opentau 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (108) hide show
  1. opentau/__init__.py +179 -0
  2. opentau/__version__.py +24 -0
  3. opentau/configs/__init__.py +19 -0
  4. opentau/configs/default.py +297 -0
  5. opentau/configs/libero.py +113 -0
  6. opentau/configs/parser.py +393 -0
  7. opentau/configs/policies.py +297 -0
  8. opentau/configs/reward.py +42 -0
  9. opentau/configs/train.py +370 -0
  10. opentau/configs/types.py +76 -0
  11. opentau/constants.py +52 -0
  12. opentau/datasets/__init__.py +84 -0
  13. opentau/datasets/backward_compatibility.py +78 -0
  14. opentau/datasets/compute_stats.py +333 -0
  15. opentau/datasets/dataset_mixture.py +460 -0
  16. opentau/datasets/factory.py +232 -0
  17. opentau/datasets/grounding/__init__.py +67 -0
  18. opentau/datasets/grounding/base.py +154 -0
  19. opentau/datasets/grounding/clevr.py +110 -0
  20. opentau/datasets/grounding/cocoqa.py +130 -0
  21. opentau/datasets/grounding/dummy.py +101 -0
  22. opentau/datasets/grounding/pixmo.py +177 -0
  23. opentau/datasets/grounding/vsr.py +141 -0
  24. opentau/datasets/image_writer.py +304 -0
  25. opentau/datasets/lerobot_dataset.py +1910 -0
  26. opentau/datasets/online_buffer.py +442 -0
  27. opentau/datasets/push_dataset_to_hub/utils.py +132 -0
  28. opentau/datasets/sampler.py +99 -0
  29. opentau/datasets/standard_data_format_mapping.py +278 -0
  30. opentau/datasets/transforms.py +330 -0
  31. opentau/datasets/utils.py +1243 -0
  32. opentau/datasets/v2/batch_convert_dataset_v1_to_v2.py +887 -0
  33. opentau/datasets/v2/convert_dataset_v1_to_v2.py +829 -0
  34. opentau/datasets/v21/_remove_language_instruction.py +109 -0
  35. opentau/datasets/v21/batch_convert_dataset_v20_to_v21.py +60 -0
  36. opentau/datasets/v21/convert_dataset_v20_to_v21.py +183 -0
  37. opentau/datasets/v21/convert_stats.py +150 -0
  38. opentau/datasets/video_utils.py +597 -0
  39. opentau/envs/__init__.py +18 -0
  40. opentau/envs/configs.py +178 -0
  41. opentau/envs/factory.py +99 -0
  42. opentau/envs/libero.py +439 -0
  43. opentau/envs/utils.py +204 -0
  44. opentau/optim/__init__.py +16 -0
  45. opentau/optim/factory.py +43 -0
  46. opentau/optim/optimizers.py +121 -0
  47. opentau/optim/schedulers.py +140 -0
  48. opentau/planner/__init__.py +82 -0
  49. opentau/planner/high_level_planner.py +366 -0
  50. opentau/planner/utils/memory.py +64 -0
  51. opentau/planner/utils/utils.py +65 -0
  52. opentau/policies/__init__.py +24 -0
  53. opentau/policies/factory.py +172 -0
  54. opentau/policies/normalize.py +315 -0
  55. opentau/policies/pi0/__init__.py +19 -0
  56. opentau/policies/pi0/configuration_pi0.py +250 -0
  57. opentau/policies/pi0/modeling_pi0.py +994 -0
  58. opentau/policies/pi0/paligemma_with_expert.py +516 -0
  59. opentau/policies/pi05/__init__.py +20 -0
  60. opentau/policies/pi05/configuration_pi05.py +231 -0
  61. opentau/policies/pi05/modeling_pi05.py +1257 -0
  62. opentau/policies/pi05/paligemma_with_expert.py +572 -0
  63. opentau/policies/pretrained.py +315 -0
  64. opentau/policies/utils.py +123 -0
  65. opentau/policies/value/__init__.py +18 -0
  66. opentau/policies/value/configuration_value.py +170 -0
  67. opentau/policies/value/modeling_value.py +512 -0
  68. opentau/policies/value/reward.py +87 -0
  69. opentau/policies/value/siglip_gemma.py +221 -0
  70. opentau/scripts/actions_mse_loss.py +89 -0
  71. opentau/scripts/bin_to_safetensors.py +116 -0
  72. opentau/scripts/compute_max_token_length.py +111 -0
  73. opentau/scripts/display_sys_info.py +90 -0
  74. opentau/scripts/download_libero_benchmarks.py +54 -0
  75. opentau/scripts/eval.py +877 -0
  76. opentau/scripts/export_to_onnx.py +180 -0
