openstef 3.4.64__py3-none-any.whl → 3.4.66__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -96,6 +96,10 @@ class PredictionJobDataClass(BaseModel):
96
96
  1440,
97
97
  description="Number of minutes that the load has to be constant to detect a flatliner.",
98
98
  )
99
+ detect_non_zero_flatliner: bool = Field(
100
+ False,
101
+ description="If True, flatliners are also detected on non-zero values (median of the load).",
102
+ )
99
103
  data_balancing_ratio: Optional[float] = Field(
100
104
  None,
101
105
  description="If data balancing is enabled, the data will be balanced with data from 1 year ago in the future.",
openstef/exceptions.py CHANGED
@@ -44,8 +44,8 @@ class InputDataWrongColumnOrderError(InputDataInvalidError):
44
44
  """Wrong column order input data."""
45
45
 
46
46
 
47
- class InputDataOngoingZeroFlatlinerError(InputDataInvalidError):
48
- """All recent load measurements are zero."""
47
+ class InputDataOngoingFlatlinerError(InputDataInvalidError):
48
+ """All recent load measurements are constant."""
49
49
 
50
50
 
51
51
  class OldModelHigherScoreError(Exception):
@@ -8,7 +8,7 @@ import pandas as pd
8
8
  import structlog
9
9
 
10
10
  from openstef.data_classes.prediction_job import PredictionJobDataClass
11
- from openstef.exceptions import InputDataOngoingZeroFlatlinerError, NoRealisedLoadError
11
+ from openstef.exceptions import NoRealisedLoadError
12
12
  from openstef.feature_engineering.feature_applicator import (
13
13
  OperationalPredictFeatureApplicator,
14
14
  )
@@ -58,12 +58,12 @@ def create_basecase_forecast_pipeline(
58
58
  if not isinstance(input_data.index, pd.DatetimeIndex):
59
59
  raise ValueError("Input dataframe does not have a datetime index.")
60
60
 
61
- zero_flatliner_ongoing = validation.detect_ongoing_zero_flatliner(
61
+ flatliner_ongoing = validation.detect_ongoing_flatliner(
62
62
  load=input_data.iloc[:, 0],
63
63
  duration_threshold_minutes=pj.flatliner_threshold_minutes,
64
64
  )
65
65
 
66
- if zero_flatliner_ongoing:
66
+ if flatliner_ongoing:
67
67
  # Set historic load to zero to force the basecase forecasts to be zero.
68
68
  input_data.loc[input_data.index < forecast_start, "load"] = 0
69
69
 
@@ -45,7 +45,7 @@ def create_forecast_pipeline(
45
45
  DataFrame with the forecast
46
46
 
47
47
  Raises:
48
- InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
48
+ InputDataOngoingFlatlinerError: When all recent load measurements are constant.
49
49
  LookupError: When no model is found for the given prediction job in MLflow.
50
50
 
51
51
  """
@@ -85,7 +85,7 @@ def create_forecast_pipeline_core(
85
85
  Forecast
86
86
 
87
87
  Raises:
88
- InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
88
+ InputDataOngoingFlatlinerError: When all recent load measurements are constant.
89
89
 
90
90
  """
91
91
  structlog.configure(
@@ -103,6 +103,7 @@ def create_forecast_pipeline_core(
103
103
  input_data,
104
104
  pj["flatliner_threshold_minutes"],
105
105
  pj["resolution_minutes"],
106
+ detect_non_zero_flatliner=pj["detect_non_zero_flatliner"],
106
107
  )
107
108
 
108
109
  # Custom data prep or legacy behavior
@@ -132,7 +132,7 @@ def optimize_hyperparameters_pipeline_core(
132
132
  InputDataInsufficientError: If the input dataframe is empty.
133
133
  InputDataWrongColumnOrderError: If the load column is missing in the input dataframe.
134
134
  OldModelHigherScoreError: When old model is better than new model.
135
- InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
135
+ InputDataOngoingFlatlinerError: If all recent load measurements are constant.
136
136
 
137
137
  Returns:
138
138
  - Best model,
@@ -157,6 +157,7 @@ def optimize_hyperparameters_pipeline_core(
157
157
  input_data,
158
158
  pj["flatliner_threshold_minutes"],
159
159
  pj["resolution_minutes"],
160
+ detect_non_zero_flatliner=pj["detect_non_zero_flatliner"],
160
161
  )
161
162
  )
162
163
 
