openstef 3.4.32__py3-none-any.whl → 3.4.33__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,3 @@
1
+ SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
+
3
+ SPDX-License-Identifier: MPL-2.0
@@ -0,0 +1,18 @@
1
+
2
+ # Model details : dazls\_model\_baseline\_model
3
+
4
+ ## Description
5
+ **Model Name**: dazls\_model\_baseline\_model
6
+
7
+ **Author**: KTP, Alliander
8
+
9
+ **Model type**: Energy splitting model
10
+
11
+ **Model Architecture**: LinearRegression
12
+
13
+ **Date**: 2024-04-26
14
+
15
+ ## Intended use
16
+ This is a DAZLs model aimed at determining the energy splits for substations.
17
+ Each of these splits are determined based on a set of features that are available in production,
18
+ and in this case have their origin in the Dutch energy grid.********************
@@ -0,0 +1,3 @@
1
+ SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
+
3
+ SPDX-License-Identifier: MPL-2.0
@@ -97,7 +97,7 @@ def create_basecase_forecast_task(
97
97
  context.database.write_forecast(basecase_forecast, t_ahead_series=True)
98
98
 
99
99
 
100
- def main(config: object = None, database: object = None):
100
+ def main(config: object = None, database: object = None, **kwargs):
101
101
  taskname = Path(__file__).name.replace(".py", "")
102
102
 
103
103
  if database is None or config is None:
@@ -110,7 +110,7 @@ def main(config: object = None, database: object = None):
110
110
  model_type = ["xgb", "xgb_quantile", "lgb"]
111
111
 
112
112
  PredictionJobLoop(context, model_type=model_type).map(
113
- create_basecase_forecast_task, context
113
+ create_basecase_forecast_task, context, **kwargs
114
114
  )
115
115
 
116
116
 
@@ -140,7 +140,7 @@ def create_components_forecast_task(
140
140
  )
141
141
 
142
142
 
143
- def main(config: object = None, database: object = None):
143
+ def main(config: object = None, database: object = None, **kwargs):
144
144
  taskname = Path(__file__).name.replace(".py", "")
145
145
 
146
146
  if database is None or config is None:
@@ -155,7 +155,7 @@ def main(config: object = None, database: object = None):
155
155
  PredictionJobLoop(
156
156
  context,
157
157
  model_type=model_type,
158
- ).map(create_components_forecast_task, context)
158
+ ).map(create_components_forecast_task, context, **kwargs)
159
159
 
160
160
 
161
161
  if __name__ == "__main__":
@@ -118,7 +118,7 @@ def create_forecast_task(
118
118
  context.database.write_forecast(forecast, t_ahead_series=True)
119
119
 
120
120
 
121
- def main(model_type=None, config=None, database=None):
121
+ def main(model_type=None, config=None, database=None, **kwargs):
122
122
  taskname = Path(__file__).name.replace(".py", "")
123
123
 
124
124
  if database is None or config is None:
@@ -132,7 +132,7 @@ def main(model_type=None, config=None, database=None):
132
132
  model_type = [ml.value for ml in MLModelType]
133
133
 
134
134
  PredictionJobLoop(context, model_type=model_type).map(
135
- create_forecast_task, context
135
+ create_forecast_task, context, **kwargs
136
136
  )
137
137
 
138
138
 
@@ -216,7 +216,7 @@ def fides(data: pd.DataFrame, all_forecasts: bool = False):
216
216
  return forecast
217
217
 
218
218
 
219
- def main(config=None, database=None):
219
+ def main(config=None, database=None, **kwargs):
220
220
  taskname = Path(__file__).name.replace(".py", "")
221
221
 
222
222
  if database is None or config is None:
@@ -245,7 +245,7 @@ def main(config=None, database=None):
245
245
  )
246
246
 
247
247
  PredictionJobLoop(context, prediction_jobs=prediction_jobs).map(
248
- make_solar_prediction_pj, context
248
+ make_solar_prediction_pj, context, kwargs=kwargs
249
249
  )
250
250
 
