opik-optimizer 0.7.1__py3-none-any.whl → 0.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,42 +7,20 @@ __version__ = importlib.metadata.version("opik_optimizer")
7
7
  # Using WARNING as a sensible default to avoid flooding users with INFO/DEBUG
8
8
  setup_logging(level=logging.WARNING)
9
9
 
10
-
11
- # Lazy imports to avoid circular dependencies
12
- def __getattr__(name):
13
- if name == "MiproOptimizer":
14
- from .mipro_optimizer import MiproOptimizer
15
-
16
- return MiproOptimizer
17
- elif name == "BaseOptimizer":
18
- from .base_optimizer import BaseOptimizer
19
-
20
- return BaseOptimizer
21
- elif name == "MetaPromptOptimizer":
22
- from .meta_prompt_optimizer import MetaPromptOptimizer
23
-
24
- return MetaPromptOptimizer
25
- elif name == "FewShotBayesianOptimizer":
26
- from .few_shot_bayesian_optimizer import FewShotBayesianOptimizer
27
-
28
- return FewShotBayesianOptimizer
29
- elif name in ["MetricConfig", "OptimizationConfig", "TaskConfig"]:
30
- from .optimization_config.configs import (
31
- MetricConfig,
32
- OptimizationConfig,
33
- TaskConfig,
34
- )
35
-
36
- return locals()[name]
37
- elif name in ["from_dataset_field", "from_llm_response_text"]:
38
- from .optimization_config.mappers import (
39
- from_dataset_field,
40
- from_llm_response_text,
41
- )
42
-
43
- return locals()[name]
44
- raise AttributeError(f"module 'opik_optimizer' has no attribute '{name}'")
45
-
10
+ # Regular imports
11
+ from .mipro_optimizer import MiproOptimizer
12
+ from .base_optimizer import BaseOptimizer
13
+ from .meta_prompt_optimizer import MetaPromptOptimizer
14
+ from .few_shot_bayesian_optimizer import FewShotBayesianOptimizer
15
+ from .optimization_config.configs import (
16
+ MetricConfig,
17
+ OptimizationConfig,
18
+ TaskConfig,
19
+ )
20
+ from .optimization_config.mappers import (
21
+ from_dataset_field,
22
+ from_llm_response_text,
23
+ )
46
24
 
47
25
  from opik.evaluation.models.litellm import warning_filters
48
26
 
@@ -1,43 +1,43 @@
1
- import threading
1
+ import functools
2
+ import pyrate_limiter
2
3
  import time
3
- import queue
4
- from functools import wraps
4
+ import opik.config
5
+
6
+ from typing import Callable, Any
7
+
5
8
 
6
9
  class RateLimiter:
7
10
  """
8
- Rate limiter that enforces a maximum number of calls across all threads.
11
+ Rate limiter that enforces a maximum number of calls across all threads using pyrate_limiter.
9
12
  """
10
- def __init__(self, max_calls_per_second):
13
+ def __init__(self, max_calls_per_second: int):
11
14
  self.max_calls_per_second = max_calls_per_second
12
- self.interval = 1.0 / max_calls_per_second # Time between allowed calls
13
- self.last_call_time = 0
14
- self.lock = threading.Lock()
15
+ rate = pyrate_limiter.Rate(max_calls_per_second, pyrate_limiter.Duration.SECOND)
16
+
17
+ self.limiter = pyrate_limiter.Limiter(rate, raise_when_fail=False)
18
+ self.bucket_key = "global_rate_limit"
15
19
 
16
- def acquire(self):
17
- """
18
- Wait until a call is allowed according to the global rate limit.
19
- Returns immediately if the call is allowed, otherwise blocks until it's time.
20
- """
21
- with self.lock:
22
- current_time = time.time()
23
- time_since_last = current_time - self.last_call_time
24
-
25
- # If we haven't waited long enough since the last call
26
- if time_since_last < self.interval:
27
- # Calculate how much longer we need to wait
28
- sleep_time = self.interval - time_since_last
29
- time.sleep(sleep_time)
30
-
31
- # Update the last call time (after potential sleep)
32
- self.last_call_time = time.time()
33
-
34
- def rate_limited(limiter):
20
+ def acquire(self) -> None:
21
+ while not self.limiter.try_acquire(self.bucket_key):
22
+ time.sleep(0.01)
23
+
24
+ def rate_limited(limiter: RateLimiter) -> Callable[[Callable], Callable]:
35
25
  """Decorator to rate limit a function using the provided limiter"""
36
- def decorator(func):
37
- @wraps(func)
38
- def wrapper(*args, **kwargs):
26
+
27
+ def decorator(func: Callable) -> Callable:
28
+ @functools.wraps(func)
29
+ def wrapper(*args, **kwargs) -> Any:
39
30
  limiter.acquire()
40
31
  return func(*args, **kwargs)
41
32
  return wrapper
42
33
  return decorator
43
34
 
