oprattr 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of oprattr might be problematic. Click here for more details.
- oprattr/__init__.py +204 -0
- oprattr/_operations.py +179 -0
- oprattr/_types.py +144 -0
- oprattr/mixins.py +415 -0
- oprattr/operators.py +41 -0
- oprattr/py.typed +0 -0
- oprattr-0.1.0.dist-info/METADATA +11 -0
- oprattr-0.1.0.dist-info/RECORD +9 -0
- oprattr-0.1.0.dist-info/WHEEL +4 -0
oprattr/__init__.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
import numbers
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
import numpy
|
|
6
|
+
|
|
7
|
+
from . import mixins
|
|
8
|
+
from . import operators
|
|
9
|
+
from . import _types
|
|
10
|
+
from ._operations import (
|
|
11
|
+
unary,
|
|
12
|
+
equality,
|
|
13
|
+
ordering,
|
|
14
|
+
additive,
|
|
15
|
+
multiplicative,
|
|
16
|
+
)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
T = typing.TypeVar('T')
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class Operand(_types.Object[T], mixins.Numpy):
|
|
23
|
+
"""A concrete implementation of a real-valued object."""
|
|
24
|
+
|
|
25
|
+
def __abs__(self):
|
|
26
|
+
"""Called for abs(self)."""
|
|
27
|
+
return unary(operators.abs, self)
|
|
28
|
+
|
|
29
|
+
def __pos__(self):
|
|
30
|
+
"""Called for +self."""
|
|
31
|
+
return unary(operators.pos, self)
|
|
32
|
+
|
|
33
|
+
def __neg__(self):
|
|
34
|
+
"""Called for -self."""
|
|
35
|
+
return unary(operators.neg, self)
|
|
36
|
+
|
|
37
|
+
def __eq__(self, other):
|
|
38
|
+
"""Called for self == other."""
|
|
39
|
+
return equality(operators.eq, self, other)
|
|
40
|
+
|
|
41
|
+
def __ne__(self, other):
|
|
42
|
+
"""Called for self != other."""
|
|
43
|
+
return equality(operators.ne, self, other)
|
|
44
|
+
|
|
45
|
+
def __lt__(self, other):
|
|
46
|
+
"""Called for self < other."""
|
|
47
|
+
return ordering(operators.lt, self, other)
|
|
48
|
+
|
|
49
|
+
def __le__(self, other):
|
|
50
|
+
"""Called for self <= other."""
|
|
51
|
+
return ordering(operators.le, self, other)
|
|
52
|
+
|
|
53
|
+
def __gt__(self, other):
|
|
54
|
+
"""Called for self > other."""
|
|
55
|
+
return ordering(operators.gt, self, other)
|
|
56
|
+
|
|
57
|
+
def __ge__(self, other):
|
|
58
|
+
"""Called for self >= other."""
|
|
59
|
+
return ordering(operators.ge, self, other)
|
|
60
|
+
|
|
61
|
+
def __add__(self, other):
|
|
62
|
+
"""Called for self + other."""
|
|
63
|
+
return additive(operators.add, self, other)
|
|
64
|
+
|
|
65
|
+
def __radd__(self, other):
|
|
66
|
+
"""Called for other + self."""
|
|
67
|
+
return additive(operators.add, other, self)
|
|
68
|
+
|
|
69
|
+
def __sub__(self, other):
|
|
70
|
+
"""Called for self - other."""
|
|
71
|
+
return additive(operators.sub, self, other)
|
|
72
|
+
|
|
73
|
+
def __rsub__(self, other):
|
|
74
|
+
"""Called for other - self."""
|
|
75
|
+
return additive(operators.sub, other, self)
|
|
76
|
+
|
|
77
|
+
def __mul__(self, other):
|
|
78
|
+
"""Called for self * other."""
|
|
79
|
+
return multiplicative(operators.mul, self, other)
|
|
80
|
+
|
|
81
|
+
def __rmul__(self, other):
|
|
82
|
+
"""Called for other * self."""
|
|
83
|
+
return multiplicative(operators.mul, other, self)
|
|
84
|
+
|
|
85
|
+
def __truediv__(self, other):
|
|
86
|
+
"""Called for self / other."""
|
|
87
|
+
return multiplicative(operators.truediv, self, other)
|
|
88
|
+
|
|
89
|
+
def __rtruediv__(self, other):
|
|
90
|
+
"""Called for other / self."""
|
|
91
|
+
return multiplicative(operators.truediv, other, self)
|
|
92
|
+
|
|
93
|
+
def __floordiv__(self, other):
|
|
94
|
+
"""Called for self // other."""
|
|
95
|
+
return multiplicative(operators.floordiv, self, other)
|
|
96
|
+
|
|
97
|
+
def __rfloordiv__(self, other):
|
|
98
|
+
"""Called for other // self."""
|
|
99
|
+
return multiplicative(operators.floordiv, other, self)
|
|
100
|
+
|
|
101
|
+
def __mod__(self, other):
|
|
102
|
+
"""Called for self % other."""
|
|
103
|
+
return multiplicative(operators.mod, self, other)
|
|
104
|
+
|
|
105
|
+
def __rmod__(self, other):
|
|
106
|
+
"""Called for other % self."""
|
|
107
|
+
return multiplicative(operators.mod, other, self)
|
|
108
|
+
|
|
109
|
+
def __pow__(self, other):
|
|
110
|
+
"""Called for self ** other."""
|
|
111
|
+
if isinstance(other, numbers.Real):
|
|
112
|
+
return multiplicative(operators.pow, self, other)
|
|
113
|
+
return NotImplemented
|
|
114
|
+
|
|
115
|
+
def __rpow__(self, other):
|
|
116
|
+
"""Called for other ** self."""
|
|
117
|
+
return super().__rpow__(other)
|
|
118
|
+
|
|
119
|
+
def __array__(self, *args, **kwargs):
|
|
120
|
+
"""Called for numpy.array(self)."""
