor: str = None,
1512
+ paper_bgcolor: str = None,
1513
+ template: str = "plotly") -> go.Figure:
1514
+ """
1515
+ Create horizontal stacked bar plots.
1107
1516
 
1517
+ Args:
1518
+ df (pd.DataFrame): DataFrame containing data for the bar plots.
1519
+ col_x (str): Name of the column containing x-axis values.
1520
+ col_y (str): Name of the column containing y-axis values.
1521
+ col_percentage (str): Name of the column containing percentage values.
1522
+ col_cat (str): Name of the column containing categories.
1523
+ col_color (str): Name of the column containing colors.
1524
+ title_text (str, optional): Title of the plot. Defaults to "Sentiment per topic".
1525
+ width (int, optional): Width of the plot. Defaults to 1200.
1526
+ height (int, optional): Height of the plot. Defaults to 1200.
1527
+ xaxis_tickangle (int, optional): Angle for x-axis ticks. Defaults to 0.
1528
+ horizontal_spacing (float, optional): Spacing between subplots horizontally. Defaults to 0.
1529
+ vertical_spacing (float, optional): Spacing between subplots vertically. Defaults to 0.08.
1530
+ plot_bgcolor (Optional[str], optional): Background color of the plot. Defaults to None.
1531
+ paper_bgcolor (Optional[str], optional): Background color of the paper. Defaults to None.
1532
+ template (str, optional): Plotly template to use. Defaults to "plotly".
1533
+
1534
+ Returns:
1535
+ go.Figure: Plotly Figure object representing the horizontal stacked bar plots.
1536
+ """
1108
1537
  categories = df[col_cat].unique()
1109
1538
 
1110
1539
  n_cols=2
@@ -1112,8 +1541,8 @@ def horizontal_stacked_bars(df, col_x, col_y, col_percentage, col_cat, col_color
1112
1541
  rows = 1, # number of rows
1113
1542
  cols = 2, # number of columns
1114
1543
  # subplot_titles = list(categories), # title for each subplot
1115
- vertical_spacing = vertical_spacing / n_cols, # space between subplots
1116
- horizontal_spacing = 0 # space between subplots
1544
+ vertical_spacing = vertical_spacing, # space between subplots
1545
+ horizontal_spacing = horizontal_spacing / n_cols # space between subplots
1117
1546
  )
1118
1547
 
1119
1548
  for cat in categories:
@@ -1181,8 +1610,44 @@ def horizontal_stacked_bars(df, col_x, col_y, col_percentage, col_cat, col_color
1181
1610
 
1182
1611
  return fig
1183
1612
 
1184
- def bar_trend_per_day(df, col_date, col_metric1, col_metric2, xaxis_title = "Date", y1_axis_title = "Verbatims", y2_axis_title = "Engagements", title_text = "Trend - couverture & résonance", width = 1500, height = 700, marker_color = "indianred", line_color = "#273746", plot_bgcolor=None, paper_bgcolor=None, template = "plotly"):
1613
+ def bar_trend_per_day(df: pd.DataFrame,
1614
+ col_date: str,
1615
+ col_metric1: str,
1616
+ col_metric2: str,
1617
+ xaxis_title: str = "Date",
1618
+ y1_axis_title: str = "Verbatims",
1619
+ y2_axis_title: str = "Engagements",
1620
+ title_text: str = "Trend - couverture & résonance",
1621
+ width: int = 1500,
1622
+ height: int = 700,
1623
+ marker_color: str = "indianred",
1624
+ line_color: str = "#273746",
1625
+ plot_bgcolor: str = None,
1626
+ paper_bgcolor: str = None,
1627
+ template: str = "plotly") -> go.Figure:
1628
+ """
1629
+ Creates a Plotly stacked bar chart with a secondary line plot for two metrics over time.
1630
+
1631
+ Parameters:
1632
+ - df (pd.DataFrame): The DataFrame containing the data.
1633
+ - col_date (str): The name of the column containing dates.
1634
+ - col_metric1 (str): The name of the column containing the first metric values.
1635
+ - col_metric2 (str): The name of the column containing the second metric values.
1636
+ - xaxis_title (str, optional): The title for the x-axis. Defaults to "Date".
1637
+ - y1_axis_title (str, optional): The title for the primary y-axis. Defaults to "Verbatims".
1638
+ - y2_axis_title (str, optional): The title for the secondary y-axis. Defaults to "Engagements".
1639
+ - title_text (str, optional): The title text for the chart. Defaults to "Trend - couverture & résonance".
1640
+ - width (int, optional): The width of the chart. Defaults to 1500.
1641
+ - height (int, optional): The height of the chart. Defaults to 700.
1642
+ - marker_color (str, optional): The color of the bars. Defaults to "indianred".
1643
+ - line_color (str, optional): The color of the line plot. Defaults to "#273746".
1644
+ - plot_bgcolor (str, optional): The background color of the plot area. Defaults to None.
1645
+ - paper_bgcolor (str, optional): The background color of the paper area. Defaults to None.
1646
+ - template (str, optional): The template of the chart. Defaults to "plotly".
1185
1647
 