  77. opentau/scripts/fake_tensor_training.py +87 -0
  78. opentau/scripts/get_advantage_and_percentiles.py +220 -0
  79. opentau/scripts/high_level_planner_inference.py +114 -0
  80. opentau/scripts/inference.py +70 -0
  81. opentau/scripts/launch_train.py +63 -0
  82. opentau/scripts/libero_simulation_parallel.py +356 -0
  83. opentau/scripts/libero_simulation_sequential.py +122 -0
  84. opentau/scripts/nav_high_level_planner_inference.py +61 -0
  85. opentau/scripts/train.py +379 -0
  86. opentau/scripts/visualize_dataset.py +294 -0
  87. opentau/scripts/visualize_dataset_html.py +507 -0
  88. opentau/scripts/zero_to_fp32.py +760 -0
  89. opentau/utils/__init__.py +20 -0
  90. opentau/utils/accelerate_utils.py +79 -0
  91. opentau/utils/benchmark.py +98 -0
  92. opentau/utils/fake_tensor.py +81 -0
  93. opentau/utils/hub.py +209 -0
  94. opentau/utils/import_utils.py +79 -0
  95. opentau/utils/io_utils.py +137 -0
  96. opentau/utils/libero.py +214 -0
  97. opentau/utils/libero_dataset_recorder.py +460 -0
  98. opentau/utils/logging_utils.py +180 -0
  99. opentau/utils/monkey_patch.py +278 -0
  100. opentau/utils/random_utils.py +244 -0
  101. opentau/utils/train_utils.py +198 -0
  102. opentau/utils/utils.py +471 -0
  103. opentau-0.1.0.dist-info/METADATA +161 -0
  104. opentau-0.1.0.dist-info/RECORD +108 -0
  105. opentau-0.1.0.dist-info/WHEEL +5 -0
  106. opentau-0.1.0.dist-info/entry_points.txt +2 -0
  107. opentau-0.1.0.dist-info/licenses/LICENSE +508 -0
  108. opentau-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,597 @@
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
4
+ # Copyright 2026 Tensor Auto Inc. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """Video encoding, decoding, and information extraction utilities.
18
+
19
+ This module provides functionality for working with video files in robot learning
20
+ datasets, including frame extraction at specific timestamps, video encoding from
21
+ image sequences, and metadata extraction. It supports multiple video backends
22
+ for flexible deployment across different platforms.
23
+
24
+ The module handles the complexity of video codecs, including inter-frame compression
25
+ where frames are stored as differences relative to key frames. This requires
26
+ loading preceding key frames when accessing specific timestamps, which the module
27
+ handles automatically.
28
+
29
+ Key Features:
30
+ - Multiple backends: Supports torchcodec (when available), pyav, and
31
+ video_reader backends with automatic fallback.
32
+ - Timestamp-based frame extraction: Extracts frames at specific timestamps
33
+ with tolerance checking to ensure synchronization.
34
+ - Video encoding: Encodes image sequences to video files using ffmpeg with
35
+ configurable codecs and quality settings.
36
+ - Metadata extraction: Extracts video and audio stream information using
37
+ ffprobe.
38
+ - HuggingFace integration: Provides VideoFrame feature type for HuggingFace
39
+ datasets.
40
+
41
+ Classes:
42
+
43
+ VideoFrame
44
+ PyArrow-based feature type for HuggingFace datasets containing video
45
+ frames with path and timestamp information.
46
+
47
+ Functions:
48
+
49
+ Video decoding:
50
+ decode_video_frames
51
+ Main interface for decoding frames at timestamps with automatic backend selection.
52
+ decode_video_frames_torchcodec
53
+ Decode frames using torchcodec backend.
54
+ decode_video_frames_torchvision
55
+ Decode frames using torchvision backends (pyav or video_reader).
56
+
57
+ Video encoding:
58
+ encode_video_frames
59
+ Encode a sequence of PNG images into a video file using ffmpeg.
60
+
61
+ Video information:
62
+ get_video_info
63
+ Extract video stream metadata (fps, dimensions, codec).