|
|
121
|
+
return numpy.array(self._data, *args, **kwargs)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
@Operand.implementation(numpy.array_equal)
|
|
125
|
+
def array_equal(
|
|
126
|
+
x: numpy.typing.ArrayLike,
|
|
127
|
+
y: numpy.typing.ArrayLike,
|
|
128
|
+
**kwargs
|
|
129
|
+
) -> bool:
|
|
130
|
+
"""Called for numpy.array_equal(x, y)"""
|
|
131
|
+
return numpy.array_equal(numpy.array(x), numpy.array(y), **kwargs)
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
@Operand.implementation(numpy.gradient)
|
|
135
|
+
def gradient(x: Operand[T], *args, **kwargs):
|
|
136
|
+
"""Called for numpy.gradient(x)."""
|
|
137
|
+
data = numpy.gradient(x._data, *args, **kwargs)
|
|
138
|
+
meta = {}
|
|
139
|
+
for key, value in x._meta.items():
|
|
140
|
+
try:
|
|
141
|
+
v = numpy.gradient(value, **kwargs)
|
|
142
|
+
except TypeError as exc:
|
|
143
|
+
raise TypeError(
|
|
144
|
+
"Cannot compute numpy.gradient(x)"
|
|
145
|
+
f" because metadata attribute {key!r}"
|
|
146
|
+
" does not support this operation"
|
|
147
|
+
) from exc
|
|
148
|
+
else:
|
|
149
|
+
meta[key] = v
|
|
150
|
+
if isinstance(data, (list, tuple)):
|
|
151
|
+
r = [type(x)(array, **meta) for array in data]
|
|
152
|
+
if isinstance(data, tuple):
|
|
153
|
+
return tuple(r)
|
|
154
|
+
return r
|
|
155
|
+
return type(x)(data, **meta)
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
def wrapnumpy(f: typing.Callable):
|
|
159
|
+
"""Implement a numpy function for objects with metadata."""
|
|
160
|
+
@functools.wraps(f)
|
|
161
|
+
def method(x: Operand[T], **kwargs):
|
|
162
|
+
"""Apply a numpy function to x."""
|
|
163
|
+
data = f(x._data, **kwargs)
|
|
164
|
+
meta = {}
|
|
165
|
+
for key, value in x._meta.items():
|
|
166
|
+
try:
|
|
167
|
+
v = f(value, **kwargs)
|
|
168
|
+
except TypeError as exc:
|
|
169
|
+
raise TypeError(
|
|
170
|
+
f"Cannot compute numpy.{f.__qualname__}(x)"
|
|
171
|
+
f" because metadata attribute {key!r}"
|
|
172
|
+
" does not support this operation"
|
|
173
|
+
) from exc
|
|
174
|
+
else:
|
|
175
|
+
meta[key] = v
|
|
176
|
+
return type(x)(data, **meta)
|
|
177
|
+
return method
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
_OPERAND_UFUNCS = (
|
|
181
|
+
numpy.sqrt,
|
|
182
|
+
numpy.sin,
|
|
183
|
+
numpy.cos,
|
|
184
|
+
numpy.tan,
|
|
185
|
+
numpy.log,
|
|
186
|
+
numpy.log2,
|
|
187
|
+
numpy.log10,
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
_OPERAND_FUNCTIONS = (
|
|
192
|
+
numpy.squeeze,
|
|
193
|
+
numpy.mean,
|
|
194
|
+
numpy.sum,
|
|
195
|
+
numpy.cumsum,
|
|
196
|
+
numpy.transpose,
|
|
197
|
+
numpy.trapezoid,
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
for f in _OPERAND_UFUNCS + _OPERAND_FUNCTIONS:
|
|
202
|
+
Operand.implement(f, wrapnumpy(f))
|
|
203
|
+
|
|
204
|
+
|
oprattr/_operations.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
1
|
+
import typing
|
|
2
|
+
|
|
3
|
+
from . import operators
|
|
4
|
+
from ._types import Object
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class MetadataError(TypeError):
|
|
8
|
+
"""A metadata-related TypeError occurred."""
|
|
9
|
+
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
f: operators.Operator,
|
|
13
|
+
*args,
|
|
14
|
+
error: typing.Optional[str]=None,
|
|
15
|
+
key: typing.Optional[str]=None,
|
|
16
|
+
) -> None:
|
|
17
|
+
super().__init__(*args)
|
|
18
|
+
self._f = f
|
|
19
|
+
self._error = error
|
|
20
|
+
self._key = key
|
|
21
|
+
|
|
22
|
+
def __str__(self):
|
|
23
|
+
"""Called when handling the exception."""
|
|
24
|
+
types = [type(arg) for arg in self.args]
|
|
25
|
+
return _build_error_message(
|
|
26
|
+
self._f,
|
|
27
|
+
*types,
|
|
28
|
+
error=self._error,
|
|
29
|
+
key=self._key,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def _build_error_message(
|
|
34
|
+
f: operators.Operator,
|
|
35
|
+
*types: type,
|
|
36
|
+
error: typing.Optional[str]=None,
|
|
37
|
+
key: typing.Optional[str]=None,
|
|
38
|
+
) -> str:
|
|
39
|
+
"""Helper for `_raise_metadata_exception`.
|
|
40
|
+
|
|
41
|
+
This function should avoid raising an exception if at all possible, and
|
|
42
|
+
instead return the default error message, since it is already being called
|
|
43
|
+
as the result of an error elsewhere.
|
|
44
|
+
"""
|
|
45
|
+
errmsg = f"Cannot compute {f}"
|
|
46
|
+
errstr = error.lower() if isinstance(error, str) else ''
|
|
47
|
+
if errstr == 'unequal':
|
|
48
|
+
return f"{errmsg} between objects with unequal metadata"
|
|
49
|
+
if errstr in {'non-empty', 'nonempty'}:
|
|
50
|
+
if len(types) == 2:
|
|
51
|
+
a, b = types
|
|
52
|
+
endstr = "because {} has metadata"
|
|
53
|
+
if issubclass(a, Object):
|
|
54
|
+
return f"{errmsg} between {a} and {b} {endstr.format(str(a))}"
|
|
55
|
+
if issubclass(b, Object):
|
|
56
|
+
return f"{errmsg} between {a} and {b} {endstr.format(str(b))}"
|
|
57
|
+
if errstr == 'type':
|
|
58
|
+
if key is None:
|
|
59
|
+
keystr = "a metadata attribute"
|
|
60
|
+
else:
|
|
61
|
+
keystr = f"metadata attribute {key!r}"
|
|
62
|
+
midstr = f"because {keystr}"
|
|
63
|
+
endstr = "does not support this operation"
|
|
64
|
+
if len(types) == 1:
|
|
65
|
+
return f"{errmsg} of {types[0]} {midstr} {endstr}"
|
|
66
|
+
if len(types) == 2:
|
|
67
|
+
a, b = types
|
|
68
|
+
return f"{errmsg} between {a} and {b} {midstr} {endstr}"
|
|
69
|
+
return errmsg
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def unary(f: operators.Operator, a):
|
|
73
|
+
"""Compute the unary operation f(a)."""
