openstef 3.4.28__py3-none-any.whl → 3.4.30__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -23,9 +23,9 @@ class FlatlinerRegressor(OpenstfRegressor, RegressorMixin):
23
23
  def __init__(self, quantiles=None):
24
24
  """Initialize FlatlinerRegressor.
25
25
 
26
- The model always predicts 0.0, regardless of the input features. The model is
27
- meant to be used for flatliner locations that still expect a prediction while
28
- preserving the prediction interface.
26
+ The model always predicts 0.0, regardless of the input features. The model is meant to be used for flatliner
27
+ locations that still expect a prediction while preserving the prediction interface.
28
+
29
29
  """
30
30
  super().__init__()
31
31
  self.quantiles = quantiles
@@ -106,7 +106,7 @@ def split_data_train_validation_test(
106
106
  validation_fraction: float = 0.15,
107
107
  back_test: bool = False,
108
108
  stratification_min_max: bool = True,
109
- ) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
109
+ ) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
110
110
  """Split input data into train, test and validation set.
111
111
 
112
112
  Function for splitting data with features in a train, test and
@@ -3,7 +3,7 @@
3
3
  # SPDX-License-Identifier: MPL-2.0
4
4
  import logging
5
5
  import os
6
- from typing import Optional, Union
6
+ from typing import Optional, Union, Tuple
7
7
 
8
8
  import pandas as pd
9
9
  import structlog
@@ -155,7 +155,7 @@ def train_model_pipeline_core(
155
155
  input_data: pd.DataFrame,
156
156
  old_model: OpenstfRegressor = None,
157
157
  horizons: list[float] = DEFAULT_TRAIN_HORIZONS_HOURS,
158
- ) -> Union[
158
+ ) -> Tuple[
159
159
  OpenstfRegressor,
160
160
  Report,
161
161
  ModelSpecificationDataClass,
@@ -246,7 +246,9 @@ def train_pipeline_common(
246
246
  test_fraction: float = 0.0,
247
247
  backtest: bool = False,
248
248
  test_data_predefined: pd.DataFrame = pd.DataFrame(),
249
- ) -> tuple[OpenstfRegressor, Report, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
249
+ ) -> tuple[
250
+ OpenstfRegressor, Report, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame
251
+ ]:
250
252
  """Common pipeline shared with operational training and backtest training.
251
253
 
252
254
  Args:
@@ -314,7 +316,8 @@ def train_pipeline_common(
314
316
 
315
317
  def train_pipeline_step_load_model(
316
318
  pj: PredictionJobDataClass, serializer: MLflowSerializer
317
- ) -> tuple[OpenstfRegressor, ModelSpecificationDataClass, Union[int, float]]:
319
+ ) -> Tuple[OpenstfRegressor, ModelSpecificationDataClass, Union[int, float]]:
320
+ old_model: Optional[OpenstfRegressor]
318
321
  try:
319
322
  old_model, model_specs = serializer.load_model(experiment_name=str(pj.id))
320
323
  old_model_age = old_model.age # Age attribute is openstef specific
@@ -509,7 +512,7 @@ def train_pipeline_step_split_data(
509
512
  test_fraction: float,
510
513
  backtest: bool = False,
511
514
  test_data_predefined: pd.DataFrame = pd.DataFrame(),
512
- ) -> Union[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
515
+ ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
513
516
  """The default way to perform train, val, test split.
514
517
 