64
+ get_audio_info
65
+ Extract audio stream metadata (channels, codec, bitrate).
66
+ get_video_pixel_channels
67
+ Determine pixel channels from pixel format.
68
+ get_image_pixel_channels
69
+ Determine pixel channels from PIL Image mode.
70
+
71
+ Backend management:
72
+ get_safe_default_codec
73
+ Get default codec backend with fallback logic.
74
+
75
+ Example:
76
+ Decode frames at specific timestamps:
77
+ >>> frames = decode_video_frames(
78
+ ... video_path="videos/episode_0.mp4",
79
+ ... timestamps=[0.1, 0.2, 0.3],
80
+ ... tolerance_s=1e-4,
81
+ ... backend="torchcodec"
82
+ ... )
83
+
84
+ Encode images to video:
85
+ >>> encode_video_frames(
86
+ ... imgs_dir="images/episode_0",
87
+ ... video_path="videos/episode_0.mp4",
88
+ ... fps=30,
89
+ ... vcodec="libsvtav1"
90
+ ... )
91
+
92
+ Get video information:
93
+ >>> info = get_video_info("videos/episode_0.mp4")
94
+ >>> print(f"FPS: {info['video.fps']}, Resolution: {info['video.width']}x{info['video.height']}")
95
+ """
96
+
97
+ import importlib
98
+ import json
99
+ import logging
100
+ import subprocess
101
+ import warnings
102
+ from collections import OrderedDict
103
+ from dataclasses import dataclass, field
104
+ from pathlib import Path
105
+ from typing import Any, ClassVar
106
+
107
+ import pyarrow as pa
108
+ import torch
109
+ import torchvision
110
+ from datasets.features.features import register_feature
111
+ from PIL import Image
112
+
113
+
114
+ def get_safe_default_codec() -> str:
115
+ """Get the default video codec backend, falling back to pyav if torchcodec is unavailable.
116
+
117
+ Returns:
118
+ Backend name: "torchcodec" if available, otherwise "pyav".
119
+ """
120
+ if importlib.util.find_spec("torchcodec"):
121
+ return "torchcodec"
122
+ else:
123
+ logging.warning(
124
+ "'torchcodec' is not available in your platform, falling back to 'pyav' as a default decoder"
125
+ )
126
+ return "pyav"
127
+
128
+
129
+ def decode_video_frames(
130
+ video_path: Path | str,
131
+ timestamps: list[float],
132
+ tolerance_s: float,
133
+ backend: str | None = None,
134
+ ) -> torch.Tensor:
135
+ """
136
+ Decodes video frames using the specified backend.
137
+
138
+ Args:
139
+ video_path (Path): Path to the video file.
140
+ timestamps (list[float]): List of timestamps to extract frames.
141
+ tolerance_s (float): Allowed deviation in seconds for frame retrieval.
142
+ backend (str, optional): Backend to use for decoding. Defaults to "torchcodec" when available in the platform; otherwise, defaults to "pyav"..
143
+
144
+ Returns:
145
+ torch.Tensor: Decoded frames.
146
+
147
+ Currently supports torchcodec on cpu and pyav.
148
+ """
149
+ if backend is None:
150
+ backend = get_safe_default_codec()
151
+ if backend == "torchcodec":
152
+ return decode_video_frames_torchcodec(video_path, timestamps, tolerance_s)
153
+ elif backend in ["pyav", "video_reader"]:
154
+ return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
155
+ else:
156
+ raise ValueError(f"Unsupported video backend: {backend}")
157
+
158
+
159
+ def decode_video_frames_torchvision(
160
+ video_path: Path | str,
161
+ timestamps: list[float],
162
+ tolerance_s: float,
163
+ backend: str = "pyav",
164
+ log_loaded_timestamps: bool = False,
165
+ ) -> torch.Tensor:
166
+ """Loads frames associated to the requested timestamps of a video
167
+
168
+ The backend can be either "pyav" (default) or "video_reader".
169
+ "video_reader" requires installing torchvision from source, see:
170
+ https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
171
+ (note that you need to compile against ffmpeg<4.3)
172
+
173
+ While both use cpu, "video_reader" is supposedly faster than "pyav" but requires additional setup.