|
|
74
|
+
if isinstance(a, Object):
|
|
75
|
+
meta = {}
|
|
76
|
+
for key, value in a._meta.items():
|
|
77
|
+
try:
|
|
78
|
+
v = f(value)
|
|
79
|
+
except TypeError as exc:
|
|
80
|
+
raise MetadataError(f, a, error='type', key=key) from exc
|
|
81
|
+
else:
|
|
82
|
+
meta[key] = v
|
|
83
|
+
return type(a)(f(a._data), **meta)
|
|
84
|
+
return f(a)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def equality(f: operators.Operator, a, b):
|
|
88
|
+
"""Compute the equality operation f(a, b)."""
|
|
89
|
+
if isinstance(a, Object) and isinstance(b, Object):
|
|
90
|
+
if a._meta != b._meta:
|
|
91
|
+
return f is operators.ne
|
|
92
|
+
return f(a._data, b._data)
|
|
93
|
+
if isinstance(a, Object):
|
|
94
|
+
if not a._meta:
|
|
95
|
+
return f(a._data, b)
|
|
96
|
+
return f is operators.ne
|
|
97
|
+
if isinstance(b, Object):
|
|
98
|
+
if not b._meta:
|
|
99
|
+
return f(a, b._data)
|
|
100
|
+
return f is operators.ne
|
|
101
|
+
return f(a, b)
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def ordering(f: operators.Operator, a, b):
|
|
105
|
+
"""Compute the ordering operation f(a, b)."""
|
|
106
|
+
if isinstance(a, Object) and isinstance(b, Object):
|
|
107
|
+
if a._meta == b._meta:
|
|
108
|
+
return f(a._data, b._data)
|
|
109
|
+
raise MetadataError(f, a, b, error='unequal') from None
|
|
110
|
+
if isinstance(a, Object):
|
|
111
|
+
if not a._meta:
|
|
112
|
+
return f(a._data, b)
|
|
113
|
+
raise MetadataError(f, a, b, error='non-empty') from None
|
|
114
|
+
if isinstance(b, Object):
|
|
115
|
+
if not b._meta:
|
|
116
|
+
return f(a, b._data)
|
|
117
|
+
raise MetadataError(f, a, b, error='non-empty') from None
|
|
118
|
+
return f(a, b)
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
def additive(f: operators.Operator, a, b):
|
|
122
|
+
"""Compute the additive operation f(a, b)."""
|
|
123
|
+
if isinstance(a, Object) and isinstance(b, Object):
|
|
124
|
+
if a._meta == b._meta:
|
|
125
|
+
return type(a)(f(a._data, b._data), **a._meta)
|
|
126
|
+
raise MetadataError(f, a, b, error='unequal') from None
|
|
127
|
+
if isinstance(a, Object):
|
|
128
|
+
if not a._meta:
|
|
129
|
+
return type(a)(f(a._data, b))
|
|
130
|
+
raise MetadataError(f, a, b, error='non-empty') from None
|
|
131
|
+
if isinstance(b, Object):
|
|
132
|
+
if not b._meta:
|
|
133
|
+
return type(b)(f(a, b._data))
|
|
134
|
+
raise MetadataError(f, a, b, error='non-empty') from None
|
|
135
|
+
return f(a, b)
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def multiplicative(f: operators.Operator, a, b):
|
|
139
|
+
"""Compute the multiplicative operation f(a, b)."""
|
|
140
|
+
if isinstance(a, Object) and isinstance(b, Object):
|
|
141
|
+
keys = set(a._meta) & set(b._meta)
|
|
142
|
+
meta = {}
|
|
143
|
+
for key in keys:
|
|
144
|
+
try:
|
|
145
|
+
v = f(a._meta[key], b._meta[key])
|
|
146
|
+
except TypeError as exc:
|
|
147
|
+
raise MetadataError(f, a, b, error='type', key=key) from exc
|
|
148
|
+
else:
|
|
149
|
+
meta[key] = v
|
|
150
|
+
for key, value in a._meta.items():
|
|
151
|
+
if key not in keys:
|
|
152
|
+
meta[key] = value
|
|
153
|
+
for key, value in b._meta.items():
|
|
154
|
+
if key not in keys:
|
|
155
|
+
meta[key] = value
|
|
156
|
+
return type(a)(f(a._data, b._data), **meta)
|
|
157
|
+
if isinstance(a, Object):
|
|
158
|
+
meta = {}
|
|
159
|
+
for key, value in a._meta.items():
|
|
160
|
+
try:
|
|
161
|
+
v = f(value, b)
|
|
162
|
+
except TypeError as exc:
|
|
163
|
+
raise MetadataError(f, a, b, error='type', key=key) from exc
|
|
164
|
+
else:
|
|
165
|
+
meta[key] = v
|
|
166
|
+
return type(a)(f(a._data, b), **meta)
|
|
167
|
+
if isinstance(b, Object):
|
|
168
|
+
meta = {}
|
|
169
|
+
for key, value in b._meta.items():
|
|
170
|
+
try:
|
|
171
|
+
v = f(a, value)
|
|
172
|
+
except TypeError as exc:
|
|
173
|
+
raise MetadataError(f, a, b, error='type', key=key) from exc
|
|
174
|
+
else:
|
|
175
|
+
meta[key] = v
|
|
176
|
+
return type(b)(f(a, b._data), **meta)
|
|
177
|
+
return f(a, b)
|
|
178
|
+
|
|
179
|
+
|
oprattr/_types.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
1
|
+
import abc
|
|
2
|
+
import numbers
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
import numpy.typing
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@typing.runtime_checkable
|
|
9
|
+
class Real(typing.Protocol):
|
|
10
|
+
"""Abstract protocol for real-valued objects."""
