opentelemetry-instrumentation-vertexai 0.47.3__py3-none-any.whl → 2.1b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of opentelemetry-instrumentation-vertexai might be problematic. Click here for more details.

@@ -1,310 +0,0 @@
1
- import copy
2
- import json
3
- import base64
4
- import logging
5
- import asyncio
6
- import threading
7
- from opentelemetry.instrumentation.vertexai.utils import dont_throw, should_send_prompts
8
- from opentelemetry.instrumentation.vertexai.config import Config
9
- from opentelemetry.semconv_ai import SpanAttributes
10
-
11
-
12
- logger = logging.getLogger(__name__)
13
-
14
-
15
- def _set_span_attribute(span, name, value):
16
- if value is not None:
17
- if value != "":
18
- span.set_attribute(name, value)
19
- return
20
-
21
-
22
- def _is_base64_image_part(item):
23
- """Check if item is a VertexAI Part object containing image data"""
24
- try:
25
- # Check if it has the Part attributes we expect
26
- if not hasattr(item, 'inline_data') or not hasattr(item, 'mime_type'):
27
- return False
28
-
29
- # Check if it's an image mime type and has inline data
30
- if item.mime_type and 'image/' in item.mime_type and item.inline_data:
31
- # Check if the inline_data has actual data
32
- if hasattr(item.inline_data, 'data') and item.inline_data.data:
33
- return True
34
-
35
- return False
36
- except Exception:
37
- return False
38
-
39
-
40
- async def _process_image_part(item, trace_id, span_id, content_index):
41
- """Process a VertexAI Part object containing image data"""
42
- if not Config.upload_base64_image:
43
- return None
44
-
45
- try:
46
- # Extract format from mime type (e.g., 'image/jpeg' -> 'jpeg')
47
- image_format = item.mime_type.split('/')[1] if item.mime_type else 'unknown'
48
- image_name = f"content_{content_index}.{image_format}"
49
-
50
- # Convert binary data to base64 string for upload
51
- binary_data = item.inline_data.data
52
- base64_string = base64.b64encode(binary_data).decode('utf-8')
53
-
54
- # Upload the base64 data - convert IDs to strings
55
- url = await Config.upload_base64_image(str(trace_id), str(span_id), image_name, base64_string)
56
-
57
- # Return OpenAI-compatible format for consistency across LLM providers
58
- return {
59
- "type": "image_url",
60
- "image_url": {"url": url}
61
- }
62
- except Exception as e:
63
- logger.warning(f"Failed to process image part: {e}")
64
- # Return None to skip adding this image to the span
65
- return None
66
-
67
-
68
- def run_async(method):
69
- """Handle async method in sync context, following OpenAI's battle-tested approach"""
70
- try:
71
- loop = asyncio.get_running_loop()
72
- except RuntimeError:
73
- loop = None
74
-
75
- if loop and loop.is_running():
76
- thread = threading.Thread(target=lambda: asyncio.run(method))
77
- thread.start()
78
- thread.join()
79
- else:
80
- asyncio.run(method)
81
-
82
-
83
- def _process_image_part_sync(item, trace_id, span_id, content_index):
84
- """Synchronous version of image part processing using OpenAI's pattern"""
85
- if not Config.upload_base64_image:
86
- return None
87
-
88
- try:
89
- # Extract format from mime type (e.g., 'image/jpeg' -> 'jpeg')
90
- image_format = item.mime_type.split('/')[1] if item.mime_type else 'unknown'
91
- image_name = f"content_{content_index}.{image_format}"
92
-
93
- # Convert binary data to base64 string for upload
94
- binary_data = item.inline_data.data
95
- base64_string = base64.b64encode(binary_data).decode('utf-8')
96
-
97
- # Use OpenAI's run_async pattern to handle the async upload function
98
- url = None
99
-
100
- async def upload_task():
101
- nonlocal url
102
- url = await Config.upload_base64_image(str(trace_id), str(span_id), image_name, base64_string)
103
-
104
- run_async(upload_task())
105
-
106
- return {
107
- "type": "image_url",
108
- "image_url": {"url": url}
109
- }
110
- except Exception as e:
111
- logger.warning(f"Failed to process image part sync: {e}")
112
- # Return None to skip adding this image to the span
113
- return None
114
-
115
-
116
- async def _process_vertexai_argument(argument, span):
117
- """Process a single argument for VertexAI, handling different types"""
118
