openstef 3.4.45__py3-none-any.whl → 3.4.46__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,3 @@
1
+ SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
+
3
+ SPDX-License-Identifier: MPL-2.0
@@ -31,6 +31,7 @@ from openstef.feature_engineering.weather_features import (
31
31
  from openstef.feature_engineering.cyclic_features import (
32
32
  add_seasonal_cyclic_features,
33
33
  add_time_cyclic_features,
34
+ add_daylight_terrestrial_feature,
34
35
  )
35
36
 
36
37
 
@@ -124,5 +125,8 @@ def apply_features(
124
125
  # Adds polar time features (sine and cosine) to capture periodic patterns based on the timestamp index.
125
126
  data = add_time_cyclic_features(data)
126
127
 
128
+ # Adds daylight terrestrial feature
129
+ data = add_daylight_terrestrial_feature(data)
130
+
127
131
  # Return dataframe including all requested features
128
132
  return data
@@ -13,6 +13,8 @@ import structlog
13
13
  import logging
14
14
 
15
15
  from openstef.settings import Settings
16
+ from openstef import PROJECT_ROOT
17
+
16
18
 
17
19
  structlog.configure(
18
20
  wrapper_class=structlog.make_filtering_bound_logger(
@@ -21,10 +23,65 @@ structlog.configure(
21
23
  )
22
24
  logger = structlog.get_logger(__name__)
23
25
 
24
-
26
+ TERRESTRIAL_RADIATION_CSV_PATH: str = (
27
+ PROJECT_ROOT / "openstef" / "data" / "NL_terrestrial_radiation.csv"
28
+ )
25
29
  NUM_SECONDS_IN_A_DAY = 24 * 60 * 60
26
30
 
27
31
 
32
+ def add_daylight_terrestrial_feature(
33
+ data: pd.DataFrame,
34
+ path_to_terrestrial_radiation_csv: str = TERRESTRIAL_RADIATION_CSV_PATH,
35
+ ) -> pd.DataFrame:
36
+ """Add daylight terrestrial radiation feature to the input dataset. This function processes terrestrial radiation
37
+ data and aligns it with the time indices of the input dataset. The terrestrial radiation data is normalized,
38
+ interpolated, and merged with the main dataset to provide a feature representing terrestrial radiation.
39
+
40
+ Args:
41
+ data (pd.DataFrame):
42
+ The input dataset containing a time-indexed DataFrame.
43
+ path_to_terrestrial_radiation_csv (str):
44
+ File path to the CSV file containing terrestrial radiation data. The CSV file
45
+ should have a time-based index.
46
+
47
+ Returns:
48
+ pd.DataFrame:
49
+ The input dataset with an added column for the terrestrial radiation feature.
50
+
51
+ Notes:
52
+ - The function assumes the input data and the terrestrial radiation data share
53
+ the same time zone and frequency alignment.
54
+ - The terrestrial radiation values are normalized using z-score normalization.
55
+
56
+ """
57
+ # Load the terrestrial radiation data
58
+ terrestrial_radiation = pd.read_csv(path_to_terrestrial_radiation_csv, index_col=0)
59
+ terrestrial_radiation.index = pd.to_datetime(terrestrial_radiation.index)
60
+
61
+ # Align the index with the input data's year
62
+ year_diff = data.index.min().year - terrestrial_radiation.index.min().year
63
+ terrestrial_radiation.index += pd.DateOffset(years=year_diff)
64
+
65
+ # Resample to 15-minute intervals, and interpolate missing values
66
+ terrestrial_radiation = terrestrial_radiation.resample("15min").mean().interpolate()
67
+
68
+ # Normalize the terrestrial radiation values using z-score normalization
69
+ terrestrial_radiation = (
70
+ terrestrial_radiation - terrestrial_radiation.mean(axis=0)
71
+ ) / terrestrial_radiation.std(axis=0)
72
+ terrestrial_radiation.columns = ["daylight_continuous"]
73
+
74
+ # Make a copy of the DataFrame to avoid modifying the original
75
+ data = data.copy()
76
+
77
+ # Merge the terrestrial radiation data with the input dataset
78
+ data = data.merge(
79
+ terrestrial_radiation, left_index=True, right_index=True, how="left"
80
+ )
81
+
82
+ return data
83
+
84
+
28
85
  def add_time_cyclic_features(
29
86
  data: pd.DataFrame,
30
87
  ) -> pd.DataFrame:
@@ -35,6 +92,7 @@ def add_time_cyclic_features(
35
92
 
