opik-optimizer 0.7.2__py3-none-any.whl → 0.7.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- opik_optimizer/_throttle.py +30 -30
- opik_optimizer/base_optimizer.py +1 -80
- opik_optimizer/few_shot_bayesian_optimizer/few_shot_bayesian_optimizer.py +7 -7
- opik_optimizer/meta_prompt_optimizer.py +3 -0
- opik_optimizer/mipro_optimizer/_lm.py +2 -2
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.3.dist-info}/METADATA +29 -28
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.3.dist-info}/RECORD +10 -10
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.3.dist-info}/WHEEL +0 -0
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.3.dist-info}/licenses/LICENSE +0 -0
- {opik_optimizer-0.7.2.dist-info → opik_optimizer-0.7.3.dist-info}/top_level.txt +0 -0
opik_optimizer/_throttle.py
CHANGED
@@ -1,43 +1,43 @@
|
|
1
|
-
import
|
1
|
+
import functools
|
2
|
+
import pyrate_limiter
|
2
3
|
import time
|
3
|
-
import
|
4
|
-
|
4
|
+
import opik.config
|
5
|
+
|
6
|
+
from typing import Callable, Any
|
7
|
+
|
5
8
|
|
6
9
|
class RateLimiter:
|
7
10
|
"""
|
8
|
-
Rate limiter that enforces a maximum number of calls across all threads.
|
11
|
+
Rate limiter that enforces a maximum number of calls across all threads using pyrate_limiter.
|
9
12
|
"""
|
10
|
-
def __init__(self, max_calls_per_second):
|
13
|
+
def __init__(self, max_calls_per_second: int):
|
11
14
|
self.max_calls_per_second = max_calls_per_second
|
12
|
-
|
13
|
-
|
14
|
-
self.
|
15
|
+
rate = pyrate_limiter.Rate(max_calls_per_second, pyrate_limiter.Duration.SECOND)
|
16
|
+
|
17
|
+
self.limiter = pyrate_limiter.Limiter(rate, raise_when_fail=False)
|
18
|
+
self.bucket_key = "global_rate_limit"
|
15
19
|
|
16
|
-
def acquire(self):
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
with self.lock:
|
22
|
-
current_time = time.time()
|
23
|
-
time_since_last = current_time - self.last_call_time
|
24
|
-
|
25
|
-
# If we haven't waited long enough since the last call
|
26
|
-
if time_since_last < self.interval:
|
27
|
-
# Calculate how much longer we need to wait
|
28
|
-
sleep_time = self.interval - time_since_last
|
29
|
-
time.sleep(sleep_time)
|
30
|
-
|
31
|
-
# Update the last call time (after potential sleep)
|
32
|
-
self.last_call_time = time.time()
|
33
|
-
|
34
|
-
def rate_limited(limiter):
|
20
|
+
def acquire(self) -> None:
|
21
|
+
while not self.limiter.try_acquire(self.bucket_key):
|
22
|
+
time.sleep(0.01)
|
23
|
+
|
24
|
+
def rate_limited(limiter: RateLimiter) -> Callable[[Callable], Callable]:
|
35
25
|
"""Decorator to rate limit a function using the provided limiter"""
|
36
|
-
|
37
|
-
|
38
|
-
|
26
|
+
|
27
|
+
def decorator(func: Callable) -> Callable:
|
28
|
+
@functools.wraps(func)
|
29
|
+
def wrapper(*args, **kwargs) -> Any:
|
39
30
|
limiter.acquire()
|
40
31
|
return func(*args, **kwargs)
|
41
32
|
return wrapper
|
42
33
|
return decorator
|
43
34
|
|
35
|
+
|
36
|
+
def get_rate_limiter_for_current_opik_installation() -> RateLimiter:
|
37
|
+
opik_config = opik.config.OpikConfig()
|
38
|
+
max_calls_per_second = (
|
39
|
+
10
|
40
|
+
if opik_config.is_cloud_installation
|
41
|
+
else 50
|
42
|
+
)
|
43
|
+
return RateLimiter(max_calls_per_second=max_calls_per_second)
|
opik_optimizer/base_optimizer.py
CHANGED
@@ -12,7 +12,7 @@ from .cache_config import initialize_cache
|
|
12
12
|
from opik.evaluation.models.litellm import opik_monitor as opik_litellm_monitor
|
13
13
|
from .optimization_config.configs import TaskConfig, MetricConfig
|
14
14
|
|
15
|
-
limiter = RateLimiter(max_calls_per_second=
|
15
|
+
limiter = RateLimiter(max_calls_per_second=8)
|
16
16
|
|
17
17
|
# Don't use unsupported params:
|
18
18
|
litellm.drop_params = True
|
@@ -141,85 +141,6 @@ class BaseOptimizer:
|
|
141
141
|
"""
|
142
142
|
self._history.append(round_data)
|
143
143
|
|
144
|
-
@rate_limited(limiter)
|
145
|
-
def _call_model(
|
146
|
-
self,
|
147
|
-
prompt: str,
|
148
|
-
system_prompt: Optional[str] = None,
|
149
|
-
is_reasoning: bool = False,
|
150
|
-
) -> str:
|
151
|
-
"""Call the model to get suggestions based on the meta-prompt."""