@@ -60,7 +60,7 @@ def train_model_and_forecast_back_test(
60
60
  InputDataInsufficientError: when input data is insufficient.
61
61
  InputDataWrongColumnOrderError: when input data has a invalid column order.
62
62
  ValueError: when the horizon is a string and the corresponding column in not in the input data
63
- InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
63
+ InputDataOngoingFlatlinerError: If all recent load measurements are constant.
64
64
 
65
65
  """
66
66
  if pj.backtest_split_func is None:
@@ -3,7 +3,7 @@
3
3
  # SPDX-License-Identifier: MPL-2.0
4
4
  import logging
5
5
  import os
6
- from typing import Optional, Union, Tuple
6
+ from typing import Optional, Tuple, Union
7
7
 
8
8
  import pandas as pd
9
9
  import structlog
@@ -46,6 +46,7 @@ def train_model_pipeline(
46
46
  check_old_model_age: bool,
47
47
  mlflow_tracking_uri: str,
48
48
  artifact_folder: str,
49
+ ignore_existing_models: bool = False,
49
50
  ) -> Optional[tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]]:
50
51
  """Middle level pipeline that takes care of all persistent storage dependencies.
51
52
 
@@ -79,7 +80,7 @@ def train_model_pipeline(
79
80
 
80
81
  # Get old model and age
81
82
  old_model, model_specs, old_model_age = train_pipeline_step_load_model(
82
- pj, serializer
83
+ pj, serializer, ignore_existing_models
83
84
  )
84
85
 
85
86
  # Check old model age and continue yes/no
@@ -106,6 +107,7 @@ def train_model_pipeline(
106
107
  input_data,
107
108
  old_model,
108
109
  horizons=horizons,
110
+ ignore_existing_models=ignore_existing_models,
109
111
  )
110
112
  except OldModelHigherScoreError as OMHSE:
111
113
  logger.error("Old model is better than new model", pid=pj["id"], exc_info=OMHSE)
@@ -155,6 +157,7 @@ def train_model_pipeline_core(
155
157
  input_data: pd.DataFrame,
156
158
  old_model: OpenstfRegressor = None,
157
159
  horizons: list[float] = DEFAULT_TRAIN_HORIZONS_HOURS,
160
+ ignore_existing_models: bool = False,
158
161
  ) -> Tuple[
159
162
  OpenstfRegressor,
160
163
  Report,
@@ -177,7 +180,7 @@ def train_model_pipeline_core(
177
180
  InputDataInsufficientError: when input data is insufficient.
178
181
  InputDataWrongColumnOrderError: when input data has a invalid column order.
179
182
  OldModelHigherScoreError: When old model is better than new model.
180
- InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
183
+ InputDataOngoingFlatlinerError: If all recent load measurements are constant.
181
184
 
182
185
  Returns:
183
186
  - Fitted_model (OpenstfRegressor)
@@ -203,7 +206,7 @@ def train_model_pipeline_core(
203
206
  model_specs.feature_names = list(train_data.columns)
204
207
 
205
208
  # Check if new model is better than old model
206
- if old_model:
209
+ if old_model and not ignore_existing_models:
207
210
  combined = pd.concat([train_data, validation_data])
208
211
  # skip the forecast column added at the end of dataframes
209
212
  if pj.save_train_forecasts:
@@ -220,6 +223,7 @@ def train_model_pipeline_core(
220
223
  # Try to compare new model to old model.
221
224
  # If this does not success, for example since the feature names of the
222
225
  # old model differ from the new model, the new model is considered better
226
+
223
227
  try:
224
228
  score_old_model = old_model.score(x_data, y_data)
225
229
 
@@ -272,7 +276,7 @@ def train_pipeline_common(
272
276
  InputDataInsufficientError: when input data is insufficient.
273
277
  InputDataWrongColumnOrderError: when input data has a invalid column order.
274
278
  'load' column should be first and 'horizon' column last.
275
- InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
279
+ InputDataOngoingFlatlinerError: If all recent load measurements are constant.
276
280
 
