openvector_dev 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
lein_vector/api/facade.py CHANGED
@@ -54,70 +54,6 @@ class Memory:
54
54
  long_mem = MemoryManagerQdrant(adapter, embedder)
55
55
  return cls(short_mem, long_mem, embedder)
56
56
 
57
- async def step_user(
58
- self, *, bot: str, user_id: int, user_msg: str, topk: int = 3, history_n: int = 20
59
- ):
60
- """
61
- :param bot: Идентификатор бота.
62
- :param user_id: Идентификатор пользователя.
63
- :param user_msg: Текст сообщения пользователя.
64
- :param topk: Количество релевантных чанков из долговременной памяти.
65
- :param history_n: Размер окна кратковременной памяти.
66
- :returns: Словарь с short_term и long_term сообщениями.
67
- """
68
- warnings.warn(
69
- "Заменили на низкоуровневые методы",
70
- DeprecationWarning,
71
- stacklevel=2
72
- )
73
- key = (user_id, bot)
74
- curr_no = self._msg_no.get(key, 0) + 1
75
- self._msg_no[key] = curr_no
76
- await self.short.add(
77
- bot=bot,
78
- user_id=user_id,
79
- role="user",
80
- text=user_msg,
81
- extra={"msg_no": curr_no},
82
- )
83
- embedding = await self.embed.get_embedding(user_msg)
84
- long_memories = await self.long.retrieve_by_embedding(
85
- user_id=user_id,
86
- embedding=embedding,
87
- topk=topk,
88
- filter_={"bot": bot},
89
- score_threshold=0.7
90
- )
91
- short_ctx = await self.short.window(user_id, history_n)
92
- return {"short_term": short_ctx, "long_term": long_memories}
93
-
94
- async def step_user_oai(
95
- self,
96
- user_id: int,
97
- user_msg: str,
98
- bot: str,
99
- *,
100
- topk: int = 3,
101
- history_n: int = 20,
102
- ) -> dict:
103
- """
104
- :param user_id: Идентификатор пользователя.
105
- :param user_msg: Текст сообщения пользователя.
106
- :param bot: Идентификатор бота.
107
- :param topk: Количество релевантных чанков из долговременной памяти.
108
- :param history_n: Размер окна кратковременной памяти.
109
- :returns: Данные short_term и long_term в формате OpenAI-совместимого вывода.
110
- """
111
- warnings.warn(
112
- "Заменили на низкоуровневые методы",
113
- DeprecationWarning,
114
- stacklevel=2
115
- )
116
- data = await self.step_user(user_id, bot, user_msg, topk=topk, history_n=history_n)
117
- data["short_term"] = self._to_openai(data["short_term"])
118
- data["long_term"] = self._chunk_texts(data["long_term"])
119
- return data
120
-
121
57
  @staticmethod
122
58
  def _to_openai(msgs: list[dict]) -> list[dict]:
123
59
  """
@@ -195,8 +131,13 @@ class Memory:
195
131
  """
196
132
  # wtf: Добавить фильтр только саммари
197
133
  search_terms = [await self.embed.get_embedding(term) for term in search_terms]
198
- return await self.long.retrieve_by_embeddings(user_id, search_terms, topk,
199
- bot=bot, score_threshold=0.72, filter_={"chunk_type": "type1"})
134
+ return await self.long.retrieve_by_embeddings(
135
+ user_id=user_id,
136
+ bot=bot,
137
+ embeddings=search_terms,
138
+ score_threshold=0.72,
139
+ filter_={"chunk_type": "type1"},
140
+ )
200
141
 
201
142
  async def get_short_memories(self, user_id: int, bot: str, n_memories: int = 20) -> list:
202
143
  """
@@ -52,10 +52,10 @@ class MemoryManagerQdrant(MemoryManagerABC):
52
52
 
53
53
  async def retrieve_by_embeddings(
54
54
  self,
55
+ bot: str,
55
56
  user_id: int,
56
57
  embeddings: list[list[float]],
57
58
  *,
58
- bot: str,
59
59
  topk: int = 3,
60
60
  filter_: dict[str, Any] | None = None,
61
61
  score_threshold: float | None = None,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openvector_dev
3
- Version: 0.1.7
3
+ Version: 0.1.8
4
4
  Summary:
5
5
  Author: p00ler
6
6
  Author-email: liveitspain@gmail.com
@@ -1,10 +1,10 @@
1
1
  lein_vector/__init__.py,sha256=ieXy65X4eVzUtSHNvlh00s4aMwKReafNni4s2q68z3Q,496
2
2
  lein_vector/api/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- lein_vector/api/facade.py,sha256=f0Cwib5maw4Ae9QEmc5xDkx4Y2ozIzDQUqJ7jOdg2pg,10634
3
+ lein_vector/api/facade.py,sha256=URxGEad8QrhYY6QJTrz552mk_9z8TWi7RB1veykyD-4,7886
4
4
  lein_vector/bases/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  lein_vector/bases/embeding_provider_abc.py,sha256=WBpVC6ra-SYqhJeZs8R8U679wfGebXgwOOVPIii-IvY,265
6
6
  lein_vector/bases/memory_manager_abc.py,sha256=pWuIw_wYlvUlt40jbiE92lWzdYaowZKg3XK0Mq0tQrw,1687
7
- lein_vector/memory_manager_qdrant.py,sha256=gbOyXl3bm3H5EfvStOC6n4sWD85i8zWe97iKp6AvPDw,6175
7
+ lein_vector/memory_manager_qdrant.py,sha256=DFhvtpDl3OxLSpCQiNXnKVSoqQ3475cSDcfE5wF8Njw,6175
8
8
  lein_vector/memory_manager_ram.py,sha256=lUATu6U-cZuRHnR6U1L8aJQB8FNK0Wi40vXsZ5fjDgI,6002
9
9
  lein_vector/qdrant_adapter.py,sha256=uPhYAp0KmYQhY3DF29JMO1JTbM__xDWGlnZZPor3VKI,4193
10
10
  lein_vector/redis_short_term.py,sha256=uCcncjgXAlNAY46b3_Pjvrn_G0NEI16kRRR9hxayzak,3155
@@ -12,6 +12,6 @@ lein_vector/schemas/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSu
12
12
  lein_vector/schemas/chunk.py,sha256=FSUwaFUSZk2ptoxupsdIfj5HYAMnHnu3eBfNpXCUMpM,1195
13
13
  lein_vector/sentence_transformer.py,sha256=gbWtkT01QFFA0IR_Ta-xsfBfb6owDzGnZDKY1g9fvBQ,1851
14
14
  lein_vector/short_term.py,sha256=KFot9r26d9TZYLscVT42V0NwufIQUkx-hftOe2p7qLU,1933
15
- openvector_dev-0.1.7.dist-info/METADATA,sha256=jNE4MlXel9eZ0iNEIg-JaFdIcAOCqBdxVUdVlNoKBqE,3167
16
- openvector_dev-0.1.7.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
17
- openvector_dev-0.1.7.dist-info/RECORD,,
15
+ openvector_dev-0.1.8.dist-info/METADATA,sha256=GOE9yKHgwxWZ5jmu8sOpqnz1XBcmKh0dSuP3zoGWOwQ,3167
16
+ openvector_dev-0.1.8.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
17
+ openvector_dev-0.1.8.dist-info/RECORD,,