515
518
  Args:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openstef
3
- Version: 3.4.28
3
+ Version: 3.4.30
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -27,7 +27,7 @@ Requires-Dist: pandas ~=2.2.0
27
27
  Requires-Dist: plotly ~=5.18
28
28
  Requires-Dist: pvlib ==0.9.4
29
29
  Requires-Dist: pydantic ~=2.4
30
- Requires-Dist: pydantic-settings ~=2.2.1
30
+ Requires-Dist: pydantic-settings ~=2.3
31
31
  Requires-Dist: pymsteams ~=0.2.2
32
32
  Requires-Dist: scikit-learn ~=1.3
33
33
  Requires-Dist: scipy ~=1.10
@@ -43,7 +43,7 @@ openstef/model/regressors/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVY
43
43
  openstef/model/regressors/arima.py,sha256=wt7FVykjSvljpl7vjtliq61SiyjQ7KKtw8PF9x0xf04,7587
44
44
  openstef/model/regressors/custom_regressor.py,sha256=Hsmxahc9nfSWD0aEZ6cm4pxW2noQ8B1SujS17_fmxcU,1768
45
45
  openstef/model/regressors/dazls.py,sha256=Xt89yFHjkwpIUTkkhPmPZ74F8_tht_XV88INuP5GU2E,3994
46
- openstef/model/regressors/flatliner.py,sha256=98JUwRGtOYT9ZR9njY7FBCLNYTtAe7ZTcBF1cbSZyZg,3024
46
+ openstef/model/regressors/flatliner.py,sha256=J9p872FtobG49oMbc6mpl43TuEPt7DPSx8ZOeF6So-M,3017
47
47
  openstef/model/regressors/lgbm.py,sha256=zCdn1euEdSFxYJzH8XqQFFnb6R4JVUnmineKjX_Gy-g,800
48
48
  openstef/model/regressors/linear.py,sha256=uOvZMLGZH_9nXfmS5honCMfyVeyGXP1Cza9A_BdXlVw,3665
49
49
  openstef/model/regressors/linear_quantile.py,sha256=N-cia8aba39Th6BzOdtcESLuxhY9YtSGaOYIc6STgag,7830
@@ -52,7 +52,7 @@ openstef/model/regressors/xgb.py,sha256=HggA1U10srzdysjV560BMMX66kfaxCKAnOZB3Jyy
52
52
  openstef/model/regressors/xgb_multioutput_quantile.py,sha256=xWzA7tymC_o-F1OS3I7vUKf9zP6RR1ZglEeY4NAgjU0,9146
53
53
  openstef/model/regressors/xgb_quantile.py,sha256=PzKIxqN_CnEPFmzXACNuzLSmZSHbooTuiJ5ckJ9vh_E,7805
54
54
  openstef/model_selection/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
55
- openstef/model_selection/model_selection.py,sha256=R34tJBecZo6IiUwCCRLeBI2ZCX6GP8W7FDBlGFWtmG8,11167
55
+ openstef/model_selection/model_selection.py,sha256=3xTiAkP5KecB2jFOvHa8-AkVqFbwx0j_d8IMUTbkKBE,11181
56
56
  openstef/monitoring/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
57
57
  openstef/monitoring/performance_meter.py,sha256=6aCGjJFXFq-7qwaJyBkF3MLqjgVK6FMFVcO-bcLLUb4,2803
58
58
  openstef/monitoring/teams.py,sha256=A-tlZeuAgolxFHjgT3gGjraxzW2dmuB-UAOz4xgYNIQ,6668
@@ -62,7 +62,7 @@ openstef/pipeline/create_component_forecast.py,sha256=XlE9oo37qwmZPE2Dgg19CDfFPR
62
62
  openstef/pipeline/create_forecast.py,sha256=F09civdIumNQwJq2hraea5QTQx7DgvEliXKs4Y3f8Mc,5689
63
63
  openstef/pipeline/optimize_hyperparameters.py,sha256=3SLkcLR7XC4IeN48C-XT_lxlfCqW_D0NoMpZcrB9UUM,11045
64
64
  openstef/pipeline/train_create_forecast_backtest.py,sha256=-kZqCWal5zYLL0k0Sapks1zTmU5unNAooVPaPos1_7E,6050
65
- openstef/pipeline/train_model.py,sha256=Bxtwb8xQvyEYIo-6D5yNvvXl3WfCZLY1ok8aqaKv6zg,19660
65
+ openstef/pipeline/train_model.py,sha256=ThZwPo5otikVqVe6NdXkYcxkVFh-kegRVxMsQg1lbFc,19743
66
66
  openstef/pipeline/utils.py,sha256=23mB31p19FoGWelLJzxNmqlzGwEr3fCDBEA37V2kpYY,2167
67
67
  openstef/postprocessing/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
68
68
  openstef/postprocessing/postprocessing.py,sha256=iR1dhfIqBSRl1NpQiMAceDsY-fHs1qnzDc-b5jFdzvc,9321
@@ -84,8 +84,8 @@ openstef/tasks/utils/predictionjobloop.py,sha256=Ysy3zF5lzPMz_asYDKeF5m0qgVT3tCt
84
84
  openstef/tasks/utils/taskcontext.py,sha256=L9K14ycwgVxbIVUjH2DIn_QWbnu-OfxcGtQ1K9T6sus,5630
85
85
  openstef/validation/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
86
86
  openstef/validation/validation.py,sha256=628xaDbAm8B4AYtFOAn8_SXLjejNfULGCfX3hVf_mU0,11119
87
- openstef-3.4.28.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
88
- openstef-3.4.28.dist-info/METADATA,sha256=AbRqjrWvhbDWiJhtgJ7r0_43YfrKK5v5sQYQ8FE9PPY,7394
89
- openstef-3.4.28.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
90
- openstef-3.4.28.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
91
- openstef-3.4.28.dist-info/RECORD,,
87
+ openstef-3.4.30.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
88
+ openstef-3.4.30.dist-info/METADATA,sha256=qL32qVnXP9ZMeTVBXPNWv0y94_SlY_Cbtir0eqek7yw,7392
89
+ openstef-3.4.30.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
90
+ openstef-3.4.30.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
91
+ openstef-3.4.30.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (70.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5