36
93
  Returns:
37
94
  DataFrame that is the same as input dataframe with extra columns for the added time of the day features.
95
+
38
96
  """
39
97
  # Ensure the index is a DatetimeIndex
40
98
  if not isinstance(data.index, pd.DatetimeIndex):
@@ -71,6 +129,7 @@ def add_seasonal_cyclic_features(
71
129
  >>> data = pd.DataFrame(index=pd.date_range(start='2023-01-01', periods=365, freq='D'))
72
130
  >>> data_with_features = add_cyclical_features(data)
73
131
  >>> print(data_with_features.head())
132
+
74
133
  """
75
134
  # Ensure the index is a DatetimeIndex
76
135
  if not isinstance(data.index, pd.DatetimeIndex):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openstef
3
- Version: 3.4.45
3
+ Version: 3.4.46
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -4,6 +4,8 @@ openstef/app_settings.py,sha256=EJTDtimctFQQ-3f7ZcOQaRYohpZk3JD6aZBWPFYM2_A,582
4
4
  openstef/enums.py,sha256=Wmoag2p7G2cvENA1qt8FcVbAgo-MswXKxmq7vkxHaxs,2680
5
5
  openstef/exceptions.py,sha256=U4u2LTcdT6cmzpipT2Jh7kq9nCjT_-6gntn8yjuhGU0,1993
6
6
  openstef/settings.py,sha256=nSgkBqFxuqB3w7Rwo60i8j37c5ngDbt6vpjHS6QtJXQ,354
7
+ openstef/data/NL_terrestrial_radiation.csv,sha256=A4kbW56GDzWi4tWUwY2C-4PiOvcKJCwkWQQtdg4ekPE,820246
8
+ openstef/data/NL_terrestrial_radiation.csv.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
7
9
  openstef/data/dutch_holidays.csv,sha256=Cg8EYjXp1O0lcFOkIOmrS5HaOArrxZwOXsZ9pVkIcKI,49847
8
10
  openstef/data/dutch_holidays.csv.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
9
11
  openstef/data/pv_single_coefs.csv,sha256=jadIEYdHvl1lnV_06X_FASkJZ6C3Hecs5xZnH1gPMvI,24779
@@ -18,9 +20,9 @@ openstef/data_classes/model_specifications.py,sha256=Uod1W3QzhRqVLb6zvXwxh9wRL3E
18
20
  openstef/data_classes/prediction_job.py,sha256=_o5_9HYv6ERTIWlcMpUE-mWwe7dRpaiP83dgNpqpa5Y,5657
19
21
  openstef/data_classes/split_function.py,sha256=ljQIQQu1t1Y_CVWGAy25jrM6wG9odIVVQVimrT1n-1s,3358
20
22
  openstef/feature_engineering/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
21
- openstef/feature_engineering/apply_features.py,sha256=9scyEpUZcSWQrhMXV4c7iT1KvmHDk1J_KSZ_qI63lfY,4866
23
+ openstef/feature_engineering/apply_features.py,sha256=S9HSsooDPcSSyEw9kixEhjjk3MAkAfyK1VhZKg5R0gA,4995
22
24
  openstef/feature_engineering/bidding_zone_to_country_mapping.py,sha256=u9aabjFDImydkO6_cXiaQxBT4gb5zy0gGTg2EoIUO_Y,2106
23
- openstef/feature_engineering/cyclic_features.py,sha256=gmU49D40yR9-Fh9ajiv3SyIWVLQcnibvQ4fFnpvAOj4,3527
25
+ openstef/feature_engineering/cyclic_features.py,sha256=0Z3wZeF_qrkmEcOq91gtdSMZucAq99kUoBuFDV0SHqk,5962
24
26
  openstef/feature_engineering/data_preparation.py,sha256=htca9LBO3ZN1D-iX4vXf0UN1fw_rRO7y6N3AuYVMpfk,5628
25
27
  openstef/feature_engineering/feature_adder.py,sha256=aSqDl_gUrB3H2TD3cNvU5JniY_KOb4u4a2A6J7zB2BQ,6835
26
28
  openstef/feature_engineering/feature_applicator.py,sha256=DR7jayrEMlra4BFL1Ps5WV2fxbkQ6VaOTa5RIKM-YNk,7447
@@ -90,8 +92,8 @@ openstef/tasks/utils/predictionjobloop.py,sha256=Ysy3zF5lzPMz_asYDKeF5m0qgVT3tCt
90
92
  openstef/tasks/utils/taskcontext.py,sha256=L9K14ycwgVxbIVUjH2DIn_QWbnu-OfxcGtQ1K9T6sus,5630
91
93
  openstef/validation/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
92
94
  openstef/validation/validation.py,sha256=HVgreHvcZvPazfwC3NNE8_3lsMsZEd_42osCAg1_6W4,11128
93
- openstef-3.4.45.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
94
- openstef-3.4.45.dist-info/METADATA,sha256=nszNfTz9kFGVZyiXyRL18H4_6WtSIlZDvLuAAleM5wM,8068
95
- openstef-3.4.45.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
96
- openstef-3.4.45.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
97
- openstef-3.4.45.dist-info/RECORD,,
95
+ openstef-3.4.46.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
96
+ openstef-3.4.46.dist-info/METADATA,sha256=UJAm_jF1JSm4lcXL2tPkwR7XBaEleozpBF6iJnI8D4U,8068
97
+ openstef-3.4.46.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
98
+ openstef-3.4.46.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
99
+ openstef-3.4.46.dist-info/RECORD,,