|
|
11
|
+
|
|
12
|
+
@abc.abstractmethod
|
|
13
|
+
def __abs__(self):
|
|
14
|
+
return NotImplemented
|
|
15
|
+
|
|
16
|
+
@abc.abstractmethod
|
|
17
|
+
def __pos__(self):
|
|
18
|
+
return NotImplemented
|
|
19
|
+
|
|
20
|
+
@abc.abstractmethod
|
|
21
|
+
def __neg__(self):
|
|
22
|
+
return NotImplemented
|
|
23
|
+
|
|
24
|
+
@abc.abstractmethod
|
|
25
|
+
def __eq__(self, other):
|
|
26
|
+
return False
|
|
27
|
+
|
|
28
|
+
@abc.abstractmethod
|
|
29
|
+
def __ne__(self, other):
|
|
30
|
+
return True
|
|
31
|
+
|
|
32
|
+
@abc.abstractmethod
|
|
33
|
+
def __le__(self, other):
|
|
34
|
+
return NotImplemented
|
|
35
|
+
|
|
36
|
+
@abc.abstractmethod
|
|
37
|
+
def __lt__(self, other):
|
|
38
|
+
return NotImplemented
|
|
39
|
+
|
|
40
|
+
@abc.abstractmethod
|
|
41
|
+
def __ge__(self, other):
|
|
42
|
+
return NotImplemented
|
|
43
|
+
|
|
44
|
+
@abc.abstractmethod
|
|
45
|
+
def __gt__(self, other):
|
|
46
|
+
return NotImplemented
|
|
47
|
+
|
|
48
|
+
@abc.abstractmethod
|
|
49
|
+
def __add__(self, other):
|
|
50
|
+
return NotImplemented
|
|
51
|
+
|
|
52
|
+
@abc.abstractmethod
|
|
53
|
+
def __radd__(self, other):
|
|
54
|
+
return NotImplemented
|
|
55
|
+
|
|
56
|
+
@abc.abstractmethod
|
|
57
|
+
def __sub__(self, other):
|
|
58
|
+
return NotImplemented
|
|
59
|
+
|
|
60
|
+
@abc.abstractmethod
|
|
61
|
+
def __rsub__(self, other):
|
|
62
|
+
return NotImplemented
|
|
63
|
+
|
|
64
|
+
@abc.abstractmethod
|
|
65
|
+
def __mul__(self, other):
|
|
66
|
+
return NotImplemented
|
|
67
|
+
|
|
68
|
+
@abc.abstractmethod
|
|
69
|
+
def __rmul__(self, other):
|
|
70
|
+
return NotImplemented
|
|
71
|
+
|
|
72
|
+
@abc.abstractmethod
|
|
73
|
+
def __truediv__(self, other):
|
|
74
|
+
return NotImplemented
|
|
75
|
+
|
|
76
|
+
@abc.abstractmethod
|
|
77
|
+
def __rtruediv__(self, other):
|
|
78
|
+
return NotImplemented
|
|
79
|
+
|
|
80
|
+
@abc.abstractmethod
|
|
81
|
+
def __floordiv__(self, other):
|
|
82
|
+
return NotImplemented
|
|
83
|
+
|
|
84
|
+
@abc.abstractmethod
|
|
85
|
+
def __rfloordiv__(self, other):
|
|
86
|
+
return NotImplemented
|
|
87
|
+
|
|
88
|
+
@abc.abstractmethod
|
|
89
|
+
def __mod__(self, other):
|
|
90
|
+
return NotImplemented
|
|
91
|
+
|
|
92
|
+
@abc.abstractmethod
|
|
93
|
+
def __rmod__(self, other):
|
|
94
|
+
return NotImplemented
|
|
95
|
+
|
|
96
|
+
@abc.abstractmethod
|
|
97
|
+
def __pow__(self, other):
|
|
98
|
+
return NotImplemented
|
|
99
|
+
|
|
100
|
+
@abc.abstractmethod
|
|
101
|
+
def __rpow__(self, other):
|
|
102
|
+
return NotImplemented
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
DataType = typing.TypeVar(
|
|
106
|
+
'DataType',
|
|
107
|
+
int,
|
|
108
|
+
float,
|
|
109
|
+
numbers.Number,
|
|
110
|
+
numpy.number,
|
|
111
|
+
numpy.typing.ArrayLike,
|
|
112
|
+
numpy.typing.NDArray,
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
class Object(Real, typing.Generic[DataType]):
|
|
117
|
+
"""A real-valued object with metadata attributes."""
|
|
118
|
+
|
|
119
|
+
def __init__(
|
|
120
|
+
self,
|
|
121
|
+
__data: DataType,
|
|
122
|
+
**metadata,
|
|
123
|
+
) -> None:
|
|
124
|
+
if not isinstance(__data, Real):
|
|
125
|
+
raise TypeError("Data input to Object must be real-valued")
|
|
126
|
+
self._data = __data
|
|
127
|
+
self._meta = metadata
|
|
128
|
+
|
|
129
|
+
def __repr__(self):
|
|
130
|
+
"""Called for repr(self)."""
|
|
131
|
+
try:
|
|
132
|
+
datastr = numpy.array2string(
|
|
133
|
+
self._data,
|
|
134
|
+
separator=", ",
|
|
135
|
+
threshold=6,
|
|
136
|
+
edgeitems=2,
|
|
137
|
+
prefix=f"{self.__class__.__qualname__}(",
|
|
138
|
+
suffix=")"
|
|
139
|
+
)
|
|
140
|
+
except Exception:
|
|
141
|
+
datastr = str(self._data)
|
|
142
|
+
metastr = "metadata={" + ", ".join(f"{k!r}" for k in self._meta) + "}"
|
|
143
|
+
return f"{self.__class__.__qualname__}({datastr}, {metastr})"
|
|
144
|
+
|
oprattr/mixins.py
ADDED
|
@@ -0,0 +1,415 @@
|
|
|
1
|
+
import numbers
|
|
2
|
+
import typing
|
|
3
|
+
|
|
4
|
+
import numpy
|
|
5
|
+
|
|
6
|
+
from . import _types
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
T = typing.TypeVar('T')
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
UserFunction = typing.Callable[..., T]
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class Numpy:
|
|
16
|
+
"""Mixin for adding support for `numpy` functions to numeric objects.