277
281
  """
278
282
  data_with_features = train_pipeline_step_compute_features(
@@ -315,25 +319,31 @@ def train_pipeline_common(
315
319
 
316
320
 
317
321
  def train_pipeline_step_load_model(
318
- pj: PredictionJobDataClass, serializer: MLflowSerializer
322
+ pj: PredictionJobDataClass,
323
+ serializer: MLflowSerializer,
324
+ ignore_existing_models: bool = False,
319
325
  ) -> Tuple[OpenstfRegressor, ModelSpecificationDataClass, Union[int, float]]:
320
326
  old_model: Optional[OpenstfRegressor]
321
- try:
322
- old_model, model_specs = serializer.load_model(experiment_name=str(pj.id))
323
- old_model_age = old_model.age # Age attribute is openstef specific
324
- return old_model, model_specs, old_model_age
325
- except (AttributeError, FileNotFoundError, LookupError):
326
- logger.warning("No old model found, training new model", pid=pj.id)
327
- except Exception:
328
- logger.exception("Old model could not be loaded, training new model", pid=pj.id)
327
+
328
+ if not ignore_existing_models:
329
+ try:
330
+ old_model, model_specs = serializer.load_model(experiment_name=str(pj.id))
331
+ old_model_age = old_model.age # Age attribute is openstef specific
332
+ return old_model, model_specs, old_model_age
333
+ except (AttributeError, FileNotFoundError, LookupError):
334
+ logger.warning("No old model found, training new model", pid=pj.id)
335
+ except Exception:
336
+ logger.exception(
337
+ "Old model could not be loaded, training new model", pid=pj.id
338
+ )
339
+
329
340
  old_model = None
330
341
  old_model_age = float("inf")
331
342
  if pj["default_modelspecs"] is not None:
332
343
  model_specs = pj["default_modelspecs"]
333
344
  if model_specs.id != pj.id:
334
345
  raise RuntimeError(
335
- "The id of the prediction job and its default model_specs do not"
336
- " match."
346
+ "The id of the prediction job and its default model_specs do not match."
337
347
  )
338
348
  else:
339
349
  # create basic model_specs
@@ -363,7 +373,7 @@ def train_pipeline_step_compute_features(
363
373
  InputDataInsufficientError: when input data is insufficient.
364
374
  InputDataWrongColumnOrderError: when input data has a invalid column order.
365
375
  ValueError: when the horizon is a string and the corresponding column in not in the input data
366
- InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
376
+ InputDataOngoingFlatlinerError: If all recent load measurements are constant.
367
377
 
368
378
  """
369
379
  if input_data.empty:
@@ -389,6 +399,7 @@ def train_pipeline_step_compute_features(
389
399
  input_data,
390
400
  pj["flatliner_threshold_minutes"],
391
401
  pj["resolution_minutes"],
402
+ detect_non_zero_flatliner=pj["detect_non_zero_flatliner"],
392
403
  )
393
404
  )
394
405
  # Check if sufficient data is left after cleaning
@@ -25,11 +25,11 @@ from pathlib import Path
25
25
 
26
26
  from openstef.data_classes.prediction_job import PredictionJobDataClass
27
27
  from openstef.enums import BiddingZone, ModelType, PipelineType
28
- from openstef.exceptions import InputDataOngoingZeroFlatlinerError
28
+ from openstef.exceptions import InputDataOngoingFlatlinerError
29
29
  from openstef.pipeline.create_forecast import create_forecast_pipeline
30
30
  from openstef.tasks.utils.predictionjobloop import PredictionJobLoop
31
31
  from openstef.tasks.utils.taskcontext import TaskContext
32
- from openstef.validation.validation import detect_ongoing_zero_flatliner
32
+ from openstef.validation.validation import detect_ongoing_flatliner
33
33
 