1648
+ Returns:
1649
+ - fig (go.Figure): The Plotly Figure object representing the stacked bar chart with line plot.
1650
+ """
1186
1651
  # Plotly Stacked Bar Chart
1187
1652
  fig = make_subplots(specs=[[{"secondary_y": True}]])
1188
1653
  hovertemplate='<b>Date :</b>'+ df[col_date].astype(str) + '<br><b>'+y1_axis_title+'</b>:'+ df[col_metric1].astype(str)+ '<br><b>'+y2_axis_title+'</b>:'+ df[col_metric2].astype(int).astype(str)
@@ -1251,8 +1716,46 @@ def bar_trend_per_day(df, col_date, col_metric1, col_metric2, xaxis_title = "Da
1251
1716
 
1252
1717
  return fig
1253
1718
 
1254
- def bar_trend_per_day_per_cat(df, col_date, col_cat, col_metric1, col_metric2, col_color, xaxis_title = "Date", y1_axis_title = "Verbatims", y2_axis_title = "Engagements", title_text = "Trend - couverture & résonance", vertical_spacing = 0.1, width = 1500, height = 700, marker_color = "indianred", line_color = "#273746", plot_bgcolor=None, paper_bgcolor=None, template = "plotly"):
1719
+ def bar_trend_per_day_per_cat(df: pd.DataFrame,
1720
+ col_date: str,
1721
+ col_cat: str,
1722
+ col_metric1: str,
1723
+ col_metric2: str,
1724
+ col_color: str,
1725
+ xaxis_title: str = "Date",
1726
+ y1_axis_title: str = "Verbatims",
1727
+ y2_axis_title: str = "Engagements",
1728
+ title_text: str = "Trend - couverture & résonance",
1729
+ vertical_spacing: float = 0.1,
1730
+ width: int = 1500,
1731
+ height: int = 700,
1732
+ plot_bgcolor: str = None,
1733
+ paper_bgcolor: str = None,
1734
+ template: str = "plotly") -> go.Figure:
1735
+ """
1736
+ Creates a Plotly stacked bar chart with multiple categories, each represented as a separate subplot.
1737
+
1738
+ Parameters:
1739
+ - df (pd.DataFrame): The DataFrame containing the data.
1740
+ - col_date (str): The name of the column containing dates.
1741
+ - col_cat (str): The name of the column containing categories.
1742
+ - col_metric1 (str): The name of the column containing the first metric values.
1743
+ - col_metric2 (str): The name of the column containing the second metric values.
1744
+ - col_color (str): The name of the column containing the color codes for each category.
1745
+ - xaxis_title (str, optional): The title for the x-axis. Defaults to "Date".
1746
+ - y1_axis_title (str, optional): The title for the primary y-axis. Defaults to "Verbatims".
1747
+ - y2_axis_title (str, optional): The title for the secondary y-axis. Defaults to "Engagements".
1748
+ - title_text (str, optional): The title text for the chart. Defaults to "Trend - couverture & résonance".
1749
+ - vertical_spacing (float, optional): The space between subplots. Defaults to 0.1.
1750
+ - width (int, optional): The width of the chart. Defaults to 1500.
1751
+ - height (int, optional): The height of the chart. Defaults to 700.
1752
+ - plot_bgcolor (str, optional): The background color of the plot area. Defaults to None.
1753
+ - paper_bgcolor (str, optional): The background color of the paper area. Defaults to None.
1754
+ - template (str, optional): The template of the chart. Defaults to "plotly".
1255
1755
 