174
+ For more info on video decoding, see `benchmark/video/README.md`
175
+
176
+ See torchvision doc for more info on these two backends:
177
+ https://pytorch.org/vision/0.18/index.html?highlight=backend#torchvision.set_video_backend
178
+
179
+ Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
180
+ the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
181
+ that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
182
+ and all subsequent frames until reaching the requested frame. The number of key frames in a video
183
+ can be adjusted during encoding to take into account decoding time and video size in bytes.
184
+ """
185
+ video_path = str(video_path)
186
+
187
+ # set backend
188
+ keyframes_only = False
189
+ torchvision.set_video_backend(backend)
190
+ if backend == "pyav":
191
+ keyframes_only = True # pyav doesnt support accuracte seek
192
+
193
+ # set a video stream reader
194
+ # TODO(rcadene): also load audio stream at the same time
195
+ reader = torchvision.io.VideoReader(video_path, "video")
196
+
197
+ # set the first and last requested timestamps
198
+ # Note: previous timestamps are usually loaded, since we need to access the previous key frame
199
+ first_ts = min(timestamps)
200
+ last_ts = max(timestamps)
201
+
202
+ # access closest key frame of the first requested frame
203
+ # Note: closest key frame timestamp is usually smaller than `first_ts` (e.g. key frame can be the first frame of the video)
204
+ # for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek
205
+ reader.seek(first_ts, keyframes_only=keyframes_only)
206
+
207
+ # load all frames until last requested frame
208
+ loaded_frames = []
209
+ loaded_ts = []
210
+ for frame in reader:
211
+ current_ts = frame["pts"]
212
+ if log_loaded_timestamps:
213
+ logging.info(f"frame loaded at timestamp={current_ts:.4f}")
214
+ loaded_frames.append(frame["data"])
215
+ loaded_ts.append(current_ts)
216
+ if current_ts >= last_ts:
217
+ break
218
+
219
+ if backend == "pyav":
220
+ reader.container.close()
221
+
222
+ reader = None
223
+
224
+ query_ts = torch.tensor(timestamps)
225
+ loaded_ts = torch.tensor(loaded_ts)
226
+
227
+ # compute distances between each query timestamp and timestamps of all loaded frames
228
+ dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1)
229
+ min_, argmin_ = dist.min(1)
230
+
231
+ is_within_tol = min_ < tolerance_s
232
+ assert is_within_tol.all(), (
233
+ f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})."
234
+ "It means that the closest frame that can be loaded from the video is too far away in time."
235
+ "This might be due to synchronization issues with timestamps during data collection."
236
+ "To be safe, we advise to ignore this item during training."
237
+ f"\nqueried timestamps: {query_ts}"
238
+ f"\nloaded timestamps: {loaded_ts}"
239
+ f"\nvideo: {video_path}"
240
+ f"\nbackend: {backend}"
241
+ )
242
+
243
+ # get closest frames to the query timestamps
244
+ closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
245
+ closest_ts = loaded_ts[argmin_]
246
+
247
+ if log_loaded_timestamps:
248
+ logging.info(f"{closest_ts=}")
249
+
250
+ # convert to the pytorch format which is float32 in [0,1] range (and channel first)
251
+ closest_frames = closest_frames.type(torch.float32) / 255
252
+
253
+ assert len(timestamps) == len(closest_frames)
254
+ return closest_frames
255
+
256
+
257
+ def decode_video_frames_torchcodec(
258
+ video_path: Path | str,
259
+ timestamps: list[float],
260
+ tolerance_s: float,
261
+ device: str = "cpu",
262
+ log_loaded_timestamps: bool = False,
263
+ ) -> torch.Tensor:
264
+ """Loads frames associated with the requested timestamps of a video using torchcodec.
265
+
266
+ Note: Setting device="cuda" outside the main process, e.g. in data loader workers, will lead to CUDA initialization errors.
267
+
268
+ Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
269
+ the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
270
+ that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
271
+ and all subsequent frames until reaching the requested frame. The number of key frames in a video
272
+ can be adjusted during encoding to take into account decoding time and video size in bytes.
273
+ """
274
+
275
+ if importlib.util.find_spec("torchcodec"):
276
+ from torchcodec.decoders import VideoDecoder
277
+ else:
278
+ raise ImportError("torchcodec is required but not available.")