- if isinstance(argument, str):
119
- # Simple text argument in OpenAI format
120
- return [{"type": "text", "text": argument}]
121
-
122
- elif isinstance(argument, list):
123
- # List of mixed content (text strings and Part objects) - deep copy and process
124
- content_list = copy.deepcopy(argument)
125
- processed_items = []
126
-
127
- for item_index, content_item in enumerate(content_list):
128
- processed_item = await _process_content_item_vertexai(content_item, span, item_index)
129
- if processed_item is not None:
130
- processed_items.append(processed_item)
131
-
132
- return processed_items
133
-
134
- else:
135
- # Single Part object - convert to OpenAI format
136
- processed_item = await _process_content_item_vertexai(argument, span, 0)
137
- return [processed_item] if processed_item is not None else []
138
-
139
-
140
- async def _process_content_item_vertexai(content_item, span, item_index):
141
- """Process a single content item for VertexAI"""
142
- if isinstance(content_item, str):
143
- # Convert text to OpenAI format
144
- return {"type": "text", "text": content_item}
145
-
146
- elif _is_base64_image_part(content_item):
147
- # Process image part
148
- return await _process_image_part(
149
- content_item, span.context.trace_id, span.context.span_id, item_index
150
- )
151
-
152
- elif hasattr(content_item, 'text'):
153
- # Text part to OpenAI format
154
- return {"type": "text", "text": content_item.text}
155
-
156
- else:
157
- # Other types as text
158
- return {"type": "text", "text": str(content_item)}
159
-
160
-
161
- def _process_vertexai_argument_sync(argument, span):
162
- """Synchronous version of argument processing for VertexAI"""
163
- if isinstance(argument, str):
164
- # Simple text argument in OpenAI format
165
- return [{"type": "text", "text": argument}]
166
-
167
- elif isinstance(argument, list):
168
- # List of mixed content (text strings and Part objects) - deep copy and process
169
- content_list = copy.deepcopy(argument)
170
- processed_items = []
171
-
172
- for item_index, content_item in enumerate(content_list):
173
- processed_item = _process_content_item_vertexai_sync(content_item, span, item_index)
174
- if processed_item is not None:
175
- processed_items.append(processed_item)
176
-
177
- return processed_items
178
-
179
- else:
180
- # Single Part object - convert to OpenAI format
181
- processed_item = _process_content_item_vertexai_sync(argument, span, 0)
182
- return [processed_item] if processed_item is not None else []
183
-
184
-
185
- def _process_content_item_vertexai_sync(content_item, span, item_index):
186
- """Synchronous version of content item processing for VertexAI"""
187
- if isinstance(content_item, str):
188
- # Convert text to OpenAI format
189
- return {"type": "text", "text": content_item}
190
-
191
- elif _is_base64_image_part(content_item):
192
- # Process image part
193
- return _process_image_part_sync(
194
- content_item, span.context.trace_id, span.context.span_id, item_index
195
- )
196
-
197
- elif hasattr(content_item, 'text'):
198
- # Text part to OpenAI format
199
- return {"type": "text", "text": content_item.text}
200
-
201
- else:
202
- # Other types as text
203
- return {"type": "text", "text": str(content_item)}
204
-
205
-
206
- @dont_throw
207
- async def set_input_attributes(span, args):
208
- """Process input arguments, handling both text and image content"""
209
- if not span.is_recording():
210
- return
211
- if should_send_prompts() and args is not None and len(args) > 0:
212
- # Process each argument using extracted helper methods
213
- for arg_index, argument in enumerate(args):
214
- processed_content = await _process_vertexai_argument(argument, span)
215
-
216
- if processed_content:
217
- _set_span_attribute(
218
- span,
219
- f"{SpanAttributes.LLM_PROMPTS}.{arg_index}.role",
220
- "user"
221
- )
222
- _set_span_attribute(
223
- span,
224
- f"{SpanAttributes.LLM_PROMPTS}.{arg_index}.content",
225
- json.dumps(processed_content)
226
- )
227
-
228
-
229
- # Sync version with image processing support
230
- @dont_throw
231
- def set_input_attributes_sync(span, args):
232
- """Synchronous version with image processing support"""