35
+
36
+ def get_rate_limiter_for_current_opik_installation() -> RateLimiter:
37
+ opik_config = opik.config.OpikConfig()
38
+ max_calls_per_second = (
39
+ 10
40
+ if opik_config.is_cloud_installation
41
+ else 50
42
+ )
43
+ return RateLimiter(max_calls_per_second=max_calls_per_second)
@@ -4,8 +4,6 @@ import logging
4
4
  import time
5
5
 
6
6
  import litellm
7
- from opik.evaluation import metrics
8
- from opik.opik_context import get_current_span_data
9
7
  from opik.rest_api.core import ApiError
10
8
 
11
9
  from pydantic import BaseModel
@@ -14,7 +12,7 @@ from .cache_config import initialize_cache
14
12
  from opik.evaluation.models.litellm import opik_monitor as opik_litellm_monitor
15
13
  from .optimization_config.configs import TaskConfig, MetricConfig
16
14
 
17
- limiter = RateLimiter(max_calls_per_second=15)
15
+ limiter = RateLimiter(max_calls_per_second=8)
18
16
 
19
17
  # Don't use unsupported params:
20
18
  litellm.drop_params = True
@@ -143,85 +141,6 @@ class BaseOptimizer:
143
141
  """
144
142
  self._history.append(round_data)
145
143
 
146
- @rate_limited(limiter)
147
- def _call_model(
148
- self,
149
- prompt: str,
150
- system_prompt: Optional[str] = None,
151
- is_reasoning: bool = False,
152
- ) -> str:
153
- """Call the model to get suggestions based on the meta-prompt."""
154
- model = self.reasoning_model if is_reasoning else self.model
155
- messages = []
156
-
157
- if system_prompt:
158
- messages.append({"role": "system", "content": system_prompt})
159
- logger.debug(f"Using custom system prompt: {system_prompt[:100]}...")
160
- else:
161
- messages.append(
162
- {"role": "system", "content": "You are a helpful assistant."}
163
- )
164
-
165
- messages.append({"role": "user", "content": prompt})
166
- logger.debug(f"Calling model {model} with prompt: {prompt[:100]}...")
167
-
168
- api_params = self.model_kwargs.copy()
169
- api_params.update(
170
- {
171
- "model": model,
172
- "messages": messages,
173
- # Ensure required params like 'temperature', 'max_tokens' are present
174
- # Defaults added here for safety, though usually set in __init__ kwargs
175
- "temperature": api_params.get("temperature", 0.3),
176
- "max_tokens": api_params.get("max_tokens", 1000),
177
- }
178
- )
179
-
180
- # Attempt to add Opik monitoring if available
181
- try:
182
- # Assuming opik_litellm_monitor is imported and configured elsewhere
183
- api_params = opik_litellm_monitor.try_add_opik_monitoring_to_params(
184
- api_params
185
- )
186
- logger.debug("Opik monitoring hooks added to LiteLLM params.")
187
- except Exception as e:
188
- logger.warning(f"Could not add Opik monitoring to LiteLLM params: {e}")
189
-
190
- logger.debug(
191
- f"Final API params (excluding messages): { {k:v for k,v in api_params.items() if k != 'messages'} }"
192
- )
193
-
194
- # Increment Counter
195
- self.llm_call_counter += 1
196
- logger.debug(f"LLM Call Count: {self.llm_call_counter}")
197
-
198
- try:
199
- response = litellm.completion(**api_params)
200
- model_output = response.choices[0].message.content.strip()
201
- logger.debug(f"Model response from {model_to_use}: {model_output[:100]}...")
202
- return model_output
203
- except litellm.exceptions.RateLimitError as e:
204
- logger.error(f"LiteLLM Rate Limit Error for model {model_to_use}: {e}")
205
- # Consider adding retry logic here with tenacity
206
- raise
207
- except litellm.exceptions.APIConnectionError as e:
208
- logger.error(f"LiteLLM API Connection Error for model {model_to_use}: {e}")
209
- # Consider adding retry logic here
210
- raise
211
- except litellm.exceptions.ContextWindowExceededError as e:
212
- logger.error(
213
- f"LiteLLM Context Window Exceeded Error for model {model_to_use}. Prompt length: {len(prompt)}. Details: {e}"
214
- )
215
- raise
216
- except litellm.exceptions.APIError as e: # Catch broader API errors
217
- logger.error(f"LiteLLM API Error for model {model_to_use}: {e}")
218
- raise
219
- except Exception as e:
220
- # Catch any other unexpected errors
221
- logger.error(
222
- f"Unexpected error during model call to {model_to_use}: {type(e).__name__} - {e}"
223
- )
224
- raise
225
144
 