251
251
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openstef
3
- Version: 3.4.32
3
+ Version: 3.4.33
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -15,25 +15,25 @@ Classifier: Programming Language :: Python :: 3.10
15
15
  Requires-Python: >=3.9.0
16
16
  Description-Content-Type: text/markdown
17
17
  License-File: LICENSE
18
- Requires-Dist: holidays ==0.21
19
- Requires-Dist: joblib ==1.3.2
20
- Requires-Dist: lightgbm ~=3.3
21
- Requires-Dist: matplotlib ~=3.7
22
- Requires-Dist: mlflow ~=2.3
23
- Requires-Dist: networkx ~=3.1
24
- Requires-Dist: optuna ~=3.1
25
- Requires-Dist: optuna-integration ~=3.6
26
- Requires-Dist: pandas ~=2.2.0
27
- Requires-Dist: plotly ~=5.18
28
- Requires-Dist: pvlib ==0.9.4
29
- Requires-Dist: pydantic ~=2.4
30
- Requires-Dist: pydantic-settings ~=2.3
31
- Requires-Dist: pymsteams ~=0.2.2
32
- Requires-Dist: scikit-learn ~=1.3
33
- Requires-Dist: scipy ~=1.10
34
- Requires-Dist: statsmodels <1.0.0,>=0.13.5
35
- Requires-Dist: structlog <25,>=23.1
36
- Requires-Dist: xgboost ~=2.0
18
+ Requires-Dist: holidays==0.21
19
+ Requires-Dist: joblib==1.3.2
20
+ Requires-Dist: lightgbm~=3.3
21
+ Requires-Dist: matplotlib~=3.7
22
+ Requires-Dist: mlflow~=2.3
23
+ Requires-Dist: networkx~=3.1
24
+ Requires-Dist: optuna~=3.1
25
+ Requires-Dist: optuna-integration~=3.6
26
+ Requires-Dist: pandas~=2.2.0
27
+ Requires-Dist: plotly~=5.18
28
+ Requires-Dist: pvlib==0.9.4
29
+ Requires-Dist: pydantic~=2.4
30
+ Requires-Dist: pydantic-settings~=2.3
31
+ Requires-Dist: pymsteams~=0.2.2
32
+ Requires-Dist: scikit-learn~=1.3
33
+ Requires-Dist: scipy~=1.10
34
+ Requires-Dist: statsmodels<1.0.0,>=0.13.5
35
+ Requires-Dist: structlog<25,>=23.1
36
+ Requires-Dist: xgboost~=2.0
37
37
 