279
+
280
+ # initialize video decoder
281
+ decoder = VideoDecoder(video_path, device=device, seek_mode="exact")
282
+ loaded_frames = []
283
+ loaded_ts = []
284
+ # get metadata for frame information
285
+ metadata = decoder.metadata
286
+ average_fps = metadata.average_fps
287
+
288
+ # convert timestamps to frame indices
289
+ frame_indices = [round(ts * average_fps) for ts in timestamps]
290
+
291
+ # retrieve frames based on indices
292
+ frames_batch = decoder.get_frames_at(indices=frame_indices)
293
+
294
+ for frame, pts in zip(frames_batch.data, frames_batch.pts_seconds, strict=False):
295
+ loaded_frames.append(frame)
296
+ loaded_ts.append(pts.item())
297
+ if log_loaded_timestamps:
298
+ logging.info(f"Frame loaded at timestamp={pts:.4f}")
299
+
300
+ query_ts = torch.tensor(timestamps)
301
+ loaded_ts = torch.tensor(loaded_ts)
302
+
303
+ # compute distances between each query timestamp and loaded timestamps
304
+ dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1)
305
+ min_, argmin_ = dist.min(1)
306
+
307
+ is_within_tol = min_ < tolerance_s
308
+ assert is_within_tol.all(), (
309
+ f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})."
310
+ "It means that the closest frame that can be loaded from the video is too far away in time."
311
+ "This might be due to synchronization issues with timestamps during data collection."
312
+ "To be safe, we advise to ignore this item during training."
313
+ f"\nqueried timestamps: {query_ts}"
314
+ f"\nloaded timestamps: {loaded_ts}"
315
+ f"\nvideo: {video_path}"
316
+ )
317
+
318
+ # get closest frames to the query timestamps
319
+ closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
320
+ closest_ts = loaded_ts[argmin_]
321
+
322
+ if log_loaded_timestamps:
323
+ logging.info(f"{closest_ts=}")
324
+
325
+ # convert to float32 in [0,1] range (channel first)
326
+ closest_frames = closest_frames.type(torch.float32) / 255
327
+
328
+ assert len(timestamps) == len(closest_frames)
329
+ return closest_frames
330
+
331
+
332
+ def encode_video_frames(
333
+ imgs_dir: Path | str,
334
+ video_path: Path | str,
335
+ fps: int,
336
+ vcodec: str = "libsvtav1",
337
+ pix_fmt: str = "yuv420p",
338
+ g: int | None = 2,
339
+ crf: int | None = 30,
340
+ fast_decode: int = 0,
341
+ log_level: str | None = "error",
342
+ overwrite: bool = False,
343
+ ) -> None:
344
+ """Encode a sequence of images into a video file using ffmpeg.
345
+
346
+ Args:
347
+ imgs_dir: Directory containing sequentially numbered PNG frames
348
+ (frame_000000.png, frame_000001.png, etc.).
349
+ video_path: Output path for the encoded video file.
350
+ fps: Frames per second for the output video.
351
+ vcodec: Video codec to use. Defaults to "libsvtav1".
352
+ pix_fmt: Pixel format. Defaults to "yuv420p".
353
+ g: GOP (Group of Pictures) size. Defaults to 2.
354
+ crf: Constant Rate Factor for quality control. Defaults to 30.
355
+ fast_decode: Fast decode parameter for libsvtav1. Defaults to 0.
356
+ log_level: FFmpeg log level. Defaults to "error".
357
+ overwrite: Whether to overwrite existing video file. Defaults to False.
358
+
359
+ Raises:
360
+ OSError: If video encoding fails or output file is not created.
