opik-optimizer 0.7.2__py3-none-any.whl → 0.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- opik_optimizer/__init__.py +2 -0
- opik_optimizer/_throttle.py +30 -30
- opik_optimizer/base_optimizer.py +1 -80
- opik_optimizer/data/hotpot-500.json +2502 -0
- opik_optimizer/demo/datasets.py +15 -32
- opik_optimizer/evolutionary_optimizer/__init__.py +1 -0
- opik_optimizer/evolutionary_optimizer/evolutionary_optimizer.py +1447 -0
- opik_optimizer/few_shot_bayesian_optimizer/few_shot_bayesian_optimizer.py +7 -7
- opik_optimizer/meta_prompt_optimizer.py +3 -0
- opik_optimizer/mipro_optimizer/_lm.py +2 -2
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.4.dist-info}/METADATA +30 -28
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.4.dist-info}/RECORD +15 -12
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.4.dist-info}/WHEEL +1 -1
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.4.dist-info}/licenses/LICENSE +0 -0
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.4.dist-info}/top_level.txt +0 -0
opik_optimizer/__init__.py
CHANGED
@@ -27,12 +27,14 @@ from opik.evaluation.models.litellm import warning_filters
|
|
27
27
|
warning_filters.add_warning_filters()
|
28
28
|
|
29
29
|
from .optimization_result import OptimizationResult
|
30
|
+
from opik_optimizer.evolutionary_optimizer.evolutionary_optimizer import EvolutionaryOptimizer
|
30
31
|
|
31
32
|
__all__ = [
|
32
33
|
"BaseOptimizer",
|
33
34
|
"FewShotBayesianOptimizer",
|
34
35
|
"MetaPromptOptimizer",
|
35
36
|
"MiproOptimizer",
|
37
|
+
"EvolutionaryOptimizer",
|
36
38
|
"MetricConfig",
|
37
39
|
"OptimizationConfig",
|
38
40
|
"TaskConfig",
|
opik_optimizer/_throttle.py
CHANGED
@@ -1,43 +1,43 @@
|
|
1
|
-
import
|
1
|
+
import functools
|
2
|
+
import pyrate_limiter
|
2
3
|
import time
|
3
|
-
import
|
4
|
-
|
4
|
+
import opik.config
|
5
|
+
|
6
|
+
from typing import Callable, Any
|
7
|
+
|
5
8
|
|
6
9
|
class RateLimiter:
|
7
10
|
"""
|
8
|
-
Rate limiter that enforces a maximum number of calls across all threads.
|
11
|
+
Rate limiter that enforces a maximum number of calls across all threads using pyrate_limiter.
|
9
12
|
"""
|
10
|
-
def __init__(self, max_calls_per_second):
|
13
|
+
def __init__(self, max_calls_per_second: int):
|
11
14
|
self.max_calls_per_second = max_calls_per_second
|
12
|
-
|
13
|
-
|
14
|
-
self.
|
15
|
+
rate = pyrate_limiter.Rate(max_calls_per_second, pyrate_limiter.Duration.SECOND)
|
16
|
+
|
17
|
+
self.limiter = pyrate_limiter.Limiter(rate, raise_when_fail=False)
|
18
|
+
self.bucket_key = "global_rate_limit"
|
15
19
|
|
16
|
-
def acquire(self):
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
with self.lock:
|
22
|
-
current_time = time.time()
|
23
|
-
time_since_last = current_time - self.last_call_time
|
24
|
-
|
25
|
-
# If we haven't waited long enough since the last call
|
26
|
-
if time_since_last < self.interval:
|
27
|
-
# Calculate how much longer we need to wait
|
28
|
-
sleep_time = self.interval - time_since_last
|
29
|
-
time.sleep(sleep_time)
|
30
|
-
|
31
|
-
# Update the last call time (after potential sleep)
|
32
|
-
self.last_call_time = time.time()
|
33
|
-
|
34
|
-
def rate_limited(limiter):
|
20
|
+
def acquire(self) -> None:
|
21
|
+
while not self.limiter.try_acquire(self.bucket_key):
|
22
|
+
time.sleep(0.01)
|
23
|
+
|
24
|
+
def rate_limited(limiter: RateLimiter) -> Callable[[Callable], Callable]:
|
35
25
|
"""Decorator to rate limit a function using the provided limiter"""
|
36
|
-
|
37
|
-
|
38
|
-
|
26
|
+
|
27
|
+
def decorator(func: Callable) -> Callable:
|
28
|
+
@functools.wraps(func)
|
29
|
+
def wrapper(*args, **kwargs) -> Any:
|
39
30
|
limiter.acquire()
|
40
31
|
return func(*args, **kwargs)
|
41
32
|
return wrapper
|
42
33
|
return decorator
|
43
34
|
|
35
|
+
|
36
|
+
def get_rate_limiter_for_current_opik_installation() -> RateLimiter:
|
37
|
+
opik_config = opik.config.OpikConfig()
|
38
|
+
max_calls_per_second = (
|
39
|
+
10
|
40
|
+
if opik_config.is_cloud_installation
|
41
|
+
else 50
|
42
|
+
)
|
43
|
+
return RateLimiter(max_calls_per_second=max_calls_per_second)
|
opik_optimizer/base_optimizer.py
CHANGED
@@ -12,7 +12,7 @@ from .cache_config import initialize_cache
|
|
12
12
|
from opik.evaluation.models.litellm import opik_monitor as opik_litellm_monitor
|
13
13
|
from .optimization_config.configs import TaskConfig, MetricConfig
|
14
14
|
|
15
|
-
limiter = RateLimiter(max_calls_per_second=
|
15
|
+
limiter = RateLimiter(max_calls_per_second=8)
|
16
16
|
|
17
17
|
# Don't use unsupported params:
|
18
18
|
litellm.drop_params = True
|
@@ -141,85 +141,6 @@ class BaseOptimizer:
|
|
141
141
|
"""
|
142
142
|
self._history.append(round_data)
|
143
143
|
|
144
|
-
@rate_limited(limiter)
|
145
|
-
def _call_model(
|
146
|
-
self,
|
147
|
-
prompt: str,
|
148
|
-
system_prompt: Optional[str] = None,
|
149
|
-
is_reasoning: bool = False,
|
150
|
-
) -> str:
|
151
|
-
"""Call the model to get suggestions based on the meta-prompt."""