1756
+ Returns:
1757
+ - fig (go.Figure): The Plotly Figure object representing the stacked bar chart with subplots for each category.
1758
+ """
1256
1759
  fig = make_subplots(
1257
1760
  rows = 2, # number of rows
1258
1761
  cols = 1, # number of columns
@@ -1333,8 +1836,36 @@ def bar_trend_per_day_per_cat(df, col_date, col_cat, col_metric1, col_metric2, c
1333
1836
 
1334
1837
  return fig
1335
1838
 
1336
- def pie(df, col_x, col_y, col_color, title = "Sentiment", template = "plotly", width = 1000, height = 1000, plot_bgcolor=None, paper_bgcolor=None, showlegend = True):
1337
-
1839
+ def pie(df: pd.DataFrame,
1840
+ col_x: str,
1841
+ col_y: str,
1842
+ col_color: str,
1843
+ title: str = "Sentiment",
1844
+ template: str = "plotly",
1845
+ width: int = 1000,
1846
+ height: int = 1000,
1847
+ plot_bgcolor: str = None,
1848
+ paper_bgcolor: str = None,
1849
+ showlegend: bool = True) -> go.Figure:
1850
+ """
1851
+ Creates a Plotly pie chart.
1852
+
1853
+ Parameters:
1854
+ - df (pd.DataFrame): The DataFrame containing the data.
1855
+ - col_x (str): The name of the column containing the labels for the pie chart slices.
1856
+ - col_y (str): The name of the column containing the values for the pie chart slices.
1857
+ - col_color (str): The name of the column containing the colors for the pie chart slices.
1858
+ - title (str, optional): The title for the pie chart. Defaults to "Sentiment".
1859
+ - template (str, optional): The template of the chart. Defaults to "plotly".
1860
+ - width (int, optional): The width of the chart. Defaults to 1000.
1861
+ - height (int, optional): The height of the chart. Defaults to 1000.
1862
+ - plot_bgcolor (str, optional): The background color of the plot area. Defaults to None.
1863
+ - paper_bgcolor (str, optional): The background color of the paper area. Defaults to None.
1864
+ - showlegend (bool, optional): Whether to show the legend. Defaults to True.
1865
+
1866
+ Returns:
1867
+ - fig (go.Figure): The Plotly Figure object representing the pie chart.
1868
+ """
1338
1869
  fig = go.Figure()
1339
1870
  fig.add_trace(go.Pie(
1340
1871
  labels=df[col_x],
@@ -1373,8 +1904,40 @@ def pie(df, col_x, col_y, col_color, title = "Sentiment", template = "plotly",
1373
1904
  )
1374
1905
  return fig
1375
1906
 