38
38
  <!--
39
39
  SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
@@ -8,6 +8,10 @@ openstef/data/dutch_holidays_2020-2022.csv,sha256=pS-CjE0igYXd-2dG-MlqyvR2fgYgXk
8
8
  openstef/data/dutch_holidays_2020-2022.csv.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
9
9
  openstef/data/pv_single_coefs.csv,sha256=jadIEYdHvl1lnV_06X_FASkJZ6C3Hecs5xZnH1gPMvI,24779
10
10
  openstef/data/pv_single_coefs.csv.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
11
+ openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_baseline_model.z,sha256=2HEXuEvt5BMZMcDPiMfRiABgDQ698H_eM410XREIQK0,1293
12
+ openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_baseline_model.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
13
+ openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_model_card.md,sha256=KJ8S8jg2k_aL1pCK_b3wOLMZqGdDALa4in73c4Am8gY,539
14
+ openstef/data/dazls_model_3.4.24/dazls_stored_3.4.24_model_card.md.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
11
15
  openstef/data_classes/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
12
16
  openstef/data_classes/data_prep.py,sha256=gRSL7UiHvZis8m8z7VoTCZc0Ccffhef5_hmSyApnqK0,3417
13
17
  openstef/data_classes/model_specifications.py,sha256=Uod1W3QzhRqVLb6zvXwxh9wRL3EHCzSvX0oDNd28cFk,1197
@@ -70,10 +74,10 @@ openstef/preprocessing/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf
70
74
  openstef/preprocessing/preprocessing.py,sha256=bM_cSSSb2vGTD79RGzUrI6KoELbzlCyJwc7jqQGNEsE,1454
71
75
  openstef/tasks/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
72
76
  openstef/tasks/calculate_kpi.py,sha256=78DuK30ohWIHuc6oneRXalcNMXQ5mzy2qDr9xsPdSQs,11882
73
- openstef/tasks/create_basecase_forecast.py,sha256=Gk4Lsdh_wbGWx3rsJFHSu8akpckAjL92D_NUMFom-JA,4193
74
- openstef/tasks/create_components_forecast.py,sha256=j4m9AGjnMDx23FmsaZGPYn9rBMHsRd_h-m1RAfhF8to,6139
75
- openstef/tasks/create_forecast.py,sha256=NWd2fdbZ9CKDi190v7PF14IUdz6pyME2A-ssRNDdaYs,5750
76
- openstef/tasks/create_solar_forecast.py,sha256=bTr7NThTF6Yj405qAqRaJmlBUrL7HATqVVzsi9hMdMw,15049
77
+ openstef/tasks/create_basecase_forecast.py,sha256=rexAt6jGbW3YTXvDo606rzJvYETCoLVYCsBRihZas9U,4213
78
+ openstef/tasks/create_components_forecast.py,sha256=uhRjkvEdrbhQCw758UMVmVu-hU3YwxfnhM-Yj2ITQRg,6159
79
+ openstef/tasks/create_forecast.py,sha256=Q-1-0mSQYAzF48e0EAvAd30xyHXE4zJ2b47DF-LewnE,5770
80
+ openstef/tasks/create_solar_forecast.py,sha256=D5wBlsGJ-HI-wqDlOgg0NSwH7L6poSmz5x5xMCUPndw,15074
77
81
  openstef/tasks/create_wind_forecast.py,sha256=RhshkmNSyFWx4Y6yQn02GzHjWTREbN5A5GAeWv0JpcE,2907
78
82
  openstef/tasks/optimize_hyperparameters.py,sha256=s-z8YQJF6Lf3DdYgKHEpAdlbFJ3a-0Gj0Ahsqj1DErc,4758
79
83
  openstef/tasks/split_forecast.py,sha256=1MBi1kKYR6R3H-NMo4At_0SdpVamWnT5sUXffRX84dI,9327
@@ -84,8 +88,8 @@ openstef/tasks/utils/predictionjobloop.py,sha256=Ysy3zF5lzPMz_asYDKeF5m0qgVT3tCt
84
88
  openstef/tasks/utils/taskcontext.py,sha256=L9K14ycwgVxbIVUjH2DIn_QWbnu-OfxcGtQ1K9T6sus,5630
85
89
  openstef/validation/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
86
90
  openstef/validation/validation.py,sha256=628xaDbAm8B4AYtFOAn8_SXLjejNfULGCfX3hVf_mU0,11119
87
- openstef-3.4.32.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
88
- openstef-3.4.32.dist-info/METADATA,sha256=rRgKlS3ItbiQ1xkQwJGlgQ_oTq32dCxQY6HZzBFLF4A,7399
89
- openstef-3.4.32.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
90
- openstef-3.4.32.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
91
- openstef-3.4.32.dist-info/RECORD,,
91
+ openstef-3.4.33.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
92
+ openstef-3.4.33.dist-info/METADATA,sha256=IwbncY0fUkH__KTCUOtudllxgf4xjgsYwG838kebfgI,7380
93
+ openstef-3.4.33.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
94
+ openstef-3.4.33.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
95
+ openstef-3.4.33.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.3.0)
2
+ Generator: setuptools (74.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5