|
152
|
-
model = self.reasoning_model if is_reasoning else self.model
|
153
|
-
messages = []
|
154
|
-
|
155
|
-
if system_prompt:
|
156
|
-
messages.append({"role": "system", "content": system_prompt})
|
157
|
-
logger.debug(f"Using custom system prompt: {system_prompt[:100]}...")
|
158
|
-
else:
|
159
|
-
messages.append(
|
160
|
-
{"role": "system", "content": "You are a helpful assistant."}
|
161
|
-
)
|
162
|
-
|
163
|
-
messages.append({"role": "user", "content": prompt})
|
164
|
-
logger.debug(f"Calling model {model} with prompt: {prompt[:100]}...")
|
165
|
-
|
166
|
-
api_params = self.model_kwargs.copy()
|
167
|
-
api_params.update(
|
168
|
-
{
|
169
|
-
"model": model,
|
170
|
-
"messages": messages,
|
171
|
-
# Ensure required params like 'temperature', 'max_tokens' are present
|
172
|
-
# Defaults added here for safety, though usually set in __init__ kwargs
|
173
|
-
"temperature": api_params.get("temperature", 0.3),
|
174
|
-
"max_tokens": api_params.get("max_tokens", 1000),
|
175
|
-
}
|
176
|
-
)
|
177
|
-
|
178
|
-
# Attempt to add Opik monitoring if available
|
179
|
-
try:
|
180
|
-
# Assuming opik_litellm_monitor is imported and configured elsewhere
|
181
|
-
api_params = opik_litellm_monitor.try_add_opik_monitoring_to_params(
|
182
|
-
api_params
|
183
|
-
)
|
184
|
-
logger.debug("Opik monitoring hooks added to LiteLLM params.")
|
185
|
-
except Exception as e:
|
186
|
-
logger.warning(f"Could not add Opik monitoring to LiteLLM params: {e}")
|
187
|
-
|
188
|
-
logger.debug(
|
189
|
-
f"Final API params (excluding messages): { {k:v for k,v in api_params.items() if k != 'messages'} }"
|
190
|
-
)
|
191
|
-
|
192
|
-
# Increment Counter
|
193
|
-
self.llm_call_counter += 1
|
194
|
-
logger.debug(f"LLM Call Count: {self.llm_call_counter}")
|
195
|
-
|
196
|
-
try:
|
197
|
-
response = litellm.completion(**api_params)
|
198
|
-
model_output = response.choices[0].message.content.strip()
|
199
|
-
logger.debug(f"Model response from {model_to_use}: {model_output[:100]}...")
|
200
|
-
return model_output
|
201
|
-
except litellm.exceptions.RateLimitError as e:
|
202
|
-
logger.error(f"LiteLLM Rate Limit Error for model {model_to_use}: {e}")
|
203
|
-
# Consider adding retry logic here with tenacity
|
204
|
-
raise
|
205
|
-
except litellm.exceptions.APIConnectionError as e:
|
206
|
-
logger.error(f"LiteLLM API Connection Error for model {model_to_use}: {e}")
|
207
|
-
# Consider adding retry logic here
|
208
|
-
raise
|
209
|
-
except litellm.exceptions.ContextWindowExceededError as e:
|
210
|
-
logger.error(
|
211
|
-
f"LiteLLM Context Window Exceeded Error for model {model_to_use}. Prompt length: {len(prompt)}. Details: {e}"
|
212
|
-
)
|
213
|
-
raise
|
214
|
-
except litellm.exceptions.APIError as e: # Catch broader API errors
|
215
|
-
logger.error(f"LiteLLM API Error for model {model_to_use}: {e}")
|
216
|
-
raise
|
217
|
-
except Exception as e:
|
218
|
-
# Catch any other unexpected errors
|
219
|
-
logger.error(
|
220
|
-
f"Unexpected error during model call to {model_to_use}: {type(e).__name__} - {e}"
|
221
|
-
)
|
222
|
-
raise
|
223
144
|
|
224
145
|
def update_optimization(self, optimization, status: str) -> None:
|
225
146
|
"""
|