226
145
  def update_optimization(self, optimization, status: str) -> None:
227
146
  """
@@ -9,6 +9,7 @@ import requests
9
9
  NAMED_CACHES = {
10
10
  "test": "https://drive.google.com/file/d/1RifNtpN-pl0DW49daRaAMJwW7MCsOh6y/view?usp=sharing",
11
11
  "test2": "https://drive.google.com/uc?id=1RifNtpN-pl0DW49daRaAMJwW7MCsOh6y&export=download",
12
+ "opik-workshop": "https://drive.google.com/file/d/1l0aK6KhDPs2bFsQTkfzvOvfacJlhdmHr/view?usp=sharing",
12
13
  }
13
14
  CACHE_DIR = os.path.expanduser("~/.litellm_cache")
14
15
 
@@ -1,8 +1,8 @@
1
1
  import random
2
- from typing import Any, Dict, List, Tuple, Union, Optional, Callable, Literal
3
- import openai
2
+ from typing import Any, Dict, List, Tuple, Union, Optional, Literal
4
3
  import opik
5
4
  import optuna
5
+ import optuna.samplers
6
6
  import logging
7
7
  import json
8
8
 
@@ -14,18 +14,18 @@ from opik_optimizer import base_optimizer
14
14
 
15
15
  from . import prompt_parameter
16
16
  from . import prompt_templates
17
- from .._throttle import RateLimiter, rate_limited
17
+ from .. import _throttle
18
18
  from .. import optimization_result, task_evaluator
19
19
 
20
20
  import litellm
21
21
 
22
22
  from opik.evaluation.models.litellm import opik_monitor as opik_litellm_monitor
23
23
 
24
- limiter = RateLimiter(max_calls_per_second=15)
24
+ _limiter = _throttle.get_rate_limiter_for_current_opik_installation()
25
25
 
26
26
  logger = logging.getLogger(__name__)
27
27
 
28
- @rate_limited(limiter)
28
+ @_throttle.rate_limited(_limiter)
29
29
  def _call_model(model, messages, seed, model_kwargs):
30
30
  model_kwargs = opik_litellm_monitor.try_add_opik_monitoring_to_params(model_kwargs)
31
31
 
@@ -59,7 +59,6 @@ class FewShotBayesianOptimizer(base_optimizer.BaseOptimizer):
59
59
  self.n_threads = n_threads
60
60
  self.n_initial_prompts = n_initial_prompts
61
61
  self.n_iterations = n_iterations
62
-
63
62
  self._opik_client = opik.Opik()
64
63
  logger.debug(f"Initialized FewShotBayesianOptimizer with model: {model}")
65
64
 
@@ -85,7 +84,7 @@ class FewShotBayesianOptimizer(base_optimizer.BaseOptimizer):
85
84
  split_idx = int(len(dataset) * train_ratio)
86
85
  return dataset[:split_idx], dataset[split_idx:]
87
86
 
88
- def _optimize_prompt(
87
+ def _optimize_prompt(
89
88
  self,
90
89
  dataset: Union[str, Dataset],
91
90
  metric_config: MetricConfig,
@@ -171,8 +170,10 @@ class FewShotBayesianOptimizer(base_optimizer.BaseOptimizer):
171
170
  n_examples = trial.suggest_int(
172
171
  "n_examples", self.min_examples, self.max_examples
173
172
  )
174
- available_indices = list(range(len(dataset_items)))
175
- example_indices = random.sample(available_indices, n_examples)
173
+ example_indices = [
174
+ trial.suggest_categorical(f"example_{i}", list(range(len(dataset_items))))
175
+ for i in range(n_examples)
176
+ ]
176
177
  trial.set_user_attr("example_indices", example_indices)
177
178
 