|
152
|
-
model = self.reasoning_model if is_reasoning else self.model
|
153
|
-
messages = []
|
154
|
-
|
155
|
-
if system_prompt:
|
156
|
-
messages.append({"role": "system", "content": system_prompt})
|
157
|
-
logger.debug(f"Using custom system prompt: {system_prompt[:100]}...")
|
158
|
-
else:
|
159
|
-
messages.append(
|
160
|
-
{"role": "system", "content": "You are a helpful assistant."}
|
161
|
-
)
|
162
|
-
|
163
|
-
messages.append({"role": "user", "content": prompt})
|
164
|
-
logger.debug(f"Calling model {model} with prompt: {prompt[:100]}...")
|
165
|
-
|
166
|
-
api_params = self.model_kwargs.copy()
|
167
|
-
api_params.update(
|
168
|
-
{
|
169
|
-
"model": model,
|
170
|
-
"messages": messages,
|
171
|
-
# Ensure required params like 'temperature', 'max_tokens' are present
|
172
|
-
# Defaults added here for safety, though usually set in __init__ kwargs
|
173
|
-
"temperature": api_params.get("temperature", 0.3),
|
174
|
-
"max_tokens": api_params.get("max_tokens", 1000),
|
175
|
-
}
|
176
|
-
)
|
177
|
-
|
178
|
-
# Attempt to add Opik monitoring if available
|
179
|
-
try:
|
180
|
-
# Assuming opik_litellm_monitor is imported and configured elsewhere
|
181
|
-
api_params = opik_litellm_monitor.try_add_opik_monitoring_to_params(
|
182
|
-
api_params
|
183
|
-
)
|
184
|
-
logger.debug("Opik monitoring hooks added to LiteLLM params.")
|
185
|
-
except Exception as e:
|
186
|
-
logger.warning(f"Could not add Opik monitoring to LiteLLM params: {e}")
|
187
|
-
|
188
|
-
logger.debug(
|
189
|
-
f"Final API params (excluding messages): { {k:v for k,v in api_params.items() if k != 'messages'} }"
|
190
|
-
)
|
191
|
-
|
192
|
-
# Increment Counter
|
193
|
-
self.llm_call_counter += 1
|
194
|
-
logger.debug(f"LLM Call Count: {self.llm_call_counter}")
|
195
|
-
|
196
|
-
try:
|
197
|
-
response = litellm.completion(**api_params)
|
198
|
-
model_output = response.choices[0].message.content.strip()
|
199
|
-
logger.debug(f"Model response from {model_to_use}: {model_output[:100]}...")