1376
- def bar(df, x, y, color="indianred", xaxis_title="x", yaxis_title="y", width=1200, height = 700, title_text="", plot_bgcolor=None, paper_bgcolor=None, template = "plotly", showlegend=True):
1907
+ def bar(df: pd.DataFrame,
1908
+ x: str,
1909
+ y: str,
1910
+ color: str = "indianred",
1911
+ xaxis_title: str = "x",
1912
+ yaxis_title: str = "y",
1913
+ width: int = 1200,
1914
+ height: int = 700,
1915
+ title_text: str = "",
1916
+ plot_bgcolor: str = None,
1917
+ paper_bgcolor: str = None,
1918
+ template: str = "plotly",
1919
+ showlegend: bool = True) -> go.Figure:
1920
+ """
1921
+ Creates a Plotly vertical bar chart.
1922
+
1923
+ Parameters:
1924
+ - df (pd.DataFrame): The DataFrame containing the data.
1925
+ - x (str): The name of the column containing the x-axis values.
1926
+ - y (str): The name of the column containing the y-axis values.
1927
+ - color (str, optional): The color of the bars. Defaults to "indianred".
1928
+ - xaxis_title (str, optional): The title for the x-axis. Defaults to "x".
1929
+ - yaxis_title (str, optional): The title for the y-axis. Defaults to "y".
1930
+ - width (int, optional): The width of the chart. Defaults to 1200.
1931
+ - height (int, optional): The height of the chart. Defaults to 700.
1932
+ - title_text (str, optional): The title text for the chart. Defaults to "".
1933
+ - plot_bgcolor (str, optional): The background color of the plot area. Defaults to None.
1934
+ - paper_bgcolor (str, optional): The background color of the paper area. Defaults to None.
1935
+ - template (str, optional): The template of the chart. Defaults to "plotly".
1936
+ - showlegend (bool, optional): Whether to show the legend. Defaults to True.
1377
1937
 
1938
+ Returns:
1939
+ - fig (go.Figure): The Plotly Figure object representing the vertical bar chart.
1940
+ """
1378
1941
  fig = go.Figure()
1379
1942
  fig.add_trace(
1380
1943
  go.Bar(
@@ -1411,7 +1974,28 @@ def bar(df, x, y, color="indianred", xaxis_title="x", yaxis_title="y", width=120
1411
1974
  return fig
1412
1975
 
1413
1976
 
1414
- def add_horizontal_line(fig, y, line_color = "gray", line_width = 1.5, line_dash = "dash", annotation_text = "Longueur moyenne des textes", annotation_position = "top right"):
1977
+ def add_horizontal_line(fig: go.Figure,
1978
+ y: float,
1979
+ line_color: str = "gray",
1980
+ line_width: float = 1.5,
1981
+ line_dash: str = "dash",
1982
+ annotation_text: str = "Longueur moyenne des textes",
1983
+ annotation_position: str = "top right") -> go.Figure:
1984
+ """
1985
+ Adds a horizontal line to a Plotly Figure object.
1986
+
1987
+ Parameters:
1988
+ - fig (go.Figure): The Plotly Figure object to which the horizontal line will be added.
1989
+ - y (float): The y-coordinate of the horizontal line.
1990
+ - line_color (str, optional): The color of the horizontal line. Defaults to "gray".
1991
+ - line_width (float, optional): The width of the horizontal line. Defaults to 1.5.
1992
+ - line_dash (str, optional): The dash style of the horizontal line. Defaults to "dash".
1993
+ - annotation_text (str, optional): The text annotation associated with the horizontal line. Defaults to "Longueur moyenne des textes".
1994
+ - annotation_position (str, optional): The position of the annotation relative to the horizontal line. Defaults to "top right".
1995
+
1996
+ Returns:
1997
+ - fig (go.Figure): The Plotly Figure object with the horizontal line added.
1998
+ """
1415
1999
  fig.add_hline(
1416
2000
  y=y,
1417
2001
  line_width=line_width,
@@ -1422,7 +2006,28 @@ def add_horizontal_line(fig, y, line_color = "gray", line_width = 1.5, line_dash
1422
2006
  )
1423
2007
  return fig
1424
2008
 