178
179
  instruction = task_config.instruction_prompt
@@ -238,7 +239,8 @@ class FewShotBayesianOptimizer(base_optimizer.BaseOptimizer):
238
239
  except Exception as e:
239
240
  logger.warning(f"Could not configure Optuna logging within optimizer: {e}")
240
241
 
241
- study = optuna.create_study(direction="maximize")
242
+ sampler = optuna.samplers.TPESampler(seed=self.seed)
243
+ study = optuna.create_study(direction="maximize", sampler=sampler)
242
244
  study.optimize(optimization_objective, n_trials=n_trials)
243
245
  logger.info("Optuna study finished.")
244
246
 
@@ -16,6 +16,7 @@ from opik_optimizer import task_evaluator
16
16
  from opik.api_objects import opik_client
17
17
  from opik.evaluation.models.litellm import opik_monitor as opik_litellm_monitor
18
18
  from opik.environment import get_tqdm_for_current_environment
19
+ from . import _throttle
19
20
 
20
21
  tqdm = get_tqdm_for_current_environment()
21
22
 
@@ -26,6 +27,7 @@ litellm.cache = Cache(type="disk", disk_cache_dir=disk_cache_dir)
26
27
  # Set up logging
27
28
  logger = logging.getLogger(__name__) # Gets logger configured by setup_logging
28
29
 
30
+ _rate_limiter = _throttle.get_rate_limiter_for_current_opik_installation()
29
31
 
30
32
  class MetaPromptOptimizer(BaseOptimizer):
31
33
  """Optimizer that uses meta-prompting to improve prompts based on examples and performance."""
@@ -176,6 +178,7 @@ class MetaPromptOptimizer(BaseOptimizer):
176
178
  optimization_id=optimization_id,
177
179
  )
178
180
 
181
+ @_throttle.rate_limited(_rate_limiter)
179
182
  def _call_model(
180
183
  self,
181
184
  prompt: str,
@@ -22,11 +22,11 @@ from dspy.dsp.utils.settings import settings
22
22
  from dspy.utils.callback import BaseCallback, with_callbacks
23
23
  from dspy.clients.base_lm import BaseLM
24
24
 
25
- from .._throttle import RateLimiter, rate_limited
25
+ from .._throttle import RateLimiter, rate_limited, get_rate_limiter_for_current_opik_installation
26
26
 
27
27
  logger = logging.getLogger(__name__)
28
28
  # Limit how fast an LLM can be called:
29
- limiter = RateLimiter(max_calls_per_second=15)
29
+ limiter = get_rate_limiter_for_current_opik_installation()
30
30
 