233
- if not span.is_recording():
234
- return
235
- if should_send_prompts() and args is not None and len(args) > 0:
236
- # Process each argument using extracted helper methods
237
- for arg_index, argument in enumerate(args):
238
- processed_content = _process_vertexai_argument_sync(argument, span)
239
-
240
- if processed_content:
241
- _set_span_attribute(
242
- span,
243
- f"{SpanAttributes.LLM_PROMPTS}.{arg_index}.role",
244
- "user"
245
- )
246
- _set_span_attribute(
247
- span,
248
- f"{SpanAttributes.LLM_PROMPTS}.{arg_index}.content",
249
- json.dumps(processed_content)
250
- )
251
-
252
-
253
- @dont_throw
254
- def set_model_input_attributes(span, kwargs, llm_model):
255
- if not span.is_recording():
256
- return
257
- _set_span_attribute(span, SpanAttributes.LLM_REQUEST_MODEL, llm_model)
258
- _set_span_attribute(
259
- span, f"{SpanAttributes.LLM_PROMPTS}.0.user", kwargs.get("prompt")
260
- )
261
- _set_span_attribute(
262
- span, SpanAttributes.LLM_REQUEST_TEMPERATURE, kwargs.get("temperature")
263
- )
264
- _set_span_attribute(
265
- span, SpanAttributes.LLM_REQUEST_MAX_TOKENS, kwargs.get("max_output_tokens")
266
- )
267
- _set_span_attribute(span, SpanAttributes.LLM_REQUEST_TOP_P, kwargs.get("top_p"))
268
- _set_span_attribute(span, SpanAttributes.LLM_TOP_K, kwargs.get("top_k"))
269
- _set_span_attribute(
270
- span, SpanAttributes.LLM_PRESENCE_PENALTY, kwargs.get("presence_penalty")
271
- )
272
- _set_span_attribute(
273
- span, SpanAttributes.LLM_FREQUENCY_PENALTY, kwargs.get("frequency_penalty")
274
- )
275
-
276
-
277
- @dont_throw
278
- def set_response_attributes(span, llm_model, generation_text):
279
- if not span.is_recording() or not should_send_prompts():
280
- return
281
- _set_span_attribute(span, f"{SpanAttributes.LLM_COMPLETIONS}.0.role", "assistant")
282
- _set_span_attribute(
283
- span,
284
- f"{SpanAttributes.LLM_COMPLETIONS}.0.content",
285
- generation_text,
286
- )
287
-
288
-
289
- @dont_throw
290
- def set_model_response_attributes(span, llm_model, token_usage):
291
- if not span.is_recording():
292
- return
293
- _set_span_attribute(span, SpanAttributes.LLM_RESPONSE_MODEL, llm_model)
294
-
295
- if token_usage:
296
- _set_span_attribute(
297
- span,
298
- SpanAttributes.LLM_USAGE_TOTAL_TOKENS,
299
- token_usage.total_token_count,
300
- )
301
- _set_span_attribute(
302
- span,
303
- SpanAttributes.LLM_USAGE_COMPLETION_TOKENS,
304
- token_usage.candidates_token_count,
305
- )
306
- _set_span_attribute(
307
- span,
308
- SpanAttributes.LLM_USAGE_PROMPT_TOKENS,
309
- token_usage.prompt_token_count,
310
- )
@@ -1,58 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: opentelemetry-instrumentation-vertexai
3
- Version: 0.47.3
4
- Summary: OpenTelemetry Vertex AI instrumentation
5
- License: Apache-2.0
6
- Author: Gal Kleinman
7
- Author-email: gal@traceloop.com
8
- Requires-Python: >=3.9,<4
9
- Classifier: License :: OSI Approved :: Apache Software License
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Programming Language :: Python :: 3.9
12
- Classifier: Programming Language :: Python :: 3.10
13
- Classifier: Programming Language :: Python :: 3.11
14
- Classifier: Programming Language :: Python :: 3.12
15
- Classifier: Programming Language :: Python :: 3.13
16
- Classifier: Programming Language :: Python :: 3.14
17
- Provides-Extra: instruments
18
- Requires-Dist: opentelemetry-api (>=1.28.0,<2.0.0)
19
- Requires-Dist: opentelemetry-instrumentation (>=0.50b0)
20
- Requires-Dist: opentelemetry-semantic-conventions (>=0.50b0)
21
- Requires-Dist: opentelemetry-semantic-conventions-ai (>=0.4.13,<0.5.0)
22
- Project-URL: Repository, https://github.com/traceloop/openllmetry/tree/main/packages/opentelemetry-instrumentation-vertexai
23
- Description-Content-Type: text/markdown
24
-
25
- # OpenTelemetry VertexAI Instrumentation
26
-
27
- <a href="https://pypi.org/project/opentelemetry-instrumentation-vertexai/">
28
- <img src="https://badge.fury.io/py/opentelemetry-instrumentation-vertexai.svg">
29
- </a>
30
-
31
- This library allows tracing VertexAI prompts and completions sent with the official [VertexAI library](https://github.com/googleapis/python-aiplatform).