1425
- def add_vertical_line(fig, x, line_color = "gray", line_width = 1.5, line_dash = "dash", annotation_text = "Longueur moyenne des textes", annotation_position = "top right"):
2009
+ def add_vertical_line(fig: go.Figure,
2010
+ x: float,
2011
+ line_color: str = "gray",
2012
+ line_width: float = 1.5,
2013
+ line_dash: str = "dash",
2014
+ annotation_text: str = "Longueur moyenne des textes",
2015
+ annotation_position: str = "top right") -> go.Figure:
2016
+ """
2017
+ Adds a vertical line to a Plotly Figure object.
2018
+
2019
+ Parameters:
2020
+ - fig (go.Figure): The Plotly Figure object to which the vertical line will be added.
2021
+ - x (float): The x-coordinate of the vertical line.
2022
+ - line_color (str, optional): The color of the vertical line. Defaults to "gray".
2023
+ - line_width (float, optional): The width of the vertical line. Defaults to 1.5.
2024
+ - line_dash (str, optional): The dash style of the vertical line. Defaults to "dash".
2025
+ - annotation_text (str, optional): The text annotation associated with the vertical line. Defaults to "Longueur moyenne des textes".
2026
+ - annotation_position (str, optional): The position of the annotation relative to the vertical line. Defaults to "top right".
2027
+
2028
+ Returns:
2029
+ - fig (go.Figure): The Plotly Figure object with the vertical line added.
2030
+ """
1426
2031
  fig.add_vline(
1427
2032
  x=x,
1428
2033
  line_width=line_width,
@@ -1433,9 +2038,50 @@ def add_vertical_line(fig, x, line_color = "gray", line_width = 1.5, line_dash =
1433
2038
  )
1434
2039
  return fig
1435
2040
 
1436
- def network_graph(T, col_size="scaled_size", col_color="modularity_color", title_text = "Analyse de similitudes", sample_nodes = 0.15, show_edges=True, show_halo=False, textposition=None, line_color = "#B7B7B7", line_dash="dot", edge_mode = "lines+markers", node_mode="markers+text", opacity=0.2, width=1600, height=1200, plot_bgcolor=None, paper_bgcolor=None, template="plotly"):
1437
-
1438
-
2041
+ def network_graph(T: nx.Graph,
2042
+ col_size: str = "scaled_size",
2043
+ col_color: str = "modularity_color",
2044
+ title_text: str = "Analyse de similitudes",
2045
+ sample_nodes: float = 0.15,
2046
+ show_edges: bool = True,
2047
+ show_halo: bool = False,
2048
+ textposition: str = None,
2049
+ line_color: str = "#B7B7B7",
2050
+ line_dash: str = "dot",
2051
+ edge_mode: str = "lines+markers",
2052
+ node_mode: str = "markers+text",
2053
+ opacity: float = 0.2,
2054
+ width: int = 1600,
2055
+ height: int = 1200,
2056
+ plot_bgcolor: str = None,
2057
+ paper_bgcolor: str = None,
2058
+ template: str = "plotly") -> go.Figure:
2059
+ """
2060
+ Creates a network graph visualization using Plotly.
2061
+
2062
+ Parameters:
2063
+ - T (nx.Graph): The NetworkX graph object.
2064
+ - col_size (str, optional): The column name for node size. Defaults to "scaled_size".
2065
+ - col_color (str, optional): The column name for node color. Defaults to "modularity_color".
2066
+ - title_text (str, optional): The title for the graph. Defaults to "Analyse de similitudes".
2067
+ - sample_nodes (float, optional): The proportion of nodes to sample for displaying labels. Defaults to 0.15.
2068
+ - show_edges (bool, optional): Whether to display edges. Defaults to True.
2069
+ - show_halo (bool, optional): Whether to display halo around nodes. Defaults to False.
2070
+ - textposition (str, optional): The position of node labels. Defaults to None.
2071
+ - line_color (str, optional): The color of edges. Defaults to "#B7B7B7".
2072
+ - line_dash (str, optional): The dash style of edges. Defaults to "dot".
2073
+ - edge_mode (str, optional): The mode for displaying edges. Defaults to "lines+markers".
2074
+ - node_mode (str, optional): The mode for displaying nodes. Defaults to "markers+text".
2075
+ - opacity (float, optional): The opacity of nodes. Defaults to 0.2.
2076
+ - width (int, optional): The width of the plot. Defaults to 1600.
2077
+ - height (int, optional): The height of the plot. Defaults to 1200.
2078
+ - plot_bgcolor (str, optional): The background color of the plot area. Defaults to None.
2079
+ - paper_bgcolor (str, optional): The background color of the paper area. Defaults to None.
2080
+ - template (str, optional): The template of the plot. Defaults to "plotly".
2081
+
2082
+ Returns:
2083
+ - fig (go.Figure): The Plotly Figure object representing the network graph visualization.
2084
+ """
1439
2085
  # on construit un dataframe des noeuds à partir des données du graphe pour plus de simplicité
1440
2086
  df_nodes=pd.DataFrame()
1441
2087
  for node in T.nodes(data=True):
@@ -1548,7 +2194,24 @@ def network_graph(T, col_size="scaled_size", col_color="modularity_color", titl
1548
2194
 