31
31
  class LM(BaseLM):
32
32
  """
@@ -0,0 +1,173 @@
1
+ Metadata-Version: 2.4
2
+ Name: opik_optimizer
3
+ Version: 0.7.3
4
+ Summary: Agent optimization with Opik
5
+ Home-page: https://github.com/comet-ml/opik
6
+ Author: Comet ML
7
+ Author-email: support@comet.com
8
+ Classifier: Development Status :: 3 - Alpha
9
+ Classifier: Intended Audience :: Developers
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Requires-Python: >=3.9,<3.13
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE
15
+ Requires-Dist: opik>=1.7.17
16
+ Requires-Dist: dspy<3,>=2.6.18
17
+ Requires-Dist: litellm
18
+ Requires-Dist: tqdm
19
+ Requires-Dist: datasets
20
+ Requires-Dist: optuna
21
+ Requires-Dist: pydantic
22
+ Requires-Dist: pandas
23
+ Requires-Dist: hf_xet
24
+ Requires-Dist: pyrate-limiter
25
+ Provides-Extra: dev
26
+ Requires-Dist: adalflow; extra == "dev"
27
+ Requires-Dist: pytest; extra == "dev"
28
+ Requires-Dist: pytest-conv; extra == "dev"
29
+ Dynamic: author
30
+ Dynamic: author-email
31
+ Dynamic: classifier
32
+ Dynamic: description
33
+ Dynamic: description-content-type
34
+ Dynamic: home-page
35
+ Dynamic: license-file
36
+ Dynamic: provides-extra
37
+ Dynamic: requires-dist
38
+ Dynamic: requires-python
39
+ Dynamic: summary
40
+
41
+ # Opik Optimizer
42
+
43
+ The Opik Opitmizer can refine your prompts to get better performance
44
+ from your LLMs. You can use a variety of algorithms, including:
45
+
46
+ * FewShotBayesianOptimizer
47
+ * MiproOptimizer
48
+ * MetaPromptOptimizer
49
+
50
+ ## Quickstart
51
+
52
+
53
+ [Open Quickstart Notebook in Colab](https://colab.research.google.com/github/comet-ml/opik/blob/main/sdks/opik_optimizer/notebooks/OpikOptimizerIntro.ipynb)
54
+
55
+
56
+ ## Setup
57
+
58
+ 1. Configure Opik:
59
+ ```bash
60
+ # Install Comet ML CLI
61
+ pip install opik
62
+
63
+ # Configure your API key
64
+ opik configure
65
+ # When prompted, enter your Opik API key
66
+ ```
67
+
68
+ 2. Set up your environment variables:
69
+ ```bash
70
+ # OpenAI API key for LLM access
71
+ export OPENAI_API_KEY=your_openai_api_key
72
+ ```
73
+
74
+ 3. Install the package:
75
+ ```bash
76
+ pip install opik-optimizer
77
+ ```
78
+
79
+ You'll need:
80
+
81
+ 1. An LLM model name
82
+ 2. An Opik Dataset (or Opik Dataset name)
83
+ 3. An Opik Metric (possibly a custom one)
84
+ 4. A starting prompt (string)
85
+
86
+ ## Example
87
+
88
+ We have prepared some sample datasets for testing:
89
+
90
+ * "tiny-test"
91
+ * "halu-eval-300"
92
+ * "hotpot-300"
93
+
94
+ You can see how to use those below:
95
+
96
+ ```python
97
+ from opik.evaluation.metrics import LevenshteinRatio
98
+ from opik_optimizer import FewShotBayesianOptimizer
99
+ from opik_optimizer.demo import get_or_create_dataset
100
+
101
+ from opik_optimizer import (
102
+ MetricConfig,
103
+ TaskConfig,
104
+ from_dataset_field,
105
+ from_llm_response_text,
106
+ )
107
+
108
+ hot_pot_dataset = get_or_create_dataset("hotpot-300")
109
+
110
+ # For chat prompts instruction doesn't need to contain input parameters from dataset examples.
111
+ prompt_instruction = """
112
+ Answer the question.
113
+ """
114
+ project_name = "optimize-few-shot-bayesian-hotpot"
115
+
116
+ optimizer = FewShotBayesianOptimizer(
117
+ model="gpt-4o-mini",
118