|
|
17
|
+
|
|
18
|
+
Classes that inherit from this class may implement support for `numpy`
|
|
19
|
+
universal functions ("ufuncs"; e.g., `numpy.sqrt`) by overloading
|
|
20
|
+
`_apply_ufunc`, and may implement support for `numpy` public functions
|
|
21
|
+
(e.g., `numpy.squeeze`) by overloading `_apply_function` and registering
|
|
22
|
+
individual function implementations via `implementation`.
|
|
23
|
+
|
|
24
|
+
It is important to note that the use cases of this class extend beyond
|
|
25
|
+
array-like objects. Both single- and multi-valued objects can benefit from
|
|
26
|
+
implementing support for `numpy` universal and public functions. For
|
|
27
|
+
example, it is possible to apply `numpy.sqrt` to both a real number and an
|
|
28
|
+
array
|
|
29
|
+
|
|
30
|
+
>>> numpy.sqrt(4)
|
|
31
|
+
2.0
|
|
32
|
+
>>> numpy.sqrt([4, 9])
|
|
33
|
+
array([2., 3.])
|
|
34
|
+
|
|
35
|
+
Even the trivial application of `numpy.mean` to a real number is defined:
|
|
36
|
+
|
|
37
|
+
>>> numpy.mean(2.5)
|
|
38
|
+
2.5
|
|
39
|
+
|
|
40
|
+
Notes
|
|
41
|
+
-----
|
|
42
|
+
- This class does not inherit from `numpy.lib.mixins.NDArrayOperatorsMixin`,
|
|
43
|
+
which implements most of the built-in Python numeric operators via
|
|
44
|
+
`__array_ufunc__`, because it assumes that subclasses independently
|
|
45
|
+
implement those methods.
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
def __init_subclass__(cls):
|
|
49
|
+
cls._UFUNC_TYPES |= {cls}
|
|
50
|
+
cls._FUNCTION_TYPES |= {cls}
|
|
51
|
+
cls._FUNCTIONS = {}
|
|
52
|
+
|
|
53
|
+
_UFUNC_TYPES = {
|
|
54
|
+
numpy.ndarray,
|
|
55
|
+
numbers.Number,
|
|
56
|
+
list,
|
|
57
|
+
_types.Object,
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
def __array_ufunc__(self, ufunc, method, *args, **kwargs):
|
|
61
|
+
"""Provide support for `numpy` universal functions.
|
|
62
|
+
|
|
63
|
+
See https://numpy.org/doc/stable/reference/arrays.classes.html for more
|
|
64
|
+
information on use of this special method.
|
|
65
|
+
|
|
66
|
+
Notes
|
|
67
|
+
-----
|
|
68
|
+
- This method first ensures that the input types (as well as the type of
|
|
69
|
+
`out`, if passed via keyword) are supported types. It then checks for
|
|
70
|
+
a custom implementation of `ufunc`. If there is a custom
|
|
71
|
+
implementation, this method applies it and returns the result. If
|
|
72
|
+
there is no custom implementation, this method passes control to
|
|
73
|
+
`_apply_ufunc`, to allow subclass customization.
|
|
74
|
+
- See `implementation` for additional guidance on custom
|
|
75
|
+
implementations.
|
|
76
|
+
|
|
77
|
+
See Also
|
|
78
|
+
--------
|
|
79
|
+
`implementation`
|
|
80
|
+
Class method for registering custom ufunc implementations.
|
|
81
|
+
|
|
82
|
+
`_apply_ufunc`
|
|
83
|
+
Instance method that allows custom handling of ufuncs corresponding
|
|
84
|
+
to standard Python numerical operators.
|
|
85
|
+
"""
|
|
86
|
+
out = kwargs.get('out', ())
|
|
87
|
+
accepted = tuple(self._UFUNC_TYPES)
|
|
88
|
+
if not all(isinstance(x, accepted) for x in args + out):
|
|
89
|
+
return NotImplemented
|
|
90
|
+
if out:
|
|
91
|
+
kwargs['out'] = tuple(
|
|
92
|
+
x._data if isinstance(x, _types.Object)
|
|
93
|
+
else x for x in out
|
|
94
|
+
)
|
|
95
|
+
if self._implements(ufunc):
|
|
96
|
+
operator = self._FUNCTIONS[ufunc]
|
|
97
|
+
return operator(*args, **kwargs)
|
|
98
|
+
return self._apply_ufunc(ufunc, method, *args, **kwargs)
|
|
99
|
+
|
|
100
|
+
def _apply_ufunc(self, ufunc, method, *args, **kwargs):
|
|
101
|
+
"""Apply a `numpy` universal function (a.k.a "ufunc") to data.
|
|
102
|
+
|
|
103
|
+
Notes
|
|
104
|
+
-----
|
|
105
|
+
- Subclasses that wish to customize support for ufuncs should overload
|
|
106
|
+
this method instead of `__array_ufunc__`.
|
|
107
|
+
- Subclasses should prefer to define custom implementations of specific
|
|
108
|
+
universal functions and register each via `implementation`, rather
|
|
109
|
+
than implementing function-specific logic in this method, since
|
|
110
|
+
`__array_ufunc__` will check for a custom implementation of a given
|
|
111
|
+
function before calling this method.
|
|
112
|
+
- The default implementation of this method applies the given ufunc to
|
|
113
|
+
real-valued data and directly returns the `numpy` result, without
|
|
114
|
+
attempting to create a new instance of the custom subclass.
|
|
115
|
+
|
|
116
|
+
See Also
|
|
117
|
+
--------
|
|
118
|
+
`implementation`
|
|
119
|
+
Class method for registering custom ufunc implementations.
|
|
120
|
+
|
|
121
|
+
`__array_ufunc__`
|
|
122
|
+
The entry point for `numpy` universal functions.