1549
2195
  return fig
1550
2196
 
1551
- def richesse_lexicale(df, title= "Richesse lexicale", width=1200, height=1000, template="plotly"):
2197
+ def richesse_lexicale(df: pd.DataFrame,
2198
+ title: str = "Richesse lexicale",
2199
+ width: int = 1200,
2200
+ height: int = 1000,
2201
+ template: str = "plotly") -> go.Figure:
2202
+ """
2203
+ Creates a lexical richness visualization using Plotly.
2204
+
2205
+ Parameters:
2206
+ - df (pd.DataFrame): The DataFrame containing word frequency data.
2207
+ - title (str, optional): The title for the plot. Defaults to "Richesse lexicale".
2208
+ - width (int, optional): The width of the plot. Defaults to 1200.
2209
+ - height (int, optional): The height of the plot. Defaults to 1000.
2210
+ - template (str, optional): The template of the plot. Defaults to "plotly".
2211
+
2212
+ Returns:
2213
+ - fig_richesse (go.Figure): The Plotly Figure object representing the lexical richness visualization.
2214
+ """
1552
2215
  df = create_frequency_table(df, "freq")
1553
2216
  fig_richesse = go.Figure()
1554
2217
  fig_richesse.add_trace(
@@ -1569,7 +2232,26 @@ def richesse_lexicale(df, title= "Richesse lexicale", width=1200, height=1000, t
1569
2232
  fig_richesse.update_yaxes(tickformat=".0f", title_text="Freq", type="log")
1570
2233
  return fig_richesse
1571
2234
 
1572
- def richesse_lexicale_per_topic(df, col_topic, title= "Richesse lexicale par topic", width=1200, height=1000, template="plotly"):
2235
+ def richesse_lexicale_per_topic(df: pd.DataFrame,
2236
+ col_topic: str,
2237
+ title: str = "Richesse lexicale par topic",
2238
+ width: int = 1200,
2239
+ height: int = 1000,
2240
+ template: str = "plotly") -> go.Figure:
2241
+ """
2242
+ Creates a lexical richness visualization per topic using Plotly.
2243
+
2244
+ Parameters:
2245
+ - df (pd.DataFrame): The DataFrame containing word frequency data.
2246
+ - col_topic (str): The name of the column representing topics.
2247
+ - title (str, optional): The title for the plot. Defaults to "Richesse lexicale par topic".
2248
+ - width (int, optional): The width of the plot. Defaults to 1200.
2249
+ - height (int, optional): The height of the plot. Defaults to 1000.
2250
+ - template (str, optional): The template of the plot. Defaults to "plotly".
2251
+
2252
+ Returns:
2253
+ - fig_richesse (go.Figure): The Plotly Figure object representing the lexical richness visualization per topic.
2254
+ """
1573
2255
  fig_richesse = go.Figure()
1574
2256
  for topic in list(df[col_topic].unique()):
1575
2257
  df_tmp = create_frequency_table(df[df[col_topic]==topic], "freq")
@@ -1591,8 +2273,42 @@ def richesse_lexicale_per_topic(df, col_topic, title= "Richesse lexicale par top
1591
2273
  fig_richesse.update_yaxes(tickformat=".0f", title_text="Freq", type="log")
1592
2274
  return fig_richesse
1593
2275
 