361
+
362
+ Note:
363
+ More info on ffmpeg arguments tuning on `benchmark/video/README.md`
364
+ """
365
+ video_path = Path(video_path)
366
+ imgs_dir = Path(imgs_dir)
367
+ video_path.parent.mkdir(parents=True, exist_ok=True)
368
+
369
+ ffmpeg_args = OrderedDict(
370
+ [
371
+ ("-f", "image2"),
372
+ ("-r", str(fps)),
373
+ ("-i", str(imgs_dir / "frame_%06d.png")),
374
+ ("-vcodec", vcodec),
375
+ ("-pix_fmt", pix_fmt),
376
+ ]
377
+ )
378
+
379
+ if g is not None:
380
+ ffmpeg_args["-g"] = str(g)
381
+
382
+ if crf is not None:
383
+ ffmpeg_args["-crf"] = str(crf)
384
+
385
+ if fast_decode:
386
+ key = "-svtav1-params" if vcodec == "libsvtav1" else "-tune"
387
+ value = f"fast-decode={fast_decode}" if vcodec == "libsvtav1" else "fastdecode"
388
+ ffmpeg_args[key] = value
389
+
390
+ if log_level is not None:
391
+ ffmpeg_args["-loglevel"] = str(log_level)
392
+
393
+ ffmpeg_args = [item for pair in ffmpeg_args.items() for item in pair]
394
+ if overwrite:
395
+ ffmpeg_args.append("-y")
396
+
397
+ ffmpeg_cmd = ["ffmpeg"] + ffmpeg_args + [str(video_path)]
398
+ # redirect stdin to subprocess.DEVNULL to prevent reading random keyboard inputs from terminal
399
+ subprocess.run(ffmpeg_cmd, check=True, stdin=subprocess.DEVNULL)
400
+
401
+ if not video_path.exists():
402
+ raise OSError(
403
+ f"Video encoding did not work. File not found: {video_path}. "
404
+ f"Try running the command manually to debug: `{''.join(ffmpeg_cmd)}`"
405
+ )
406
+
407
+
408
+ @dataclass
409
+ class VideoFrame:
410
+ # TODO(rcadene, lhoestq): move to Hugging Face `datasets` repo
411
+ """
412
+ Provides a type for a dataset containing video frames.
413
+
414
+ Example:
415
+
416
+ ```python
417
+ data_dict = [{"image": {"path": "videos/episode_0.mp4", "timestamp": 0.3}}]
418
+ features = {"image": VideoFrame()}
419
+ Dataset.from_dict(data_dict, features=Features(features))
420
+ ```
421
+ """
422
+
423
+ pa_type: ClassVar[Any] = pa.struct({"path": pa.string(), "timestamp": pa.float32()})
424
+ _type: str = field(default="VideoFrame", init=False, repr=False)
425
+
426
+ def __call__(self):
427
+ return self.pa_type
428
+
429
+
430
+ with warnings.catch_warnings():
431
+ warnings.filterwarnings(
432
+ "ignore",
433
+ "'register_feature' is experimental and might be subject to breaking changes in the future.",
434
+ category=UserWarning,
435
+ )
436
+ # to make VideoFrame available in HuggingFace `datasets`
437
+ register_feature(VideoFrame, "VideoFrame")
438
+
439
+
440
+ def get_audio_info(video_path: Path | str) -> dict:
441
+ """Extract audio stream information from a video file using ffprobe.
442
+
443
+ Args:
444
+ video_path: Path to the video file.
445
+
446
+ Returns:
447
+ Dictionary containing audio information:
448
+ - has_audio: Boolean indicating if audio stream exists.
449
+ - audio.channels: Number of audio channels (if available).
450
+ - audio.codec: Audio codec name (if available).
451
+ - audio.bit_rate: Bit rate in bits per second (if available).
452
+ - audio.sample_rate: Sample rate in Hz (if available).
453
+ - audio.bit_depth: Bit depth (if available).
454
+ - audio.channel_layout: Channel layout (if available).
455
+
456
+ Raises:
457
+ RuntimeError: If ffprobe command fails.
458
+ """
459
+ ffprobe_audio_cmd = [
460
+ "ffprobe",
461
+ "-v",
462
+ "error",
463
+ "-select_streams",
464
+ "a:0",
465
+ "-show_entries",
466
+ "stream=channels,codec_name,bit_rate,sample_rate,bit_depth,channel_layout,duration",
467
+ "-of",
468
+ "json",
469
+ str(video_path),
470
+ ]
471
+ result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
472
+ if result.returncode != 0:
473
+ raise RuntimeError(f"Error running ffprobe: {result.stderr}")
474
+
475
+ info = json.loads(result.stdout)
476
+ audio_stream_info = info["streams"][0] if info.get("streams") else None
477
+ if audio_stream_info is None:
478
+ return {"has_audio": False}
479
+
480
+ # Return the information, defaulting to None if no audio stream is present
481
+ return {
482
+ "has_audio": True,
483
+ "audio.channels": audio_stream_info.get("channels", None),
484
+ "audio.codec": audio_stream_info.get("codec_name", None),
485
+ "audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None,
486
+ "audio.sample_rate": int(audio_stream_info["sample_rate"])
487
+ if audio_stream_info.get("sample_rate")
488
+ else None,
489
+ "audio.bit_depth": audio_stream_info.get("bit_depth", None),
490
+ "audio.channel_layout": audio_stream_info.get("channel_layout", None),
491
+ }
492
+
493
+
494
+ def get_video_info(video_path: Path | str) -> dict:
495
+ """Extract video stream information from a video file using ffprobe.