+ project_name=project_name,
119
+ min_examples=3,
120
+ max_examples=8,
121
+ n_threads=16,
122
+ seed=42,
123
+ )
124
+
125
+ metric_config = MetricConfig(
126
+ metric=LevenshteinRatio(project_name=project_name),
127
+ inputs={
128
+ "output": from_llm_response_text(),
129
+ "reference": from_dataset_field(name="answer"),
130
+ },
131
+ )
132
+
133
+ task_config = TaskConfig(
134
+ instruction_prompt=prompt_instruction,
135
+ input_dataset_fields=["question"],
136
+ output_dataset_field="answer",
137
+ use_chat_prompt=True,
138
+ )
139
+
140
+ result = optimizer.optimize_prompt(
141
+ dataset=hot_pot_dataset,
142
+ metric_config=metric_config,
143
+ task_config=task_config,
144
+ n_trials=10,
145
+ n_samples=150,
146
+ )
147
+
148
+ result.display()
149
+ ```
150
+
151
+ More examples can be found in the `scripts` folder.
152
+
153
+ ## Installation
154
+
155
+ ```bash
156
+ pip install opik-optimizer
157
+ ```
158
+
159
+ ## Development
160
+
161
+ To use the Opik Optimizer from source:
162
+
163
+ ```bash
164
+ git clone git clone git@github.com:comet-ml/opik
165
+ cd sdks/opik_optimizer
166
+ pip install -e .
167
+ ```
168
+
169
+ ## Requirements
170
+
171
+ - Python 3.10+ < 3.13
172
+ - Opik API key
173
+ - OpenAI API key (or other LLM provider)
@@ -1,30 +1,30 @@
1
- opik_optimizer/__init__.py,sha256=RQc6N4ca7WS34oXGx6pQQjAh9QVRfjtX6dlVS1oJvLw,1847
2
- opik_optimizer/_throttle.py,sha256=7vcHoISqXbysymwdb1LPAFJB28tOmih9zzZQWajpH0k,1494
3
- opik_optimizer/base_optimizer.py,sha256=mHi5b_8Ang6o_kl9m0x8NyXMRYq9OFyaidRfw_wWdEY,8348
1
+ opik_optimizer/__init__.py,sha256=x5QSFom-TtmmUNzqyYIJY2AujMJXbyhXs2oz44-4Af0,1121
2
+ opik_optimizer/_throttle.py,sha256=ztub8qlwz4u0GVA2TIoLig0D1Cs0hJ7_o_SnT_C7Nmk,1360
3
+ opik_optimizer/base_optimizer.py,sha256=f4gNX9j3Z3TGst8F0gm1nMHHpHKAlChmeCVAcTdTIR4,4883
4
4
  opik_optimizer/cache_config.py,sha256=EzF4RAzxhSG8vtMJANdiUpNHQ9HzL2CrCXp0iik0f4A,580
5
5
  opik_optimizer/logging_config.py,sha256=ELevhxtflYinTo-jVvyQYZbXG7FgAe_b5dPa9y5uLWw,2774
6
- opik_optimizer/meta_prompt_optimizer.py,sha256=tRxA4YD2AWvKl7fJNg6Oxxay8iyqvdJ8zXy59-qKyUM,46802
6
+ opik_optimizer/meta_prompt_optimizer.py,sha256=AoFskD01Mu9VbH-Ys4CUoqZk3Gn3iFrOzF2yh-Hw7GM,46944
7
7
  opik_optimizer/optimization_result.py,sha256=9zdDV2MXeLYk7U8OqgMmSU-DdPV6qgYQWS2rtkO6Dzw,8693
8
8
  opik_optimizer/task_evaluator.py,sha256=MafDMaLeW0_yGPrumLvYF0HzQUKrnpAlM_0N_TPG8tw,3695
9
9
  opik_optimizer/utils.py,sha256=HivUsNzbt7BcuZeEvikdER1DaTPUFLJrpaVQ8raZYD8,3637
10
10
  opik_optimizer/demo/__init__.py,sha256=KSpFYhzN7fTmLEsIaciRHwxcJDeAiX5NDmYLdPsfpT8,150
11
- opik_optimizer/demo/cache.py,sha256=U0ovsBT7s39RSy34Mr-vTacdVk_jERKbRhdlGT6gF_0,3562
11
+ opik_optimizer/demo/cache.py,sha256=5WqK8rSiijzU6s4VHIjLuL1LR5i1yHtY-x5FZTduSus,3669
12
12
  opik_optimizer/demo/datasets.py,sha256=hD6JZAQotEDQb4nK7dbnurquILqQsrFRF7nUwon_iXE,22930
13
13
  opik_optimizer/few_shot_bayesian_optimizer/__init__.py,sha256=VuH7FOROyGcjMPryejtZC-5Y0QHlVTFLTGUDgNqRAFw,113
14
- opik_optimizer/few_shot_bayesian_optimizer/few_shot_bayesian_optimizer.py,sha256=zh88ElxKcoIkgkwZyXlQ0rwkxkPAoG8BW0DdvRpPhyQ,15106
14
+ opik_optimizer/few_shot_bayesian_optimizer/few_shot_bayesian_optimizer.py,sha256=HIoIVDW9v0p2Y9B736DncXjJPPYoDfphgeSqiB4MIVM,15235
15
15