1594
- def subplots_bar_per_day_per_cat(df, col_date, col_cat, metrics, col_color, y_axis_titles, xaxis_title = "Date",title_text = "Trend - couverture & résonance", vertical_spacing = 0.1, width = 1500, height = 700, marker_color = "indianred", line_color = "#273746", plot_bgcolor=None, paper_bgcolor=None, template = "plotly"):
2276
+ def subplots_bar_per_day_per_cat(df: pd.DataFrame,
2277
+ col_date: str,
2278
+ col_cat: str,
2279
+ metrics: list,
2280
+ col_color: str,
2281
+ y_axis_titles: list,
2282
+ xaxis_title: str = "Date",
2283
+ title_text: str = "Trend - couverture & résonance",
2284
+ vertical_spacing: float = 0.1,
2285
+ width: int = 1500,
2286
+ height: int = 700,
2287
+ plot_bgcolor: str = None,
2288
+ paper_bgcolor: str = None,
2289
+ template: str = "plotly") -> go.Figure:
2290
+ """
2291
+ Creates subplots of stacked bar charts per day and category using Plotly.
2292
+
2293
+ Parameters:
2294
+ - df (pd.DataFrame): The DataFrame containing the data.
2295
+ - col_date (str): The name of the column representing dates.
2296
+ - col_cat (str): The name of the column representing categories.
2297
+ - metrics (List[str]): A list of column names representing metrics to be plotted.
2298
+ - col_color (str): The name of the column representing colors for bars.
2299
+ - y_axis_titles (List[str]): A list of titles for the y-axes of subplots.
2300
+ - xaxis_title (str, optional): The title for the x-axis. Defaults to "Date".
2301
+ - title_text (str, optional): The title for the entire plot. Defaults to "Trend - couverture & résonance".
2302
+ - vertical_spacing (float, optional): The space between subplots. Defaults to 0.1.
2303
+ - width (int, optional): The width of the entire plot. Defaults to 1500.
2304
+ - height (int, optional): The height of each subplot. Defaults to 700.
2305
+ - plot_bgcolor (str, optional): The background color for the plot area. Defaults to None.
2306
+ - paper_bgcolor (str, optional): The background color for the paper area. Defaults to None.
2307
+ - template (str, optional): The template of the plot. Defaults to "plotly".
1595
2308
 
2309
+ Returns:
2310
+ - fig (go.Figure): The Plotly Figure object representing the subplots of stacked bar charts.
2311
+ """
1596
2312
  fig = make_subplots(
1597
2313
  rows = len(metrics), # number of rows
1598
2314
  cols = 1, # number of columns
@@ -1668,7 +2384,38 @@ def subplots_bar_per_day_per_cat(df, col_date, col_cat, metrics, col_color, y_ax
1668
2384
  return fig
1669
2385
 