34
34
  T_BEHIND_DAYS: int = 14
35
35
 
@@ -94,7 +94,7 @@ def create_forecast_task(
94
94
  forecast = create_forecast_pipeline(
95
95
  pj, input_data, mlflow_tracking_uri=mlflow_tracking_uri
96
96
  )
97
- except (InputDataOngoingZeroFlatlinerError, LookupError) as e:
97
+ except (InputDataOngoingFlatlinerError, LookupError) as e:
98
98
  if (
99
99
  context.config.known_zero_flatliners
100
100
  and pj.id in context.config.known_zero_flatliners
@@ -103,18 +103,18 @@ def create_forecast_task(
103
103
  "No forecasts were made for this known zero flatliner prediction job. No forecasts need to be made either, since the fallback forecasts are sufficient."
104
104
  )
105
105
  return
106
- elif isinstance(e, InputDataOngoingZeroFlatlinerError):
107
- raise InputDataOngoingZeroFlatlinerError(
108
- 'All recent load measurements are zero. Check the load profile of this pid as well as related/neighbouring prediction jobs. Afterwards, consider adding this pid to the "known_zero_flatliners" app_setting and possibly removing other pids from the same app_setting.'
106
+ elif isinstance(e, InputDataOngoingFlatlinerError):
107
+ raise InputDataOngoingFlatlinerError(
108
+ 'All recent load measurements are constant. Check the load profile of this pid as well as related/neighbouring prediction jobs. Afterwards, consider adding this pid to the "known_zero_flatliners" app_setting and possibly removing other pids from the same app_setting.'
109
109
  ) from e
110
110
  elif isinstance(e, LookupError):
111
- zero_flatliner_ongoing = detect_ongoing_zero_flatliner(
111
+ zero_flatliner_ongoing = detect_ongoing_flatliner(
112
112
  load=input_data.iloc[:, 0],
113
113
  duration_threshold_minutes=pj.flatliner_threshold_minutes,
114
114
  )
115
115
  if zero_flatliner_ongoing:
116
116
  raise LookupError(
117
- 'Model not found. Consider checking for a zero flatliner and adding this pid to the "known_zero_flatliners" app_setting. For zero flatliners, no model can be trained.'
117
+ 'Model not found. Consider checking for a flatliner and adding this pid to the "known_zero_flatliners" app_setting. For flatliners, no model can be trained.'
118
118
  ) from e
119
119
  else:
120
120
  raise e
@@ -19,15 +19,17 @@ Example:
19
19
  $ python model_train.py
20
20
 
21
21
  """
22
- from datetime import datetime, timedelta, UTC
22
+
23
+ from datetime import UTC, datetime, timedelta
23
24
  from pathlib import Path
25
+ from typing import Optional
24
26
 
25
27
  import pandas as pd
26
28
 
27
29
  from openstef.data_classes.prediction_job import PredictionJobDataClass
28
30
  from openstef.enums import ModelType, PipelineType
29
31
  from openstef.exceptions import (
30
- InputDataOngoingZeroFlatlinerError,
32
+ InputDataOngoingFlatlinerError,
31
33
  SkipSaveTrainingForecasts,
32
34
  )
33
35
  from openstef.model.serializer import MLflowSerializer
@@ -41,14 +43,16 @@ from openstef.tasks.utils.taskcontext import TaskContext
41
43
 
42
44
  TRAINING_PERIOD_DAYS: int = 120
43
45
  DEFAULT_CHECK_MODEL_AGE: bool = True
46
+ DEFAULT_IGNORE_EXISTING_MODELS: bool = False
44
47
 
45
48
 
46
49
  def train_model_task(
47
50
  pj: PredictionJobDataClass,
48
51
  context: TaskContext,
49
52
  check_old_model_age: bool = DEFAULT_CHECK_MODEL_AGE,
50
- datetime_start: datetime = None,
51
- datetime_end: datetime = None,
53
+ datetime_start: Optional[datetime] = None,
54
+ datetime_end: Optional[datetime] = None,
55
+ ignore_existing_models: bool = DEFAULT_IGNORE_EXISTING_MODELS,
52
56
  ) -> None:
53
57
  """Train model task.
54
58
 
@@ -67,7 +71,7 @@ def train_model_task(
67
71
 
68
72
  Raises:
69
73
  SkipSaveTrainingForecasts: If old model is better or too young, you don't need to save the traing forcast.
70
- InputDataOngoingZeroFlatlinerError: If all recent load measurements are zero.
74
+ InputDataOngoingFlatlinerError: If all recent load measurements are constant.
71
75
 
72
76
  """
73
77
  # Check pipeline types
@@ -104,7 +108,9 @@ def train_model_task(
104
108
  serializer = MLflowSerializer(mlflow_tracking_uri=mlflow_tracking_uri)
105
109
 