  opik_optimizer/few_shot_bayesian_optimizer/prompt_parameter.py,sha256=EDsSIFAUOfiZKWLrOAaBDB7Exk7cmIs4ccI95kVa7JY,3118
16
16
  opik_optimizer/few_shot_bayesian_optimizer/prompt_templates.py,sha256=HmvD-UeT3aKiiet5cUtULXe6iFPEOo6hxyDE0pH2LnQ,2424
17
17
  opik_optimizer/integrations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  opik_optimizer/mipro_optimizer/__init__.py,sha256=CF9TVXjOxTobDO1kAS8CD4eyLVzEozxjfgoKwIO6ZpU,44
19
- opik_optimizer/mipro_optimizer/_lm.py,sha256=UwSEcTLVIt_a-coQbLACNnm-RTMJIzLEyPS4qLfUosg,16316
19
+ opik_optimizer/mipro_optimizer/_lm.py,sha256=bcTy2Y5HjSaFQOATIpUaA86eIp3vKHaMuDI2_RvN2ww,16376
20
20
  opik_optimizer/mipro_optimizer/_mipro_optimizer_v2.py,sha256=r8FKaqvtZq_R7FwGnXqp1foCLk7M7r6M-CMvWbJtP5c,39512
21
21
  opik_optimizer/mipro_optimizer/mipro_optimizer.py,sha256=5QS7OKqOMKe4CD_8W2FMD_qJNmulkvxmOT_YtJ3BllM,14755
22
22
  opik_optimizer/mipro_optimizer/utils.py,sha256=4et1JA1QInX3h6Is-_RqzliFwJqkm6tlA0X5CryG60I,3142
23
23
  opik_optimizer/optimization_config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
24
  opik_optimizer/optimization_config/configs.py,sha256=MYL9H2UAqeyGBlBGWbOZ-6Snto4ZMuXnypgvVuUSW1Y,1132
25
25
  opik_optimizer/optimization_config/mappers.py,sha256=RXgTMxPzTQ1AHGke6Zca6rTcfCI7IkCKhQYciaEGSAo,1698
26
- opik_optimizer-0.7.1.dist-info/licenses/LICENSE,sha256=dTRSwwCHdWeSjzodvnivYqcwi8x3Qfr21yv65QUWWBE,1062
27
- opik_optimizer-0.7.1.dist-info/METADATA,sha256=e1-4IpXS8iiaUavpPw91k8vfGmCZj0Yc3blgUMSX3GU,962
28
- opik_optimizer-0.7.1.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
29
- opik_optimizer-0.7.1.dist-info/top_level.txt,sha256=ondOlpq6_yFckqpxoAHSfzZS2N-JfgmA-QQhOJfz7m0,15
30
- opik_optimizer-0.7.1.dist-info/RECORD,,
26
+ opik_optimizer-0.7.3.dist-info/licenses/LICENSE,sha256=dTRSwwCHdWeSjzodvnivYqcwi8x3Qfr21yv65QUWWBE,1062
27
+ opik_optimizer-0.7.3.dist-info/METADATA,sha256=ng9ZwnuLM631y5mrK-DSi70r763Db51thVyE1QNuQlI,3826
28
+ opik_optimizer-0.7.3.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
29
+ opik_optimizer-0.7.3.dist-info/top_level.txt,sha256=ondOlpq6_yFckqpxoAHSfzZS2N-JfgmA-QQhOJfz7m0,15
30
+ opik_optimizer-0.7.3.dist-info/RECORD,,
@@ -1,35 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: opik_optimizer
3
- Version: 0.7.1
4
- Summary: Agent optimization with Opik
5
- Home-page: https://github.com/comet-ml/opik
6
- Author: Comet ML
7
- Author-email: info@comet.ml
8
- Classifier: Development Status :: 3 - Alpha
9
- Classifier: Intended Audience :: Developers
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Programming Language :: Python :: 3.10
12
- Requires-Python: >=3.9
13
- License-File: LICENSE
14
- Requires-Dist: opik>=1.7.17
15
- Requires-Dist: dspy<3,>=2.6.18
16
- Requires-Dist: litellm
17
- Requires-Dist: tqdm
18
- Requires-Dist: datasets
19
- Requires-Dist: optuna
20
- Requires-Dist: pydantic
21
- Requires-Dist: pandas
22
- Requires-Dist: hf_xet
23
- Provides-Extra: dev
24
- Requires-Dist: adalflow; extra == "dev"
25
- Requires-Dist: pytest; extra == "dev"
26
- Requires-Dist: pytest-conv; extra == "dev"
27
- Dynamic: author
28
- Dynamic: author-email
29
- Dynamic: classifier
30
- Dynamic: home-page
31
- Dynamic: license-file
32
- Dynamic: provides-extra
33
- Dynamic: requires-dist
34
- Dynamic: requires-python
35
- Dynamic: summary