1670
2386
 
1671
- def add_shape(fig, shape_type = "rect", x0= -1, y0= -1, x1 = 0, y1=0, fillcolor= 'Silver', opacity = 0.1, line_width = 0, line_color = 'white', dash = None, layer = "below"):
2387
+ def add_shape(fig: go.Figure,
2388
+ shape_type: str = "rect",
2389
+ x0: float = -1,
2390
+ y0: float = -1,
2391
+ x1: float = 0,
2392
+ y1: float = 0,
2393
+ fillcolor: str = 'Silver',
2394
+ opacity: float = 0.1,
2395
+ line_width: float = 0,
2396
+ line_color: str = 'white',
2397
+ dash: str = None,
2398
+ layer: str = "below") -> go.Figure:
2399
+ """
2400
+ Adds a shape to a Plotly figure.
2401
+
2402
+ Parameters:
2403
+ - fig (go.Figure): The Plotly Figure object.
2404
+ - shape_type (str, optional): The type of shape to add. Defaults to "rect".
2405
+ - x0 (float, optional): The x-coordinate of the lower left corner of the shape. Defaults to -1.
2406
+ - y0 (float, optional): The y-coordinate of the lower left corner of the shape. Defaults to -1.
2407
+ - x1 (float, optional): The x-coordinate of the upper right corner of the shape. Defaults to 0.
2408
+ - y1 (float, optional): The y-coordinate of the upper right corner of the shape. Defaults to 0.
2409
+ - fillcolor (str, optional): The fill color of the shape. Defaults to 'Silver'.
2410
+ - opacity (float, optional): The opacity of the shape. Defaults to 0.1.
2411
+ - line_width (float, optional): The width of the shape's outline. Defaults to 0.
2412
+ - line_color (str, optional): The color of the shape's outline. Defaults to 'white'.
2413
+ - dash (str, optional): The dash style of the shape's outline. Defaults to None.
2414
+ - layer (str, optional): The layer on which the shape is added, either 'below' or 'above' the data. Defaults to "below".
2415
+
2416
+ Returns:
2417
+ - fig (go.Figure): The modified Plotly Figure object with the added shape.
2418
+ """
1672
2419
  fig.add_shape(
1673
2420
  # Shape for the area between (-1, 0)
1674
2421
  {
@@ -1688,4 +2435,46 @@ def add_shape(fig, shape_type = "rect", x0= -1, y0= -1, x1 = 0, y1=0, fillcolor=
1688
2435
 
1689
2436
  }
1690
2437
  )
2438
+ return fig
2439
+
2440
+ def add_image(fig: go.Figure,
2441
+ xref: str = "paper",
2442
+ yref: str = "paper",
2443
+ x: float = 0,
2444
+ y: float = 0,
2445
+ sizex: float = 0.08,
2446
+ sizey: float = 0.08,
2447
+ xanchor: str = "right",
2448
+ yanchor: str = "bottom",
2449
+ source: str = "") -> go.Figure:
2450
+ """
2451
+ Adds an image to a Plotly figure.
2452
+
2453
+ Parameters:
2454
+ - fig (go.Figure): The Plotly Figure object.
2455
+ - xref (str, optional): The x-coordinate reference point. Defaults to "paper".
2456
+ - yref (str, optional): The y-coordinate reference point. Defaults to "paper".
2457
+ - x (float, optional): The x-coordinate of the image position. Defaults to 0.
2458
+ - y (float, optional): The y-coordinate of the image position. Defaults to 0.
2459
+ - sizex (float, optional): The size of the image in the x-direction. Defaults to 0.08.
2460
+ - sizey (float, optional): The size of the image in the y-direction. Defaults to 0.08.
2461
+ - xanchor (str, optional): The x-coordinate anchor point. Defaults to "right".
2462
+ - yanchor (str, optional): The y-coordinate anchor point. Defaults to "bottom".
2463
+ - source (str, optional): The URL source of the image. Defaults to "https://www.example.com/image.jpg".
2464
+
2465
+ Returns:
2466
+ - fig (go.Figure): The modified Plotly Figure object with the added image.
2467
+ """
2468
+ fig.add_layout_image(
2469
+ dict(
2470
+ source=source,
2471
+ xref=xref,
2472
+ yref=yref,
2473
+ x=x, y=y,
2474
+ sizex=sizex,
2475
+ sizey=sizey,
2476
+ xanchor=xanchor,
2477
+ yanchor=yanchor
2478
+ )
2479
+ )
1691
2480
  return fig