106
110
  # Get old model and age
107
- _, _, old_model_age = train_pipeline_step_load_model(pj, serializer)
111
+ _, _, old_model_age = train_pipeline_step_load_model(
112
+ pj, serializer, ignore_existing_models
113
+ )
108
114
 
109
115
  # Check old model age and continue yes/no
110
116
  if (old_model_age < MAXIMUM_MODEL_AGE) and check_old_model_age:
@@ -168,6 +174,7 @@ def train_model_task(
168
174
  check_old_model_age=check_old_model_age,
169
175
  mlflow_tracking_uri=mlflow_tracking_uri,
170
176
  artifact_folder=artifact_folder,
177
+ ignore_existing_models=ignore_existing_models,
171
178
  )
172
179
 
173
180
  if data_sets:
@@ -187,18 +194,18 @@ def train_model_task(
187
194
  context.logger.debug("Saved Forecasts from trained model on datasets")
188
195
  except SkipSaveTrainingForecasts:
189
196
  context.logger.debug("Skip saving forecasts")
190
- except InputDataOngoingZeroFlatlinerError:
197
+ except InputDataOngoingFlatlinerError:
191
198
  if (
192
199
  context.config.known_zero_flatliners
193
200
  and pj.id in context.config.known_zero_flatliners
194
201
  ):
195
202
  context.logger.info(
196
- "No model was trained for this known zero flatliner. No model needs to be trained either, since the fallback forecasts are sufficient."
203
+ "No model was trained for this known flatliner. No model needs to be trained either, since the fallback forecasts are sufficient."
197
204
  )
198
205
  return
199
206
  else:
200
- raise InputDataOngoingZeroFlatlinerError(
201
- 'All recent load measurements are zero. Check the load profile of this pid as well as related/neighbouring prediction jobs. Afterwards, consider adding this pid to the "known_zero_flatliners" app_setting and possibly removing other pids from the same app_setting.'
207
+ raise InputDataOngoingFlatlinerError(
208
+ 'All recent load measurements are constant. Check the load profile of this pid as well as related/neighbouring prediction jobs. Afterwards, consider adding this pid to the "known_zero_flatliners" app_setting and possibly removing other pids from the same app_setting.'
202
209
  )
203
210
 
204
211
 
@@ -10,7 +10,8 @@ import numpy as np
10
10
  import pandas as pd
11
11
  import structlog
12
12
 
13
- from openstef.exceptions import InputDataOngoingZeroFlatlinerError
13
+ from openstef.data_classes.prediction_job import PredictionJobDataClass
14
+ from openstef.exceptions import InputDataOngoingFlatlinerError
14
15
  from openstef.model.regressors.regressor import OpenstfRegressor
15
16
  from openstef.preprocessing.preprocessing import replace_repeated_values_with_nan
16
17
  from openstef.settings import Settings
@@ -21,12 +22,15 @@ def validate(
21
22
  data: pd.DataFrame,
22
23
  flatliner_threshold_minutes: Union[int, None],
23
24
  resolution_minutes: int,
25
+ *,
26
+ detect_non_zero_flatliner: bool = False,
24
27
  ) -> pd.DataFrame:
25
28
  """Validate prediction job and timeseries data.
26
29
 
27
30
  Steps:
28
31
  1. Check if input dataframe has a datetime index.
29
- 1. Check if a zero flatliner pattern is ongoing (i.e. all recent measurements are zero).
32
+ 1. Check if a flatliner pattern is ongoing (i.e. all recent measurements are constant,
33
+ 0 in case detect_non_zero_flatliner = True).
30
34
  2. Replace repeated values for longer than flatliner_threshold_minutes with NaN.
31
35
 
32
36
  Args:
@@ -35,12 +39,14 @@ def validate(
35
39
  flatliner_threshold_minutes: int indicating the number of minutes after which constant load is considered a flatline.
36
40
  if None, the validation is effectively skipped
37
41
  resolution_minutes: The forecasting resolution in minutes.
42
+ detect_non_zero_flatliner: If True, a flatliner is detected for non-zero values. If False,
43
+ a flatliner is detected for zero values only.
38
44
 