|
200
|
-
return model_output
|
201
|
-
except litellm.exceptions.RateLimitError as e:
|
202
|
-
logger.error(f"LiteLLM Rate Limit Error for model {model_to_use}: {e}")
|
203
|
-
# Consider adding retry logic here with tenacity
|
204
|
-
raise
|
205
|
-
except litellm.exceptions.APIConnectionError as e:
|
206
|
-
logger.error(f"LiteLLM API Connection Error for model {model_to_use}: {e}")
|
207
|
-
# Consider adding retry logic here
|
208
|
-
raise
|
209
|
-
except litellm.exceptions.ContextWindowExceededError as e:
|
210
|
-
logger.error(
|
211
|
-
f"LiteLLM Context Window Exceeded Error for model {model_to_use}. Prompt length: {len(prompt)}. Details: {e}"
|
212
|
-
)
|
213
|
-
raise
|
214
|
-
except litellm.exceptions.APIError as e: # Catch broader API errors
|
215
|
-
logger.error(f"LiteLLM API Error for model {model_to_use}: {e}")
|
216
|
-
raise
|
217
|
-
except Exception as e:
|
218
|
-
# Catch any other unexpected errors
|
219
|
-
logger.error(
|
220
|
-
f"Unexpected error during model call to {model_to_use}: {type(e).__name__} - {e}"
|
221
|
-
)
|
222
|
-
raise
|
223
144
|
|
224
145
|
def update_optimization(self, optimization, status: str) -> None:
|
225
146
|
"""
|
@@ -1,8 +1,8 @@
|
|
1
1
|
import random
|
2
|
-
from typing import Any, Dict, List, Tuple, Union, Optional,
|
3
|
-
import openai
|
2
|
+
from typing import Any, Dict, List, Tuple, Union, Optional, Literal
|
4
3
|
import opik
|
5
4
|
import optuna
|
5
|
+
import optuna.samplers
|
6
6
|
import logging
|
7
7
|
import json
|
8
8
|
|
@@ -14,18 +14,18 @@ from opik_optimizer import base_optimizer
|
|
14
14
|
|
15
15
|
from . import prompt_parameter
|
16
16
|
from . import prompt_templates
|
17
|
-
from ..
|
17
|
+
from .. import _throttle
|
18
18
|
from .. import optimization_result, task_evaluator
|
19
19
|
|
20
20
|
import litellm
|
21
21
|
|
22
22
|
from opik.evaluation.models.litellm import opik_monitor as opik_litellm_monitor
|
23
23
|
|
24
|
-
|
24
|
+
_limiter = _throttle.get_rate_limiter_for_current_opik_installation()
|
25
25
|
|
26
26
|
logger = logging.getLogger(__name__)
|
27
27
|
|
28
|
-
@rate_limited(
|
28
|
+
@_throttle.rate_limited(_limiter)
|
29
29
|
def _call_model(model, messages, seed, model_kwargs):
|
30
30
|
model_kwargs = opik_litellm_monitor.try_add_opik_monitoring_to_params(model_kwargs)
|
31
31
|
|
@@ -59,7 +59,6 @@ class FewShotBayesianOptimizer(base_optimizer.BaseOptimizer):
|
|
59
59
|
self.n_threads = n_threads
|
60
60
|
self.n_initial_prompts = n_initial_prompts
|
61
61
|
self.n_iterations = n_iterations
|
62
|
-
|
63
62
|
self._opik_client = opik.Opik()
|
64
63
|
logger.debug(f"Initialized FewShotBayesianOptimizer with model: {model}")
|
65
64
|
|
@@ -240,7 +239,8 @@ class FewShotBayesianOptimizer(base_optimizer.BaseOptimizer):
|
|
240
239
|
except Exception as e:
|
241
240
|
logger.warning(f"Could not configure Optuna logging within optimizer: {e}")
|
242
241
|
|
243
|
-
|
242
|
+
sampler = optuna.samplers.TPESampler(seed=self.seed)
|
243
|
+
study = optuna.create_study(direction="maximize", sampler=sampler)
|
244
244
|
study.optimize(optimization_objective, n_trials=n_trials)
|
245
245
|
logger.info("Optuna study finished.")
|
246
246
|
|
@@ -16,6 +16,7 @@ from opik_optimizer import task_evaluator
|
|
16
16
|
from opik.api_objects import opik_client
|
17
17
|
from opik.evaluation.models.litellm import opik_monitor as opik_litellm_monitor
|
18
18
|
from opik.environment import get_tqdm_for_current_environment
|
19
|
+
from . import _throttle
|
19
20
|
|
20
21
|
tqdm = get_tqdm_for_current_environment()
|
21
22
|
|
@@ -26,6 +27,7 @@ litellm.cache = Cache(type="disk", disk_cache_dir=disk_cache_dir)
|
|
26
27
|
# Set up logging
|
27
28
|
logger = logging.getLogger(__name__) # Gets logger configured by setup_logging
|
28
29
|
|
30
|
+
_rate_limiter = _throttle.get_rate_limiter_for_current_opik_installation()
|
29
31
|
|
30
32
|
class MetaPromptOptimizer(BaseOptimizer):
|
31
33
|
"""Optimizer that uses meta-prompting to improve prompts based on examples and performance."""