496
+
497
+ Args:
498
+ video_path: Path to the video file.
499
+
500
+ Returns:
501
+ Dictionary containing video and audio information:
502
+ - video.fps: Frames per second.
503
+ - video.height: Video height in pixels.
504
+ - video.width: Video width in pixels.
505
+ - video.channels: Number of pixel channels.
506
+ - video.codec: Video codec name.
507
+ - video.pix_fmt: Pixel format.
508
+ - video.is_depth_map: Whether video is a depth map.
509
+ - Plus all fields from get_audio_info().
510
+
511
+ Raises:
512
+ RuntimeError: If ffprobe command fails.
513
+ """
514
+ ffprobe_video_cmd = [
515
+ "ffprobe",
516
+ "-v",
517
+ "error",
518
+ "-select_streams",
519
+ "v:0",
520
+ "-show_entries",
521
+ "stream=r_frame_rate,width,height,codec_name,nb_frames,duration,pix_fmt",
522
+ "-of",
523
+ "json",
524
+ str(video_path),
525
+ ]
526
+ result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
527
+ if result.returncode != 0:
528
+ raise RuntimeError(f"Error running ffprobe: {result.stderr}")
529
+
530
+ info = json.loads(result.stdout)
531
+ video_stream_info = info["streams"][0]
532
+
533
+ # Calculate fps from r_frame_rate
534
+ r_frame_rate = video_stream_info["r_frame_rate"]
535
+ num, denom = map(int, r_frame_rate.split("/"))
536
+ fps = num / denom
537
+
538
+ pixel_channels = get_video_pixel_channels(video_stream_info["pix_fmt"])
539
+
540
+ video_info = {
541
+ "video.fps": fps,
542
+ "video.height": video_stream_info["height"],
543
+ "video.width": video_stream_info["width"],
544
+ "video.channels": pixel_channels,
545
+ "video.codec": video_stream_info["codec_name"],
546
+ "video.pix_fmt": video_stream_info["pix_fmt"],
547
+ "video.is_depth_map": False,
548
+ **get_audio_info(video_path),
549
+ }
550
+
551
+ return video_info
552
+
553
+
554
+ def get_video_pixel_channels(pix_fmt: str) -> int:
555
+ """Determine the number of pixel channels from a pixel format string.
556
+
557
+ Args:
558
+ pix_fmt: Pixel format string (e.g., "yuv420p", "rgb24").
559
+
560
+ Returns:
561
+ Number of channels (1, 3, or 4).
562
+
563
+ Raises:
564
+ ValueError: If pixel format is unknown.
565
+ """
566
+ if "gray" in pix_fmt or "depth" in pix_fmt or "monochrome" in pix_fmt:
567
+ return 1
568
+ elif "rgba" in pix_fmt or "yuva" in pix_fmt:
569
+ return 4
570
+ elif "rgb" in pix_fmt or "yuv" in pix_fmt:
571
+ return 3
572
+ else:
573
+ raise ValueError("Unknown format")
574
+
575
+
576
+ def get_image_pixel_channels(image: Image) -> int:
577
+ """Determine the number of pixel channels from a PIL Image mode.
578
+
579
+ Args:
580
+ image: PIL Image object.
581
+
582
+ Returns:
583
+ Number of channels (1, 2, 3, or 4).
584
+
585
+ Raises:
586
+ ValueError: If image mode is unknown.
587
+ """
588
+ if image.mode == "L":
589
+ return 1 # Grayscale
590
+ elif image.mode == "LA":
591
+ return 2 # Grayscale + Alpha
592
+ elif image.mode == "RGB":
593
+ return 3 # RGB
594
+ elif image.mode == "RGBA":
595
+ return 4 # RGBA
596
+ else:
597
+ raise ValueError("Unknown format")
@@ -0,0 +1,18 @@
1
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
2
+ # Copyright 2026 Tensor Auto Inc. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ r"""This package includes environments for training and evaluating policies. Only LIBERO is supported for now."""
17
+
18
+ from .configs import EnvConfig # noqa: F401