39
45
  Returns:
40
46
  Dataframe where repeated values are set to None
41
47
 
42
48
  Raises:
43
- InputDataOngoingZeroFlatlinerError: If all recent load measurements are zero.
49
+ InputDataOngoingFlatlinerError: If all recent load measurements are constant.
44
50
 
45
51
  """
46
52
  structlog.configure(
@@ -57,13 +63,15 @@ def validate(
57
63
  logger.info("Skipping validation of input data", pj_id=pj_id)
58
64
  return data
59
65
 
60
- zero_flatliner_ongoing = detect_ongoing_zero_flatliner(
61
- load=data.iloc[:, 0], duration_threshold_minutes=flatliner_threshold_minutes
66
+ flatliner_ongoing = detect_ongoing_flatliner(
67
+ load=data.iloc[:, 0],
68
+ duration_threshold_minutes=flatliner_threshold_minutes,
69
+ detect_non_zero_flatliner=detect_non_zero_flatliner,
62
70
  )
63
71
 
64
- if zero_flatliner_ongoing:
65
- raise InputDataOngoingZeroFlatlinerError(
66
- "All recent load measurements are zero."
72
+ if flatliner_ongoing:
73
+ raise InputDataOngoingFlatlinerError(
74
+ "All recent load measurements are constant."
67
75
  )
68
76
 
69
77
  flatliner_threshold_repetitions = math.ceil(
@@ -228,18 +236,22 @@ def calc_completeness_features(
228
236
  return completeness
229
237
 
230
238
 
231
- def detect_ongoing_zero_flatliner(
239
+ def detect_ongoing_flatliner(
232
240
  load: pd.Series,
233
241
  duration_threshold_minutes: int,
242
+ *,
243
+ detect_non_zero_flatliner: bool = False,
234
244
  ) -> bool:
235
- """Detects if the latest measurements follow a zero flatliner pattern.
245
+ """Detects if the latest measurements follow a flatliner pattern.
236
246
 
237
247
  Args:
238
248
  load (pd.Series): A timeseries of measured load with a datetime index.
239
- duration_threshold_minutes (int): A zero flatliner is only detected if it exceeds the threshold duration.
249
+ duration_threshold_minutes (int): A flatliner is only detected if it exceeds the threshold duration.
250
+ detect_non_zero_flatliner (bool): If True, a flatliner is detected for non-zero values. If False,
251
+ a flatliner is detected for zero values only.
240
252
 
241
253
  Returns:
242
- bool: Indicating whether or not there is a zero flatliner ongoing for the given load.
254
+ bool: Indicating whether or not there is a flatliner ongoing for the given load.
243
255
 
244
256
  """
245
257
  # remove all timestamps in the future
@@ -249,7 +261,18 @@ def detect_ongoing_zero_flatliner(
249
261
  latest_measurement_time - timedelta(minutes=duration_threshold_minutes) :
250
262
  ].dropna()
251
263
 
252
- return (latest_measurements == 0).all() & (not latest_measurements.empty)
264
+ flatliner_value = latest_measurements.median() if detect_non_zero_flatliner else 0
265
+
266
+ # check if all values are within a relative tolerance of each other
267
+ flatline_condition = np.isclose(
268
+ latest_measurements,
269
+ flatliner_value,
270
+ atol=0,
271
+ rtol=1e-5,
272
+ ).all()
273
+ non_empty_condition = not latest_measurements.empty
274
+
275
+ return flatline_condition & non_empty_condition
253
276
 