|
|
123
|
+
"""
|
|
124
|
+
operator = getattr(ufunc, method)
|
|
125
|
+
values = self._get_numpy_args(args)
|
|
126
|
+
try:
|
|
127
|
+
data = operator(*values, **kwargs)
|
|
128
|
+
except TypeError as err:
|
|
129
|
+
raise TypeError(
|
|
130
|
+
f"Unable to apply {ufunc} to {args}"
|
|
131
|
+
) from err
|
|
132
|
+
if method != 'at':
|
|
133
|
+
return data
|
|
134
|
+
|
|
135
|
+
_FUNCTION_TYPES = {
|
|
136
|
+
numpy.ndarray,
|
|
137
|
+
_types.Object,
|
|
138
|
+
} | set(numpy.ScalarType)
|
|
139
|
+
|
|
140
|
+
def __array_function__(self, func, types, args, kwargs):
|
|
141
|
+
"""Provide support for functions in the `numpy` public API.
|
|
142
|
+
|
|
143
|
+
See https://numpy.org/doc/stable/reference/arrays.classes.html for more
|
|
144
|
+
information of use of this special method. The implementation shown here
|
|
145
|
+
is a combination of the example on that page and code from the
|
|
146
|
+
definition of `EncapsulateNDArray.__array_function__` in
|
|
147
|
+
https://github.com/dask/dask/blob/main/dask/array/tests/test_dispatch.py
|
|
148
|
+
|
|
149
|
+
Notes
|
|
150
|
+
-----
|
|
151
|
+
- This method first checks that all `types` are in
|
|
152
|
+
`self._FUNCTION_TYPES`, thereby allowing subclasses that don't
|
|
153
|
+
override `__array_function__` to handle objects of this type. It then
|
|
154
|
+
checks for a custom implementation of `func`. If there is a custom
|
|
155
|
+
implementation, this method applies it and returns the result. If
|
|
156
|
+
there is no custom implementation, this method passes control to
|
|
157
|
+
`_apply_function`, to allow subclass customization.
|
|
158
|
+
- See `implementation` for additional guidance on custom
|
|
159
|
+
implementations.
|
|
160
|
+
|
|
161
|
+
See Also
|
|
162
|
+
--------
|
|
163
|
+
`implementation`
|
|
164
|
+
Class method for registering custom function implementations.
|
|
165
|
+
|
|
166
|
+
`_apply_function`
|
|
167
|
+
Instance method that allows custom handling of `numpy` public
|
|
168
|
+
functions when there is no registered custom implementation.
|
|
169
|
+
"""
|
|
170
|
+
accepted = tuple(self._FUNCTION_TYPES)
|
|
171
|
+
if not all(issubclass(ti, accepted) for ti in types):
|
|
172
|
+
return NotImplemented
|
|
173
|
+
if self._implements(func):
|
|
174
|
+
return self._FUNCTIONS[func](*args, **kwargs)
|
|
175
|
+
return self._apply_function(func, types, args, kwargs)
|
|
176
|
+
|
|
177
|
+
def _apply_function(self, func, types, args, kwargs):
|
|
178
|
+
"""Apply a function in the `numpy` public API.
|
|
179
|
+
|
|
180
|
+
Notes
|
|
181
|
+
-----
|
|
182
|
+
- Subclasses that wish to customize support for public functions should
|
|
183
|
+
overload this method instead of `__array_function__`.
|
|
184
|
+
- Subclasses should prefer to define custom implementations of specific
|
|
185
|
+
public functions and register each via `implementation`, rather than
|
|
186
|
+
implementing function-specific logic in this method, since
|
|
187
|
+
`__array_function__` will check for a custom implementation of a given
|
|
188
|
+
function before calling this method.
|
|
189
|
+
- The default implementation calls `_get_numpy_array` for access to
|
|
190
|
+
real-valued data via an instance of `numpy.ndarray`, `_get_numpy_args`
|
|
191
|
+
to convert `args` to appropriate operands, and `_get_numpy_types` to
|
|
192
|
+
extract appropriate operand types. Subclasses may choose to overload
|
|
193
|
+
any of those individual methods instead of overloading this method.
|
|
194
|
+
|
|
195
|
+
See Also
|
|
196
|
+
--------
|
|
197
|
+
`implementation`
|
|
198
|
+
Class method for registering custom ufunc implementations.
|
|
199
|
+
|
|
200
|
+
`__array_function__`
|
|
201
|
+
The entry point for `numpy` public functions.
|
|
202
|
+
"""
|
|
203
|
+
array = self._get_numpy_array()
|
|
204
|
+
if array is None:
|
|
205
|
+
return NotImplemented
|
|
206
|
+
if not isinstance(array, numpy.ndarray):
|
|
207
|
+
raise TypeError(
|
|
208
|
+
f"{self.__class__.__qualname__}._get_numpy_array"
|
|
209
|
+
" did not return a numpy.ndarray"
|
|
210
|
+
) from None
|
|
211
|
+
args = self._get_numpy_args(args)
|
|
212
|
+
types = self._get_numpy_types(types)
|
|
213
|
+
return array.__array_function__(func, types, args, kwargs)
|
|
214
|
+
|
|
215
|
+
def _get_numpy_array(self) -> typing.Optional[numpy.typing.NDArray]:
|
|
216
|
+
"""Convert the data interface to an array for `numpy` mixin methods.
|
|
217
|
+
|
|
218
|
+
Notes
|
|
219
|
+
-----
|
|
220
|
+
- This method allows subclass implementations to control how they
|
|
221
|
+
convert their data interface to a `numpy.ndarray` for use with `numpy`
|
|
222
|
+
public functions.
|
|
223
|
+
- Returning `None` from this method will cause `_apply_function` to
|
|
224
|
+
return `NotImplemented`.
|
|
225
|
+
- The default implementation unconditionally returns `None`.
|
|
226
|
+
"""
|
|
227
|
+
return
|
|
228
|
+
|
|
229
|
+
def _get_numpy_args(self, args):
|
|
230
|
+
"""Convert `args` to operands of a `numpy` function.
|
|
231
|
+
|
|
232
|
+
This method will call `~_get_arg_data` on each member of `args` in order
|
|
233
|
+
to build a `tuple` of suitable operands. Subclasses may overload
|
|
234
|
+
`~_get_arg_data` to customize access to their data attribute.
|
|
235
|
+
"""
|
|
236
|
+
return tuple(self._get_arg_data(arg) for arg in args)
|
|
237
|
+
|
|
238
|
+
def _get_arg_data(self, arg):
|
|
239
|
+
"""Convert `arg` to an operand of a `numpy` function.