|
@@ -176,6 +178,7 @@ class MetaPromptOptimizer(BaseOptimizer):
|
|
176
178
|
optimization_id=optimization_id,
|
177
179
|
)
|
178
180
|
|
181
|
+
@_throttle.rate_limited(_rate_limiter)
|
179
182
|
def _call_model(
|
180
183
|
self,
|
181
184
|
prompt: str,
|
@@ -22,11 +22,11 @@ from dspy.dsp.utils.settings import settings
|
|
22
22
|
from dspy.utils.callback import BaseCallback, with_callbacks
|
23
23
|
from dspy.clients.base_lm import BaseLM
|
24
24
|
|
25
|
-
from .._throttle import RateLimiter, rate_limited
|
25
|
+
from .._throttle import RateLimiter, rate_limited, get_rate_limiter_for_current_opik_installation
|
26
26
|
|
27
27
|
logger = logging.getLogger(__name__)
|
28
28
|
# Limit how fast an LLM can be called:
|
29
|
-
limiter =
|
29
|
+
limiter = get_rate_limiter_for_current_opik_installation()
|
30
30
|
|
31
31
|
class LM(BaseLM):
|
32
32
|
"""
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: opik_optimizer
|
3
|
-
Version: 0.7.
|
3
|
+
Version: 0.7.3
|
4
4
|
Summary: Agent optimization with Opik
|
5
5
|
Home-page: https://github.com/comet-ml/opik
|
6
6
|
Author: Comet ML
|
@@ -21,6 +21,7 @@ Requires-Dist: optuna
|
|
21
21
|
Requires-Dist: pydantic
|
22
22
|
Requires-Dist: pandas
|
23
23
|
Requires-Dist: hf_xet
|
24
|
+
Requires-Dist: pyrate-limiter
|
24
25
|
Provides-Extra: dev
|
25
26
|
Requires-Dist: adalflow; extra == "dev"
|
26
27
|
Requires-Dist: pytest; extra == "dev"
|
@@ -72,7 +73,7 @@ from your LLMs. You can use a variety of algorithms, including:
|
|
72
73
|
|
73
74
|
3. Install the package:
|
74
75
|
```bash
|
75
|
-
pip install
|
76
|
+
pip install opik-optimizer
|
76
77
|
```
|
77
78
|
|
78
79
|
You'll need:
|
@@ -94,11 +95,10 @@ You can see how to use those below:
|
|
94
95
|
|
95
96
|
```python
|
96
97
|
from opik.evaluation.metrics import LevenshteinRatio
|
97
|
-
from opik_optimizer
|
98
|
+
from opik_optimizer import FewShotBayesianOptimizer
|
98
99
|
from opik_optimizer.demo import get_or_create_dataset
|
99
100
|
|
100
101
|
from opik_optimizer import (
|
101
|
-
OptimizationConfig,
|
102
102
|
MetricConfig,
|
103
103
|
TaskConfig,
|
104
104
|
from_dataset_field,
|
@@ -111,40 +111,41 @@ hot_pot_dataset = get_or_create_dataset("hotpot-300")
|
|
111
111
|
prompt_instruction = """
|
112
112
|
Answer the question.