254
277
 
255
278
  def calc_completeness_dataframe(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: openstef
3
- Version: 3.4.64
3
+ Version: 3.4.66
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -2,7 +2,7 @@ openstef/__init__.py,sha256=93UM6m0LLQhO69-mSqLuUy73jgs4W7Iuxfo3Lm8c98g,419
2
2
  openstef/__main__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
3
3
  openstef/app_settings.py,sha256=EJTDtimctFQQ-3f7ZcOQaRYohpZk3JD6aZBWPFYM2_A,582
4
4
  openstef/enums.py,sha256=FrP0m_Tk0kV7gSZ2hTY_8iD45KIKnexHrjNufhpKXpE,2829
5
- openstef/exceptions.py,sha256=U4u2LTcdT6cmzpipT2Jh7kq9nCjT_-6gntn8yjuhGU0,1993
5
+ openstef/exceptions.py,sha256=dgnvZe5WWuJWCZm_GES6suEATbusPlwbiEUfNQKeExY,1993
6
6
  openstef/settings.py,sha256=nSgkBqFxuqB3w7Rwo60i8j37c5ngDbt6vpjHS6QtJXQ,354
7
7
  openstef/data/NL_terrestrial_radiation.csv,sha256=A4kbW56GDzWi4tWUwY2C-4PiOvcKJCwkWQQtdg4ekPE,820246
8
8
  openstef/data/NL_terrestrial_radiation.csv.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
@@ -17,7 +17,7 @@ openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_model_card.md.license,sha25
17
17
  openstef/data_classes/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
18
18
  openstef/data_classes/data_prep.py,sha256=sANgFjfwmSWhLCfmLjfqXQnczuvVZfk2765jZd7LwuE,3691
19
19
  openstef/data_classes/model_specifications.py,sha256=PZeBLfH_MrP9-QorL1r0Hklp0befE8Nw05vNhTX9Y20,1338
20
- openstef/data_classes/prediction_job.py,sha256=pbvffqje7X7UGx2AC1LX2bvChiEd4n9brbxtS6-4_iE,6553
20
+ openstef/data_classes/prediction_job.py,sha256=e6_PFAovNd31tjzoTQJvqRNQyVM-M0XHffclAG9Ez8A,6721
21
21
  openstef/data_classes/split_function.py,sha256=K8y1dsQC5exeIDh37f7UwJ11tV71_uVSNbnKmwXpnOM,3435
22
22
  openstef/feature_engineering/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
23
23
  openstef/feature_engineering/apply_features.py,sha256=9Yzg61Whd4n0osQBfrcW8cI0gaUiv7u8KnQIQPR40fY,5327
@@ -68,12 +68,12 @@ openstef/monitoring/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4
68
68
  openstef/monitoring/performance_meter.py,sha256=6aCGjJFXFq-7qwaJyBkF3MLqjgVK6FMFVcO-bcLLUb4,2803
69
69
  openstef/monitoring/teams.py,sha256=A-tlZeuAgolxFHjgT3gGjraxzW2dmuB-UAOz4xgYNIQ,6668
70
70
  openstef/pipeline/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
71
- openstef/pipeline/create_basecase_forecast.py,sha256=8pyUHauJEFXMFxAg-lMy8B6oaZbsXMpdHXuNS6o_3QM,4630
71
+ openstef/pipeline/create_basecase_forecast.py,sha256=ChIh8iQSRL9n2pc7l3Cw3RWRONkp2e7MOoUnpY9VT_s,4579
72
72
  openstef/pipeline/create_component_forecast.py,sha256=U2v_R-FSOXWVbWeknsJbkulN1YK56fL7-bB1h2B1yzw,6021
73
- openstef/pipeline/create_forecast.py,sha256=_WKoi-FRdODUmJh-6X82CbbFiHrbGwvoTPfLf60thco,5696
74
- openstef/pipeline/optimize_hyperparameters.py,sha256=3SLkcLR7XC4IeN48C-XT_lxlfCqW_D0NoMpZcrB9UUM,11045
75
- openstef/pipeline/train_create_forecast_backtest.py,sha256=-kZqCWal5zYLL0k0Sapks1zTmU5unNAooVPaPos1_7E,6050
76
- openstef/pipeline/train_model.py,sha256=ThZwPo5otikVqVe6NdXkYcxkVFh-kegRVxMsQg1lbFc,19743
73
+ openstef/pipeline/create_forecast.py,sha256=uvp5mQqGSOx-ANY-9o5reiBYNNby0npm-0lt4w9EQ18,5763
74
+ openstef/pipeline/optimize_hyperparameters.py,sha256=uwXkzRA_fTSFt0yBuvvEoY5-4dMv42FPdS4hZocL-N8,11114