|
|
240
|
+
|
|
241
|
+
See Also
|
|
242
|
+
--------
|
|
243
|
+
`~_get_numpy_args`
|
|
244
|
+
The method that calls this method in a loop.
|
|
245
|
+
|
|
246
|
+
Notes
|
|
247
|
+
-----
|
|
248
|
+
- This method allows a subclass to customize how `numpy` functions
|
|
249
|
+
access its data attribute.
|
|
250
|
+
- The default implementation will return the `data` attribute of a of
|
|
251
|
+
`arg` if `arg` is an instance of the base object class; otherwise, it
|
|
252
|
+
will return the unmodified argument.
|
|
253
|
+
"""
|
|
254
|
+
if isinstance(arg, _types.Object):
|
|
255
|
+
return arg._data
|
|
256
|
+
return arg
|
|
257
|
+
|
|
258
|
+
def _get_numpy_types(self, types):
|
|
259
|
+
"""Extract appropriate types for a `numpy` function.
|
|
260
|
+
|
|
261
|
+
Notes
|
|
262
|
+
-----
|
|
263
|
+
- This method allows subclasses to restrict the object types that they
|
|
264
|
+
pass to `numpy` public functions via `_apply_function`.
|
|
265
|
+
- The default implementation returns a tuple that contains all types
|
|
266
|
+
except for subtypes of `~_types.Quantity`.
|
|
267
|
+
"""
|
|
268
|
+
return tuple(
|
|
269
|
+
ti for ti in types
|
|
270
|
+
if not issubclass(ti, _types.Object)
|
|
271
|
+
)
|
|
272
|
+
|
|
273
|
+
@classmethod
|
|
274
|
+
def _implements(cls, operation: typing.Callable):
|
|
275
|
+
"""True if this class defines a custom implementation for `operation`.
|
|
276
|
+
|
|
277
|
+
This is a helper methods that gracefully handles the case in which a
|
|
278
|
+
subclass does not support custom operator implementations.
|
|
279
|
+
"""
|
|
280
|
+
try:
|
|
281
|
+
result = operation in cls._FUNCTIONS
|
|
282
|
+
except TypeError:
|
|
283
|
+
return False
|
|
284
|
+
return result
|
|
285
|
+
|
|
286
|
+
_FUNCTIONS: typing.Dict[str, typing.Callable]=None
|
|
287
|
+
"""Internal collection of custom `numpy` function implementations."""
|
|
288
|
+
|
|
289
|
+
@classmethod
|
|
290
|
+
def implementation(cls, numpy_function: typing.Callable, /):
|
|
291
|
+
"""Register a custom implementation of this `numpy` function.
|
|
292
|
+
|
|
293
|
+
Parameters
|
|
294
|
+
----------
|
|
295
|
+
numpy_function : callable
|
|
296
|
+
The `numpy` universal or public function to implement.
|
|
297
|
+
|
|
298
|
+
Notes
|
|
299
|
+
-----
|
|
300
|
+
- Users may register `numpy` universal functions (a.k.a. ufuncs;
|
|
301
|
+
https://numpy.org/doc/stable/reference/ufuncs.html) as well as
|
|
302
|
+
functions in the public `numpy` API (e.g., `numpy.mean`). This may be
|
|
303
|
+
important if, for example, a class needs to implement a custom version
|
|
304
|
+
of `numpy.sqrt`, which is a ufunc.
|
|
305
|
+
- See https://numpy.org/doc/stable/reference/arrays.classes.html for the
|
|
306
|
+
suggestion on which this method is based.
|
|
307
|
+
|
|
308
|
+
Examples
|
|
309
|
+
--------
|
|
310
|
+
Overload `numpy.mean` for an existing class called `Array` with a
|
|
311
|
+
version that accepts no keyword arguments:
|
|
312
|
+
|
|
313
|
+
```
|
|
314
|
+
@Array.implementation(numpy.mean)
|
|
315
|
+
def mean(a: Array, **kwargs) -> Array:
|
|
316
|
+
if kwargs:
|
|
317
|
+
msg = "Cannot pass keywords to numpy.mean with Array" raise
|
|
318
|
+
TypeError(msg)
|
|
319
|
+
return numpy.sum(a) / len(a)
|
|
320
|
+
```
|
|
321
|
+
|
|
322
|
+
This will compute the mean of the underlying data when called with no
|
|
323
|
+
arguments, but will raise an exception when called with arguments:
|
|
324
|
+
|
|
325
|
+
>>> v = Array([[1, 2], [3, 4]])
|
|
326
|
+
>>> numpy.mean(v)
|
|
327
|
+
5.0
|
|
328
|
+
>>> numpy.mean(v, axis=0)
|
|
329
|
+
...
|
|
330
|
+
TypeError: Cannot pass keywords to numpy.mean with Array
|
|
331
|
+
|
|
332
|
+
See Also
|
|
333
|
+
--------
|
|
334
|
+
`~implements`
|
|
335
|
+
"""
|
|
336
|
+
if not callable(numpy_function):
|
|
337
|
+
raise TypeError(
|
|
338
|
+
"The target operation of a custom numpy implementation"
|
|
339
|
+
" must be callable"
|
|
340
|
+
) from None
|
|
341
|
+
def decorator(user_function: UserFunction):
|
|
342
|
+
if cls._FUNCTIONS is None:
|
|
343
|
+
raise NotImplementedError(
|
|
344
|
+
f"Type {cls} does not support custom implementations"
|
|
345
|
+
" of numpy functions"
|
|
346
|
+
) from None
|
|
347
|
+
cls._FUNCTIONS[numpy_function] = user_function
|
|
348
|
+
return user_function
|
|
349
|
+
return decorator
|
|
350
|
+
|
|
351
|
+
@classmethod
|
|
352
|
+
def implement(
|
|
353
|
+
cls,
|
|
354
|
+
numpy_function: typing.Callable,
|
|
355
|
+
user_function: UserFunction,
|
|
356
|
+
/,
|
|
357
|
+
) -> None:
|
|
358
|
+
"""Implement a `numpy` function via a given user function.
|
|
359
|
+
|
|
360
|
+
This method serves as an alternative to the class method
|
|
361
|
+
`implementation`, which is primarily meant to be used as a decorator.
|
|
362
|
+
This method allows the user to directly associate a custom
|
|
363
|
+
implementation with the target `numpy` function.