|
113
113
|
"""
|
114
|
-
|
115
|
-
initial_prompt_no_examples = [
|
116
|
-
{"role": "system", "content": prompt_instruction},
|
117
|
-
{"role": "user", "content": "{{question}}"},
|
118
|
-
]
|
114
|
+
project_name = "optimize-few-shot-bayesian-hotpot"
|
119
115
|
|
120
116
|
optimizer = FewShotBayesianOptimizer(
|
121
117
|
model="gpt-4o-mini",
|
122
|
-
project_name=
|
118
|
+
project_name=project_name,
|
123
119
|
min_examples=3,
|
124
120
|
max_examples=8,
|
125
121
|
n_threads=16,
|
126
122
|
seed=42,
|
127
123
|
)
|
128
124
|
|
129
|
-
|
125
|
+
metric_config = MetricConfig(
|
126
|
+
metric=LevenshteinRatio(project_name=project_name),
|
127
|
+
inputs={
|
128
|
+
"output": from_llm_response_text(),
|
129
|
+
"reference": from_dataset_field(name="answer"),
|
130
|
+
},
|
131
|
+
)
|
132
|
+
|
133
|
+
task_config = TaskConfig(
|
134
|
+
instruction_prompt=prompt_instruction,
|
135
|
+
input_dataset_fields=["question"],
|
136
|
+
output_dataset_field="answer",
|
137
|
+
use_chat_prompt=True,
|
138
|
+
)
|
139
|
+
|
140
|
+
result = optimizer.optimize_prompt(
|
130
141
|
dataset=hot_pot_dataset,
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
"reference": from_dataset_field(name="answer"),
|
136
|
-
},
|
137
|
-
),
|
138
|
-
task=TaskConfig(
|
139
|
-
instruction_prompt=prompt_instruction,
|
140
|
-
input_dataset_fields=["question"],
|
141
|
-
output_dataset_field="answer",
|
142
|
-
use_chat_prompt=True,
|
143
|
-
),
|
142
|
+
metric_config=metric_config,
|
143
|
+
task_config=task_config,
|
144
|
+
n_trials=10,
|
145
|
+
n_samples=150,
|
144
146
|
)
|
145
147
|
|
146
|
-
result
|
147
|
-
print(result)
|
148
|
+
result.display()
|
148
149
|
```
|
149
150
|
|
150
151
|
More examples can be found in the `scripts` folder.
|
@@ -152,7 +153,7 @@ More examples can be found in the `scripts` folder.
|
|
152
153
|
## Installation
|
153
154
|
|
154
155
|
```bash
|
155
|
-
pip install
|
156
|
+
pip install opik-optimizer
|
156
157
|
```
|
157
158
|
|
158
159
|
## Development
|
@@ -167,6 +168,6 @@ pip install -e .
|
|
167
168
|
|
168
169
|
## Requirements
|
169
170
|
|
170
|
-
- Python 3.10+
|
171
|
+
- Python 3.10+ < 3.13
|
171
172
|
- Opik API key
|
172
173
|
- OpenAI API key (or other LLM provider)
|
@@ -1,9 +1,9 @@
|
|
1
1
|
opik_optimizer/__init__.py,sha256=x5QSFom-TtmmUNzqyYIJY2AujMJXbyhXs2oz44-4Af0,1121
|
2
|
-
opik_optimizer/_throttle.py,sha256=
|
3
|
-
opik_optimizer/base_optimizer.py,sha256=
|
2
|
+
opik_optimizer/_throttle.py,sha256=ztub8qlwz4u0GVA2TIoLig0D1Cs0hJ7_o_SnT_C7Nmk,1360
|
3
|
+
opik_optimizer/base_optimizer.py,sha256=f4gNX9j3Z3TGst8F0gm1nMHHpHKAlChmeCVAcTdTIR4,4883
|
4
4
|
opik_optimizer/cache_config.py,sha256=EzF4RAzxhSG8vtMJANdiUpNHQ9HzL2CrCXp0iik0f4A,580
|
5
5
|
opik_optimizer/logging_config.py,sha256=ELevhxtflYinTo-jVvyQYZbXG7FgAe_b5dPa9y5uLWw,2774
|
6
|
-
opik_optimizer/meta_prompt_optimizer.py,sha256=
|
6
|
+