75
+ openstef/pipeline/train_create_forecast_backtest.py,sha256=hBJPxfDkbrmFSSGZrRH1vTiIVqJP-SWe0ibVpHT_8Qg,6048
76
+ openstef/pipeline/train_model.py,sha256=8tqJcfqjT9gsXoOSBJxf3i-N_3BPmxbUqt_Ygd7Oao0,20134
77
77
  openstef/pipeline/utils.py,sha256=23mB31p19FoGWelLJzxNmqlzGwEr3fCDBEA37V2kpYY,2167
78
78
  openstef/plotting/__init__.py,sha256=KQjXzyafCt1bE7XDrSeV4TDUIO7MkwN_Br4ASOcNI2g,163
79
79
  openstef/plotting/load_forecast_plotter.py,sha256=n-dB2dQnqjWCvV3kBjnOZYQ03J-9jSIHVovJy3nGSnQ,8129
@@ -85,20 +85,20 @@ openstef/tasks/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,16
85
85
  openstef/tasks/calculate_kpi.py,sha256=tcW_G0JRMA2tBcb8JN5eUbFFV9UcTsqHXQ1x3f-8Biw,11881
86
86
  openstef/tasks/create_basecase_forecast.py,sha256=_4Ry7AQmXNAKq19J1qmVyG-94atygXePLxVCejCfGPw,4227
87
87
  openstef/tasks/create_components_forecast.py,sha256=8LINqAHt7SnVsQAQMOuve5K-3bLJW-tK_dXTqzlh5Mw,6140
88
- openstef/tasks/create_forecast.py,sha256=xASSfHehdcxS64--alYoA6oElx_1Sy4S0tfxvWucVRw,6107
88
+ openstef/tasks/create_forecast.py,sha256=CVUZDG-obMb78ytJ79Hf6LYhMCbqaDvX_vc7fkt9VXI,6075
89
89
  openstef/tasks/create_solar_forecast.py,sha256=HDrJrvTPCM8GS7EQwNr9uJNamf-nH2pu0o4d_xo4w4E,15062
90
90
  openstef/tasks/create_wind_forecast.py,sha256=RhshkmNSyFWx4Y6yQn02GzHjWTREbN5A5GAeWv0JpcE,2907
91
91
  openstef/tasks/optimize_hyperparameters.py,sha256=3NT0KFgim8wAzWPJ0S-GULM3zoshyj63Ivp-g1_oPDw,4765
92
92
  openstef/tasks/split_forecast.py,sha256=X1D3MnnMdAb9wzDWubAJwfMkWpNGdRUPDvPAbJApNhg,9277
93
- openstef/tasks/train_model.py,sha256=gbKRB3F5qFNfTt0HQnxOjwGS721MEmF110_-FMVlYh4,8527
93
+ openstef/tasks/train_model.py,sha256=-d1VewDAaZV2B_JAnwl02Y3hONq7cPZrpH6X87_IOKA,8772
94
94
  openstef/tasks/utils/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
95
95
  openstef/tasks/utils/dependencies.py,sha256=Jy9dtV_G7lTEa5Cdy--wvMxJuAb0adb3R0X4QDjVteM,3077
96
96
  openstef/tasks/utils/predictionjobloop.py,sha256=Ysy3zF5lzPMz_asYDKeF5m0qgVT3tCtwSPihqMjnI5Q,9580
97
97
  openstef/tasks/utils/taskcontext.py,sha256=L9K14ycwgVxbIVUjH2DIn_QWbnu-OfxcGtQ1K9T6sus,5630
98
98
  openstef/validation/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
99
- openstef/validation/validation.py,sha256=DfnT7f29n9AbduJy9I6mXYQSnjt241Pn36Fp9SGehR0,11225
100
- openstef-3.4.64.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
101
- openstef-3.4.64.dist-info/METADATA,sha256=q6c9ZcvFIz9MWbiczxBe5eXZsmofc0mnySewaKLiuEw,8816
102
- openstef-3.4.64.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
103
- openstef-3.4.64.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
104
- openstef-3.4.64.dist-info/RECORD,,
99
+ openstef/validation/validation.py,sha256=24GEzLyjVqaE2a-MppbFS-YQT5n739BxD7fH3LK5LEE,12133
100
+ openstef-3.4.66.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
101
+ openstef-3.4.66.dist-info/METADATA,sha256=L8J4MBiz55-LU8iettxkpAP4Nj5UF4kR7wi8WBlFvtY,8816
102
+ openstef-3.4.66.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
103
+ openstef-3.4.66.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
104
+ openstef-3.4.66.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.2)
2
+ Generator: setuptools (76.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5