32
-
33
- ## Installation
34
-
35
- ```bash
36
- pip install opentelemetry-instrumentation-vertexai
37
- ```
38
-
39
- ## Example usage
40
-
41
- ```python
42
- from opentelemetry.instrumentation.vertexai import VertexAIInstrumentor
43
-
44
- VertexAIInstrumentor().instrument()
45
- ```
46
-
47
- ## Privacy
48
-
49
- **By default, this instrumentation logs prompts, completions, and embeddings to span attributes**. This gives you a clear visibility into how your LLM application is working, and can make it easy to debug and evaluate the quality of the outputs.
50
-
51
- However, you may want to disable this logging for privacy reasons, as they may contain highly sensitive data from your users. You may also simply want to reduce the size of your traces.
52
-
53
- To disable logging, set the `TRACELOOP_TRACE_CONTENT` environment variable to `false`.
54
-
55
- ```bash
56
- TRACELOOP_TRACE_CONTENT=false
57
- ```
58
-
@@ -1,11 +0,0 @@
1
- opentelemetry/instrumentation/vertexai/__init__.py,sha256=c3EtiFxN8F27o4hSHktd1XCP5C3iNvTUY9NhghnbQZY,12290
2
- opentelemetry/instrumentation/vertexai/config.py,sha256=LDyIH2dNsQsyFGy3otuvLWnRwf1hT_ivncioMPW8_ks,241
3
- opentelemetry/instrumentation/vertexai/event_emitter.py,sha256=v-f7-oWbLi1IcRjpsoPst0XhocqCKvaEovc_0Er0PDo,5043
4
- opentelemetry/instrumentation/vertexai/event_models.py,sha256=PCfCGxrrArwZqR-4wFcXrhwQq0sBMAxmSrpC4PUMtaM,876
5
- opentelemetry/instrumentation/vertexai/span_utils.py,sha256=yRulZKuISbA0qugos16MD-pALx7MpXJzDMy0bswx5x4,10903
6
- opentelemetry/instrumentation/vertexai/utils.py,sha256=Rj-TT_GQFhfi1F1rugvDRFxl4Xo4D-rOYJojOK8iblI,1172
7
- opentelemetry/instrumentation/vertexai/version.py,sha256=cspeq_LxS-rfS8TCdvDr3f9URoflMOjJveMjR-O_cjs,23
8
- opentelemetry_instrumentation_vertexai-0.47.3.dist-info/METADATA,sha256=wpnxTeF4DWDgVnjIOXlDEnjm-dzcdacg_mwBnR3UxZU,2241
9
- opentelemetry_instrumentation_vertexai-0.47.3.dist-info/WHEEL,sha256=M5asmiAlL6HEcOq52Yi5mmk9KmTVjY2RDPtO4p9DMrc,88
10
- opentelemetry_instrumentation_vertexai-0.47.3.dist-info/entry_points.txt,sha256=HbacwtKx_31YuUruZKYKWOiTGnRw3YaazUKF3TPbzDc,114
11
- opentelemetry_instrumentation_vertexai-0.47.3.dist-info/RECORD,,
@@ -1,3 +0,0 @@
1
- [opentelemetry_instrumentor]
2
- google_cloud_aiplatform=opentelemetry.instrumentation.vertexai:VertexAIInstrumentor
3
-