opik_optimizer/meta_prompt_optimizer.py,sha256=AoFskD01Mu9VbH-Ys4CUoqZk3Gn3iFrOzF2yh-Hw7GM,46944
|
7
7
|
opik_optimizer/optimization_result.py,sha256=9zdDV2MXeLYk7U8OqgMmSU-DdPV6qgYQWS2rtkO6Dzw,8693
|
8
8
|
opik_optimizer/task_evaluator.py,sha256=MafDMaLeW0_yGPrumLvYF0HzQUKrnpAlM_0N_TPG8tw,3695
|
9
9
|
opik_optimizer/utils.py,sha256=HivUsNzbt7BcuZeEvikdER1DaTPUFLJrpaVQ8raZYD8,3637
|
@@ -11,20 +11,20 @@ opik_optimizer/demo/__init__.py,sha256=KSpFYhzN7fTmLEsIaciRHwxcJDeAiX5NDmYLdPsfp
|
|
11
11
|
opik_optimizer/demo/cache.py,sha256=5WqK8rSiijzU6s4VHIjLuL1LR5i1yHtY-x5FZTduSus,3669
|
12
12
|
opik_optimizer/demo/datasets.py,sha256=hD6JZAQotEDQb4nK7dbnurquILqQsrFRF7nUwon_iXE,22930
|
13
13
|
opik_optimizer/few_shot_bayesian_optimizer/__init__.py,sha256=VuH7FOROyGcjMPryejtZC-5Y0QHlVTFLTGUDgNqRAFw,113
|
14
|
-
opik_optimizer/few_shot_bayesian_optimizer/few_shot_bayesian_optimizer.py,sha256=
|
14
|
+
opik_optimizer/few_shot_bayesian_optimizer/few_shot_bayesian_optimizer.py,sha256=HIoIVDW9v0p2Y9B736DncXjJPPYoDfphgeSqiB4MIVM,15235
|
15
15
|
opik_optimizer/few_shot_bayesian_optimizer/prompt_parameter.py,sha256=EDsSIFAUOfiZKWLrOAaBDB7Exk7cmIs4ccI95kVa7JY,3118
|
16
16
|
opik_optimizer/few_shot_bayesian_optimizer/prompt_templates.py,sha256=HmvD-UeT3aKiiet5cUtULXe6iFPEOo6hxyDE0pH2LnQ,2424
|
17
17
|
opik_optimizer/integrations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
18
18
|
opik_optimizer/mipro_optimizer/__init__.py,sha256=CF9TVXjOxTobDO1kAS8CD4eyLVzEozxjfgoKwIO6ZpU,44
|
19
|
-
opik_optimizer/mipro_optimizer/_lm.py,sha256=
|
19
|
+
opik_optimizer/mipro_optimizer/_lm.py,sha256=bcTy2Y5HjSaFQOATIpUaA86eIp3vKHaMuDI2_RvN2ww,16376
|
20
20
|
opik_optimizer/mipro_optimizer/_mipro_optimizer_v2.py,sha256=r8FKaqvtZq_R7FwGnXqp1foCLk7M7r6M-CMvWbJtP5c,39512
|
21
21
|
opik_optimizer/mipro_optimizer/mipro_optimizer.py,sha256=5QS7OKqOMKe4CD_8W2FMD_qJNmulkvxmOT_YtJ3BllM,14755
|
22
22
|
opik_optimizer/mipro_optimizer/utils.py,sha256=4et1JA1QInX3h6Is-_RqzliFwJqkm6tlA0X5CryG60I,3142
|
23
23
|
opik_optimizer/optimization_config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
24
24
|
opik_optimizer/optimization_config/configs.py,sha256=MYL9H2UAqeyGBlBGWbOZ-6Snto4ZMuXnypgvVuUSW1Y,1132
|
25
25
|
opik_optimizer/optimization_config/mappers.py,sha256=RXgTMxPzTQ1AHGke6Zca6rTcfCI7IkCKhQYciaEGSAo,1698
|
26
|
-
opik_optimizer-0.7.
|
27
|
-
opik_optimizer-0.7.
|
28
|
-
opik_optimizer-0.7.
|
29
|
-
opik_optimizer-0.7.
|
30
|
-
opik_optimizer-0.7.
|
26
|
+
opik_optimizer-0.7.3.dist-info/licenses/LICENSE,sha256=dTRSwwCHdWeSjzodvnivYqcwi8x3Qfr21yv65QUWWBE,1062
|
27
|
+
opik_optimizer-0.7.3.dist-info/METADATA,sha256=ng9ZwnuLM631y5mrK-DSi70r763Db51thVyE1QNuQlI,3826
|
28
|
+
opik_optimizer-0.7.3.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
|
29
|
+
opik_optimizer-0.7.3.dist-info/top_level.txt,sha256=ondOlpq6_yFckqpxoAHSfzZS2N-JfgmA-QQhOJfz7m0,15
|
30
|
+
opik_optimizer-0.7.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|