|
|
364
|
+
|
|
365
|
+
Parameters
|
|
366
|
+
----------
|
|
367
|
+
numpy_function : callable
|
|
368
|
+
The `numpy` universal or public function to implement.
|
|
369
|
+
|
|
370
|
+
user_function: callable
|
|
371
|
+
The custom implementation to associate with `numpy_function`.
|
|
372
|
+
|
|
373
|
+
Examples
|
|
374
|
+
--------
|
|
375
|
+
Here is an alternative to the `~implementation` example usage:
|
|
376
|
+
|
|
377
|
+
```
|
|
378
|
+
def mean(a: Array, **kwargs) -> Array:
|
|
379
|
+
if kwargs:
|
|
380
|
+
msg = "Cannot pass keywords to numpy.mean with Array" raise
|
|
381
|
+
TypeError(msg)
|
|
382
|
+
return numpy.sum(a) / len(a)
|
|
383
|
+
|
|
384
|
+
Array.implement(numpy.mean, mean)
|
|
385
|
+
```
|
|
386
|
+
|
|
387
|
+
However, a more useful application may be to associate multiple `numpy`
|
|
388
|
+
functions with a single custom implementation:
|
|
389
|
+
|
|
390
|
+
```
|
|
391
|
+
def trig(f: numpy.ufunc):
|
|
392
|
+
def method(a: Array):
|
|
393
|
+
... # custom implementation
|
|
394
|
+
return method
|
|
395
|
+
|
|
396
|
+
for f in {numpy.sin, numpy.cos, numpy.tan}:
|
|
397
|
+
Array.implement(f, trig(f))
|
|
398
|
+
```
|
|
399
|
+
|
|
400
|
+
See Also
|
|
401
|
+
--------
|
|
402
|
+
`~implementation`
|
|
403
|
+
"""
|
|
404
|
+
if not callable(numpy_function):
|
|
405
|
+
raise TypeError(
|
|
406
|
+
"The target operation of a custom numpy implementation"
|
|
407
|
+
" must be callable"
|
|
408
|
+
) from None
|
|
409
|
+
if cls._FUNCTIONS is None:
|
|
410
|
+
raise NotImplementedError(
|
|
411
|
+
f"Type {cls} does not support custom implementations"
|
|
412
|
+
" of numpy functions"
|
|
413
|
+
) from None
|
|
414
|
+
cls._FUNCTIONS[numpy_function] = user_function
|
|
415
|
+
|
oprattr/operators.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
"""
|
|
2
|
+
A namespace for operators used by this package's `Object` class.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
import builtins
|
|
6
|
+
import operator
|
|
7
|
+
import typing
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class Operator:
|
|
11
|
+
"""Base class for enhanced operators."""
|
|
12
|
+
def __init__(self, __f: typing.Callable, operation: str):
|
|
13
|
+
self._f = __f
|
|
14
|
+
self._operation = operation
|
|
15
|
+
|
|
16
|
+
def __repr__(self):
|
|
17
|
+
"""Called for repr(self)."""
|
|
18
|
+
return self._operation
|
|
19
|
+
|
|
20
|
+
def __call__(self, *args, **kwds):
|
|
21
|
+
"""Called for self(*args, **kwds)."""
|
|
22
|
+
return self._f(*args, **kwds)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
eq = Operator(operator.eq, r'a == b')
|
|
26
|
+
ne = Operator(operator.ne, r'a != b')
|
|
27
|
+
lt = Operator(operator.lt, r'a < b')
|
|
28
|
+
le = Operator(operator.le, r'a <= b')
|
|
29
|
+
gt = Operator(operator.gt, r'a > b')
|
|
30
|
+
ge = Operator(operator.ge, r'a >= b')
|
|
31
|
+
abs = Operator(builtins.abs, r'abs(a)')
|
|
32
|
+
pos = Operator(operator.pos, r'+a')
|
|
33
|
+
neg = Operator(operator.neg, r'-a')
|
|
34
|
+
add = Operator(operator.add, r'a + b')
|
|
35
|
+
sub = Operator(operator.sub, r'a - b')
|
|
36
|
+
mul = Operator(operator.mul, r'a * b')
|
|
37
|
+
truediv = Operator(operator.truediv, r'a / b')
|
|
38
|
+
floordiv = Operator(operator.floordiv, r'a // b')
|
|
39
|
+
mod = Operator(operator.mod, r'a % b')
|
|
40
|
+
pow = Operator(builtins.pow, r'a ** b')
|
|
41
|
+
|
oprattr/py.typed
ADDED
|
File without changes
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: oprattr
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: Add your description here
|
|
5
|
+
Author-email: Matthew Young <myoung.space.science@gmail.com>
|
|
6
|
+
Requires-Python: >=3.10
|
|
7
|
+
Requires-Dist: numpy>=2.2.1
|
|
8
|
+
Requires-Dist: scipy>=1.15.0
|
|
9
|
+
Description-Content-Type: text/markdown
|
|
10
|
+
|
|
11
|
+
# oprattr: Self-Consistent Operations on Object Attributes
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
oprattr/__init__.py,sha256=_mEw0H7v3bpKXFPvM_koOVnvsUQLO3HK6zBmnKCOFQU,5553
|
|
2
|
+
oprattr/_operations.py,sha256=e8kTjc183mKR51EX2Ds22kPx0dQc5uqct2btgHzCgoY,5829
|
|
3
|
+
oprattr/_types.py,sha256=TzTt9GkQ5KZc5kqajdLnn8EcvxzMj3SALSI5iJrB6Vk,3182
|
|
4
|
+
oprattr/mixins.py,sha256=G-4aVbQ1wLDz15KSFL9yWqlU5HXQFwp4g7VoFjl7_24,15471
|
|
5
|
+
oprattr/operators.py,sha256=skqQpIezGSDbsmB2h-UNnxG_7aDGT6PsnvUkondpwOg,1154
|
|
6
|
+
oprattr/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
|
+
oprattr-0.1.0.dist-info/METADATA,sha256=nwgndllGe5R1KX3UGxZjzvVcpdPG7jg9NQJDO8LtQhI,328
|
|
8
|
+
oprattr-0.1.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
9
|
+
oprattr-0.1.0.dist-info/RECORD,,
|